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Molecular signature identification based on the histologic 

classification of NSCLC 

The big challenge in identifying the molecular signature through the microarray data 

is that the number of variables (e.g. genes, probes and so on) is usually much bigger 

than the number of available samples (e.g. LUAD and LUSC patients and so on). 

Additionally, inherent high noise of microarray data and the complicated 

multi-relationship among genes make it a much more challenging issue. Therefore, to 

improve the classification accuracy and to identify the real signature genes, T-test, 

Elastic Net (EN), Partial least squares (PLS) and Naïve Bayes were used together for 

the complementary advantages of each other. 

• T-test is a simple univariate significant testing method. It cannot consider the 

multi-relationships among CNVs of all genes but it can select genes with significantly 

different CNVs between LUAD and LUSC. Hence, it was used to roughly select 

important genes. 

• Elastic Net (EN) is a regularized regression method that linearly combines 

the L1 and L2 penalties of the lasso (least absolute shrinkage and selection operator) 

and ridge regression methods (Tibshirani 1996). It cannot overcome the 

multi-relationships among genes but it is capable of selecting groups of correlated 

genes (Zou and Hastie 2005). 

• Partial least squares (PLS) algorithm is an efficient statistical regression or 

classification technique that is highly suited for the analysis of high-dimensional data. 

It is a powerfully proven method for analyzing genomic and proteomic data, 

especially for the problems of classification and dimension reduction in 

bioinformatics (Nguyen and Rocke 2002; Song, et al. 2012). 

• Naïve Bayes (NB) classifier is a basically probabilistic classifier based on 

Bayes' theorem with strong assumptions that features are independent to each other. 

Therefore, the main drawback of NB is that it cannot overcome the 

multi-relationships among genes (Caruana and Niculescu-Mizil 2006; Rish 2001). In 

this study, the orthogonal LVs extracted by PLS from the CNVs of signature genes 
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were used as the new input variables to NB.  

To overcome the inherent high noise of microarray data and the complicated 

multi-relationship among genes and to select potential signature genes distinguishing 

LUADs and LUSCs out of approximately twenty thousand genes, an algorithm 

integrating Elastic Net (EN) (Hughey and Butte 2015), partial least squares (PLS) 

(Song 2012), and naive byes (NB) (Langarizadeh and Moghbeli 2016) was applied to 

complement the advantages of each other. The integrated EN-PLS-NB algorithm is 

described below with the corresponding flowchart in Figure S1A. 
(1) An initial step before applying the algorithm is to select the top 10,000 genes 

ranked by the p-values of two-tailed t-test comparing CNV values between LUAD 

and LUSC samples. This step reduces both random noise and computational burden 

for EN in step (2) by omitting genes with negligible differences between LUAD and 

LUSC. 

(2) Apply EN method to select the top genes out of the 10,000 genes at a step size 

of 100. A nested cross-validation (CV) procedure with 10-fold and 3-fold CV for the 

inner and outer loops, respectively, was employed. This step exploits the advantage of 

EN in cooperating group genes selection.  

(3) Apply the PLS method to a list of genes, which, initially, is the output of step 

(2). Sort the genes by the absolute coefficient values in descending order and derive 

the orthogonal LVs. A 5-fold CV procedure was employed. PLS compensates the 

shortage of EN that cannot overcome the multi-correlation among genes. 

(4) Apply NB classifier on the orthogonal LVs derived from the PLS analysis to 

calculate classification accuracy of NSCLC by a 5-fold CV. The orthogonality of LVs 

can improve the classification accuracy.  

(5) Remove genes at the bottom of the list in step (3) and repeat steps (3)-(4) until 

only one gene is left. 

(6) Select the gene set with the highest prediction accuracy and the best balance 

between sensitivity and specificity (defined as below) as the signature gene set and 

the corresponding classification model as the final one. 

Each method is briefly summarized as follows: 
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Elastic Net 
The elastic net is based on the lasso, which is a penalized least squares method 

imposing an L1-penalty on the regression coefficients. The elastic net is a regularized 

regression method that linearly combines the L1 and L2 penalties of the lasso and ridge 

regression methods (Zou and Hastie 2005), and for any fixed non-negative λ1 and λ2, 

the elastic net can be formulated as: 

L(λ1, λ2, β)=|y-X β|2+ λ2|β|2+ λ1|β|1               (1) 

where |𝛽|# = 𝛽%#
&
%'( ,	|𝛽|( = |𝛽% |

&
%'( . The elastic net estimator (1) is seen to be 

equivalent to the minimizer of: 𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛0 𝐿 𝜆(, 𝜆#, 𝛽 . On setting a=λ2/λ1+λ2, 

solving 𝛽 in equation (1) is equivalent to the optimization problem: 

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛0 |𝑦 − 𝑿𝛽|#, subject to (1-a)|β|1+a|β|2≤t for some t      (2) 

The function (1-a)|β|1+a|β|2 is a convex combination of the lasso and ridge penalty. 

