10.1071/CH16614_AC ©CSIRO 2017 Australian Journal of Chemistry 2017, 70(5), 505-515

SUPPLEMENTARY MATERIAL

[NiFe]-Hydrogenase synthetic models with redox-active ligands

David Schilter,^{A,B,C} Danielle L. Gray,^B Amy L. Fuller,^B and Thomas B. Rauchfuss^B

^AIBS Center for Multidimensional Carbon Materials, 50 UNIST-gil, Ulsan 44919 (South Korea)

^BDepartment of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Goodwin Ave. Urbana, IL 61801, USA

^CCorresponding author. Email: d.schilter@gmail.com

List of Figures

Figure S1. FT-IR spectrum (v_{CO} region, CH ₂ Cl ₂) of [1a(μ -H)]BF ₄	. 2
Figure S2. ³¹ P{ ¹ H} NMR spectra (CD ₂ Cl ₂ , 202 MHz) of $[1a(\mu-H)]BF_4$.	. 2
Figure S3. ¹ H NMR spectrum (CD ₂ Cl ₂ , 500 MHz) of $[1a(\mu-H)]BF_4$. 3
Figure S4. Positive ion ESI mass spectrum of [1a(µ-H)]BF4.	. 3
Figure S5. X-ray structure of $[1a(\mu-H)]BF_4 \cdot CH_2Cl_2$. 4
Figure S6. Cyclic voltammograms of $[1a(\mu-H)]BF_4$ acquired in the presence of varying	
molar equivalents of CF ₃ CO ₂ H	. 5
Figure S7. Analysis of the currents observed for reduction of $[1a(\mu-H)]BF_4$ in the	
presence of CF ₃ CO ₂ H.	. 5
Figure S8. FT-IR spectrum (vco region, CH ₂ Cl ₂) of [1a]BF ₄	6
Figure S9. Positive ion ESI mass spectrum of [1a]BF4	6
Figure S10. Cyclic voltammogram of [1a]BF4	. 7
Figure S11: FT-IR spectrum (vco region, CH ₂ Cl ₂) of [1b]BF ₄	. 7
Figure S12: Positive ion ESI mass spectrum of [1b]BF4	. 8
Figure S13: FT-IR spectrum (vco region, CH ₂ Cl ₂) of [1c]BF ₄	. 8
Figure S14. Positive ion ESI mass spectrum of [1c]BF4.	9
Figure S15. X-band EPR spectra of [1c]BF4 in CH ₂ Cl ₂ /PhMe	9
Figure S16. Cyclic voltammogram of [1c]BF4.	. 9
Figure S17. FT-IR spectrum (vco region, CH ₂ Cl ₂) of [1c](BF ₄) ₂ 1	10
Figure S18. ³¹ P{ ¹ H} NMR spectrum (CD ₂ Cl ₂ , 202 MHz) of [1c](BF ₄) ₂ 1	10
Figure S19. ¹ H NMR spectrum (CD ₂ Cl ₂ , 500 MHz) of [1c](BF ₄) ₂ 1	11
Figure S20: Positive ion ESI mass spectra of [1c](BF4)2 1	12
Figure S21. FT-IR spectrum (vco region, CH ₂ Cl ₂) of [2a]BF ₄ 1	13
Figure S22. Positive ion ESI mass spectrum of [2a]BF41	13
Figure S23. Cyclic voltammogram of [2a]BF41	13
Figure S24. FT-IR spectrum (v _{CO} region, CH ₂ Cl ₂) of [2b]BF ₄ 1	14
Figure S25. Positive ion ESI mass spectrum of [2b]BF41	14
Figure S26. Cyclic voltammogram of [2b]BF41	15
Figure S27: FT-IR spectrum (vco region, CH ₂ Cl ₂) of [2c]BF ₄ 1	15

Figure S28. Positive ion ESI mass spectrum of [2c]BF4.	16
Figure S29. X-band EPR spectra of [2c]BF4 in CH2Cl2/PhMe	16
Figure S30. Cyclic voltammogram of [2c]BF4	16
Figure S31: FT-IR spectrum (vco region, CH ₂ Cl ₂) of [3](BF ₄) ₂ .	17
Figure S32. Positive ion ESI mass spectrum of [3](BF4)2.	17
Figure S33. X-band EPR spectra of [3](BF4)2 in CH2Cl2/PhMe	18
Figure S34. Cyclic voltammogram of [3](BF ₄) ₂	18

Figure S1. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [1a(μ -H)]BF₄.

Figure S3. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of $[1a(\mu-H)]BF_4$. Resonances at 3.43 (Et₂O), 1.31 (pentane), 1.12 (Et₂O) and 0.89 ppm (pentane) are from impurities in the NMR solvent.