The elastic net simplifies to simple ridge regression when a=1 and to the lasso when 

a=0. The L1 part of the elastic net does automatic variable selection, while the L2 part 

encourages grouped selection and stabilizes the solution paths with respect to random 

sampling, thereby improving prediction. 

 

Partial least squares 

Partial least squares (PLS) is an efficient statistical regression technique that is 

highly suited for the analysis of high-dimensional data, a powerfully proven method 

for analyzing genomic and proteomic data, especially problems of classification and 

dimension reduction in bioinformatics and genomics (Nguyen and Rocke 2002; Song, 

et al. 2012).  
Suppose that the data X is an n´p matrix of n samples and p genes (the raw data 

set should be scaled to zero mean and unit variance), and let Y denote the n´q vector 

of response values, such as the indicator of classification of LUAD and LUSC. When 

n<p, the usual regression tools such as ordinary least squares (OLS), cannot be 

applied since the p´p covariance matrix XTX is singular. In contrast, PLS may be 

applied also to the cases, whose aims is to describe linear relationship between the 

predictor matrix XÎRn´p and the response YÎRn´q, 
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Y=XB+V                               (3) 
where BÎRp´q is the regression coefficient matrix and VÎRn´q is the residual matrix. 

PLS regression is based on the basic principal component decomposition:  

    Y=TQT+F                                (4) 

     X=TPT+E                                (5) 

where TÎRn´m is the latent variables (LVs) matrix, PÎRp´m and QÎRq´m are matrices 

of coefficients, EÎRn´p and FÎRn´q are matrices of random errors, m is the number of 

LVs.  

From equation (3), (4), and (5), the T is the key. The objective criterion for 

constructing components in PLS is to sequentially maximize the covariance between 

the response variable and a linear combination of the predictors. That is, in PLS, the 

components are constructed to maximize the objective criterion based on the sample 

covariance between Y and XW, thus, 

 𝑤8 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑐𝑜𝑣=>='(
# (𝑿𝑾,𝒀)               (6) 

Subject to the orthogonal constraint, 

      𝑤8C𝑿C𝑿𝑾D = 0 for all  1≤k<i                (7) 

where WÎRp´m is a matrix of weights. 

To derive the T, PLS can all be seen as methods to construct a matrix of latent 

components T as a linear transformation of X, 

T=XW                                 (8) 

If T is constructed, QT and is obtained as the least squares solution of Equation (4):  

   QT=(TTT)-1TTY                             (9) 

The matrix B regression coefficients matrix is constructed from Equation (3): 

B=W(TTT)-1TTY                           (10) 

The number of LVs is the only parameter of PLS which need to be decided, with 

the increase of LVs, the information of original data preserved is increasing, until 

reaching the maximal value, which is the rank of X, all the information of original 

data is contained in LVs. 

 

Naïve Bayes classifier 
The Naïve Bayes Classifier (NB) is a simple probabilistic classifier based on 

Bayes' theorem with strong assumptions that the feature values are conditionally 
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independent given the class. Despite their naive design and apparently oversimplified 

assumptions, the Naïve Bayes Classifier is outperformed by other approaches, such 

as boosted trees or random forests (Caruana and Niculescu-Mizil 2006; Rish 2001). 

Given a new sample observation, NB estimates the conditional probabilities of classes 

using the joint probabilities of training sample observations and classes, 

   𝑝 𝐶 𝐹(, 𝐹#, … , 𝐹& = & J &(KL,KM,…,KN|J)
&(KL,KM,…,KN)

                     (11) 

Because the denominator does not depend onC and the values of the features iF are 

given, the denominator is a constant, and there is interest only in the numerator of that 

fraction. On the basis of the joint probability model and the conditional probability 

model:  

𝑝 𝐶 𝑝(𝐹(, 𝐹#, … , 𝐹&|𝐶) = 	𝑝(𝐶, 𝐹(, 𝐹#, … , 𝐹&)
= 𝑝 𝐶 𝑝 𝐹( 𝐶 𝑝(𝐹#, … , 𝐹&|𝐶, 𝐹()

= 𝑝 𝐶 𝑝 𝐹( 𝐶 𝑝 𝐹# 𝐶, 𝐹( …𝑝(𝐹&|𝐶, 𝐹(, 𝐹#, … , 𝐹&O()
																																 (12) 

the ‘naive’ conditional independence assumptions come into play: assume that each 

feature iF is conditionally independent of every other feature jF for i j¹ given the 

categoryC : 𝑝 𝐹D 𝐶, 𝐹% = 𝑝 𝐹D 𝐶 , 𝑝 𝐹D 𝐶, 𝐹%, 𝐹8 = 𝑝 𝐹D 𝐶 and so on, for ,i j k¹ . 

The conditional distribution over the class variableC is: 

𝑝 𝐶 𝐹(, 𝐹#, … , 𝐹& = & J
&(KL,KM,…,KN)

𝑝(𝐹D|𝐶)
&
D'(                (13) 

Given a sample with f1, f2,… fp, value, we can know the probability of belonging to 

this class C. 

 

Classification scores 

The classification scores of each sample in the training set and validation set were 

calculated whose magnitude can be viewed as an estimate of the prediction's 

confidence. All scores were normalized between -100 to +100. We interpret positive 

scores as predicting ADC histology while negative scores predict SCC histology. The 

cutoff scores of the grey area were chosen as 

 
   ±STD [abs(all scores of training samples)]                             

                         (14) 
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where STD is the standard deviation and abs is the absolute value.  

The cutoff is equal to ±18.28 in the TCGA training set and can be viewed as a 

prediction threshold: values above 18.28 are predicted to be LUAD while values 

below -18.28 are predicted to be LUSC. Intermediate values are predicted as poorly 

differentiated. 

 

Performance measurements 

To evaluate the performance of the classification of NSCLC, prediction accuracy, 

specificity and sensitivity defined as follows: 

,                              (15) 

,                                (16) 

,                                (17) 

where TP, FP, TN and FN denote true positive, false positive, true negative, and false 

negative, respectively. For example, when classifying NSCLC, LUADs and LUSCs 

were designated as the positive and negative samples, respectively. Correspondingly, 

sensitivity is the proportion of LUADs correctly classified, specificity is the 

proportion of LUSCs correctly classified, and accuracy is the proportion of both types 

of samples correctly classified.  

 

Five genes are relevant to lung cancer  

The 33 signature genes selected for the classification model included two genes 

(SOX2 and PIK3CA) which are known to be involved in lung cancer pathogenesis. 

We explored whether any of the other 31 genes had a similar relevance by searching 

the PubMed database using the Medical Subject Headings (MeSH) terms lung 

carcinoma and the gene name. Five of the genes were found to have relevance to lung 

Accurary = TP +TN
TP +TN + FP + FN

Sensitivity = TP
TP + FN

Specificity = TN
TN + FP
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cancer.  

• Adiponectin (ADIPOQ) gene polymorphisms may play a role in the 

susceptibility and prognosis of NSCLC and increased plasma levels are 

found after targeted therapy of EGFR mutant tumors (Cui, et al. 2011; 

Umekawa, et al. 2013).  

• ABCF3 and ABCC5 are members of the ATP-binding cassette (ABC) 

superfamily of proteins and ABCC5 is associated with cisplatin 

resistance in lung cancer (Weaver, et al. 2005).  

• Serpin Peptidase Inhibitor, Clade I Member 2 (SERPINI2) is a member of 

a family of proteins that acts as inhibitors of serine proteases and is 

unregulated in LUSC tumors and in the bronchial epithelium of smokers 

(Boelens, et al. 2009).  

• The hormone somatostatin (SST) is differentially over expressed in 

LUSCs and has been proposed as a potential target for novel therapies 

(Kang, et al. 2009).  

• Recombination signal-binding protein Jkappa (RBPJ) is a key 

transcription factor downstream of receptor activation in Notch signaling 

pathway, and may stimulate lung growth (Lv, et al. 2015). 
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Table S1. Summary of patient clinical parameters 

-: Not available 
*In TCGA dataset, due to the missing of clinical information of some samples, the summary is only 
come from part of it. 

 
 

Table S2. Summary of the datasets 
Dataset Tumor type Sample Number Usage 

TCGA 
LUAD 496 Training samples 
LUSC 490 Training samples 

Non-malignant 556+523 Validation samples 

SPORE LUAD 105 Validation samples 
LUSC 46 Validation samples 

EDRN/Canary LUAD 79 Validation samples 
 
 

 TCGA SPORE EDRN/Canary 
 LUAD LUSC LUAD LUSC LUAD 

Number 496 490 105 46 79 
Age 65 67 64 68 - 

Gender      
Female 238 85 53 13 55 
Male 200 264 52 33 24 

Unknown 58 141 - - - 
Stage     
Stage I 245 175 59 16 - 
Stage II 99 101 15 9 - 
Stage III 72 65 28 21 - 
Stage IV 21 4 3 - - 
Unknown 59 145 - - 79 

Smoking History      
Smoker 356 329 91 45 51 

Non-smoker 68 13 14 1 28 
unknown 72 148 - - - 

Vital status      
Dead 106 124 68 19 - 
Alive 332 225 37 27 - 

Unknown 58 141 - - 79 
Chemotherapy      

with 92 57 11 11 - 
without 359 292 94 35 - 

Unknown 45 141 - - 79 
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Table S3. Tumor associated genes for lung cancer 

No Gene symbols Location p-value1 Tumor types2 
1 PIK3CA 3q26.3 1.55E-78 LUSC 
2 SOX2 3q26.33 7.48E-57 LUSC 
3 FGFR1 8p11 2.57E-10 LUSC 
4 NKX2-1 14q33.3 6.32E-7 LUAD 
5 TERT 5p15.33 0.01 Both 
6 EGFR 7p11.2 0.03 Both 
7 MYCL 1p34.2 0.42 Neither 
8 MYC  8q24.21 0.42 Both 
9 ERBB2 (HER2) 17q12 0.43 Both 
10 MDM2 12q15 0.54 Both 
11 MET 7q.31 0.97 Both 
1. p-value: two-tailed t-test between LUADs and LUSCs, Bonferroni correction cutoff 2.10E-6; Genes 
whose p-values lower than the cutoff were shown in boldface. 
2. Tumor type:  

• LUSC: the median deflections of genes were greater for LUSC tumors;  
• LUAD: the median deflections of genes were greater for LUAD tumors; 
• Both: the median deflections of genes for both LUSC and LUAD tumors were big enough and 

were similar to each other; 
• Neither: no big median deflections of genes in LUSC or LUAD tumors  

 
 

Table S4 Percentage of significantly different genes among LUAD, LUSC and 
non-malignant samples (TCGA only) 

 LUAD vs 
Non-malignant 

LUSC vs 
Non-malignant 

LUAD vs 
LUSC 

Total 65.05% 64.74% 47.3% 
Amplification 34.35% 37.01% 18.5% 

Deletion 30.70% 27.73% 28.8% 
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Table S5. The classification results between LUAD and LUSC obtained by 7 CNV 
biomarkers*  

Gene set Dataset Sensitivity Specificity Accuracy 

 TCGA 0.81 0.94 0.88 

LUAD vs LUSC 
SPORE 0.83 0.74 0.80 

EDRN/Canary 0.97 NA NA 

Tumor vs non-malignant  

LUAD 
(TCGA) 0.83 0.99 0.91 

LUSC 
(TCGA) 0.99 0.96 0.97 

*The 7 genes are the top 7 genes in Table 2. There are only LUAD samples in EDRN/Canary dataset, 
so only Sensitivity measurement can be calculated. There we used Sensitivity as the accuracy of 
EDRN/Canary dataset. 
 
 
 
Table S6. Genome-wide CNV difference among different tumors 

 Tumor types Overall Gains Losses 

Adenocarcinomas 

LUAD vs. LUSC 47.3% 28.8% 18.5% 
LUAD vs. CRCA 52.3% 22.3% 30.0% 
LUAD vs. BRCA 48.0% 23.2% 14.8% 
LUAD vs. PRAD 48.4% 23.1% 15.3% 

LUAD vs. OV 55.0% 33.4% 21.6% 

Squamous cells LUSC vs. HNSC 42.5% 23.6% 18.9 
LUSC vs. ESSC 2.9% 1.8% 1.1% 
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Table S7. The percentage of significant genes compared with the whole genome 
genes 

Sample ID 
Predicted 

score 
NKX2-1 
(TTF-1) 

NAPSA TP63 KRT5 

Diagnosed as LUAD samples by TCGA 
TCGA-44-5643-01 -72.32 5.74 9.76 13.52 17.49 
TCGA-50-5931-01 -51.75 5.21 7.78 11.64 15.30 
TCGA-50-6595-01 16.15 8.21 10.85 9.81 10.52 
TCGA-55-7726-01 17.93 5.63 9.84 11.81 15.40 
TCGA-55-8204-01 20.86 7.63 9.06 13.05 16.69 
TCGA-62-A471-01 30.94 7.19 10.89 9.30 13.01 
TCGA-64-1679-01 10.11 10.02 11.07 9.67 10.30 
TCGA-75-6214-01 15.40 8.22 10.44 11.94 13.64 

Diagnosed as LUSC samples by TCGA 
TCGA-22-1017-01 16.33 11.82 15.06 6.26 4.83 
TCGA-43-2581-01 11.94 11.18 14.99 5.98 6.11 
TCGA-60-2714-01 4.41 12.01 14.61 4.80 7.40 
TCGA-63-6202-01 17.71 11.29 14.70 4.78 6.67 
TCGA-85-A513-01 14.90 12.06 15.87 5.23 8.66 

TCGA-NC-A5HJ-01 2.52 10.79 14.70 5.74 8.17 
TCGA-O2-A52Q-01 13.45 10.71 12.92 6.16 7.08 

Note: The cutoff values of four markers are: 10.3 (NKX2-1), 12.5 (NAPSA), 8.2 (TP63), 9.9 (KRT5). 
All expression values are log2 transformed. 
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Figure  S1 The identification and verification process for the integrated 

EN-PLS-NB algorithm and the flowchart of the CNV signature genes 
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Figure S2 Chromosome location of important genes in EGFR pathyway and their 

Beeswarm copy number distribution in different groups. 

Each spot is the median value of copy numbers of each gene in the corresponding 

group. The genes are sorted according to their locations. The space between two arms 

of each chromosome is the location of the corresponding centromere.  

P: p values of t-test between LUSC and LUAD tumor samples.  

The percentages of samples with copy numbers higher than 2.3 or lower than 1.2 

of each gene are shown in the corresponding Beeswarm figures. 
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Figure S3 Narrow loss on Chromosome 9 and the Beeswarm copy number 

distribution of CDKN2A in different groups. 

Each spot is the median value of copy numbers of each gene in the corresponding 

group. The genes are sorted according to their locations. The space between two arms 

of each chromosome is the location of the corresponding centromere.  

P: p values of t-test between LUSC and LUAD tumor samples.  

The percentages of samples with copy numbers higher than 2.3 or lower than 1.2 

of each gene are shown in the corresponding Beeswarm figures. 
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Figure S4 Gains 12q and the Beeswarm copy number distribution of specific genes in 

different groups. 

Each spot is the median value of copy numbers of each gene in the corresponding 

group. The genes are sorted according to their locations. The space between two arms 

of each chromosome is the location of the corresponding centromere.  

P: p values of t-test between LUSC and LUAD tumor samples.  

The percentages of samples with copy numbers higher than 2.3 or lower than 1.2 

of each gene are shown in the corresponding Beeswarm figures. 
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Figure S5  Genome-wide CNVs t-test between LUAD and CRCA/BRCA/PRAD/OV 

tumor samples in the TCGA dataset 

Blue color indicates that the deflection was greater for LUAD, whereas black and 

green colors indicate that the deflection was greater for CRCA/BRCA/PRAD/OV, 

respectively. The dashed horizontal lines corresponding to the cutoff p-values of 

2.1´10-6 (Bonferonni-correction). The vertical dashed lines separate the data from 

each chromosome. A gap within the individual chromosome data indicates the 

location of the centrosome. Note that for chromosomes 13, 14, 15, 21, and 22 only 

genes on the q arm were represented on the microarray.  
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Figure S6 Genome-wide CNVs t-test between LUSC and HNSC/ESSC tumor 

samples in the TCGA dataset 

Red color indicates that the deflection was greater for LUSC, whereas orange and 

pink colors indicate that the deflection was greater for HNSC or ESSC, respectively. 

The dashed horizontal lines corresponding to the cutoff p-values of 2.1´10-6 

(Bonferonni-correction). The vertical dashed lines separate the data from each 

chromosome. A gap within the individual chromosome data indicates the location of 

the centrosome. Note that for chromosomes 13, 14, 15, 21, and 22 only genes on the q 

arm were represented on the microarray.  
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Figure S7 The genome locations of specific genes in different cancer types. 

Each spot is the median value of copy numbers of each gene in the corresponding 

group. The genes are sorted according to their locations. The space between two arms 

of each chromosome is the location of the corresponding centromere. 

Note: Chromsome3 9 and 11 have different axis limits. 
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Figure S8 The bee-swarm of the mRNA expression values of four gene markers in 

LUAD and LUSC in TCGA samples 

     The lines in each figure are the cutoff values.  

    Diagnosed as LUAD by TCGA but double negative by LUAD markers and 

double positive by LUSC markers; 

      Diagnosed as LUSC by TCGA but double negative by LUSC markers and 

double positive by LUAD markers;    

· Other LUAD samples in TCGA dataset; 

· Other LUSC samples in TCGA dataset; 

· Other non-maglinant samples in TCGA dataset; 

     LUAD n=490; LUSC n=487; Non-malignant n=110 
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