Figure S4. Positive ion ESI mass spectrum of $[1a(\mu-H)]BF_4$.

Brown single crystals of $[1a(\mu-H)]BF_4 \cdot CH_2Cl_2$ formed upon slow diffusion of pentane vapor into a concentrated CH₂Cl₂ solution of $[1a(\mu-H)]BF_4$. One crystal was subjected to X-ray diffraction at 173 K, its space group determined as monoclinic $P_{21/c}$ (Z = 4) with cell parameters: a 12.6528(6) Å, b 33.7738(18) Å, c 12.2942(6) Å, α 90°, β 90.373(4)°, γ 90°. While these preliminary data were of poor quality, they did confirm the atom connectivity within the complex. The Ni-Fe distance in $[1a(\mu-H)]^+$ (2.662 Å) is similar to that in the analogous triphosphine hydride [(dppe)Ni(pdt)HFe(CO)₂(PPh₃)]⁺ (2.643 Å), with the monophosphine occupying a basal coordination site trans to an S atom in both complexes. The H⁻ ligand was not resolved in the Fourier difference map. Rather, it was fixed at a distance from Fe1 equivalent to that in the PPh₃ congener. Indirect evidence of the presence of H⁻ comes from the stereochemistry at the Fe1 site: were the hydride not present, then the mppf ligand would likely occupy an apical position, as it does in the Ni(II)Fe(I) model complexes of the type [(dppe)Ni(pdt)Fe(CO)₂(PRAr₂)]⁺, including $[2b]^+$. In this case, the π -accepting CO ligands are poised *trans* to the π -donating CO groups, no doubt a favorable situation. But this is not the case with $[1a(\mu-H)]^+$, in which mppf occupied a basal site, ceding its favorable apical position to CO, a ligand that prefers a strong donor trans to it, in this case H⁻. Lastly, it is noted that the bond distances are consistent with a Ni(II)(μ -H)Fe(II)Fe(II) description for this complex, in line with the CO stretching frequencies and the sharpness of the NMR data.

Figure S5. X-ray structure of $[1a(\mu-H)]BF_4 \cdot CH_2Cl_2$ with the H atoms, disordered BF_4^- anion and CH_2Cl_2 solvate molecule omitted for clarity. Disorder in the Cp ring and two Ph groups of the dppe ligand is also omitted for clarity. Selected distances (Å): Ni1-Fe1, 2.66; Ni1-P1, 2.17; Ni1-P2, 2.17; Ni1-S1, 2.21; Ni1-S2, 2.21; Fe1-S1, 2.31; Fe1-S2, 2.31; Fe1-H1, 1.49; Fe1-C30, 1.79; Fe1-C31, 1.78; Fe1-P3, 2.23; Fe2-C₅H₅(centroid), 1.64; Fe2-C₅H₄PPh₂(centroid), 1.72.

Figure S6. Cyclic voltammograms of $[1a(\mu-H)]BF_4$ (1 mM) acquired in the presence of varying molar equivalents of CF₃CO₂H.

Figure S7. Analysis of the currents observed for reduction of $[1a(\mu-H)]BF_4$ (1 mM). The quotient of the current in the presence (*i*_c) to that in the absence of the acid CF₃CO₂H (*i*_p) is plotted against the molar ratio of CF₃CO₂H to $[1a(\mu-H)]BF_4$. At higher acid concentrations, the wave shifts to more negative potentials, in line with direct reduction of CF₃CO₂H at the glassy carbon electrode.

The turnover frequency k for catalytic hydrogen evolution (n = 2) at a given scan rate v and temperature T can be determined using peak currents in the presence (i_c) and absence of acid (i_p). For catalysis at $E_{pc} = -1.37$ V (potential at $i_c/2 = E_{pc} = -1.33$ V):

$$\frac{i_c}{i_p} = \frac{n}{0.4463} \sqrt{\frac{RTk}{Fv}}$$

$$\frac{965 \,\mu A}{22.6 \,\mu A} = \frac{2}{0.4463} \sqrt{\frac{(8.314 \, JK^{-1} mol^{-1})(298 \, K)k}{(96485 \, Cmol^{-1})(0.1 \, JC^{-1}s^{-1})}}{k} \approx 350 \, s^{-1}}$$

Figure S8. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [1a]BF₄.

Figure S10. Cyclic voltammogram of [1a]BF4.

Figure S11: FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [1b]BF₄.

Figure S12: Positive ion ESI mass spectrum of [1b]BF₄.

Figure S13: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [1c]BF₄.

Figure S14. Positive ion ESI mass spectrum of [1c]BF₄.

Figure S15. X-band EPR spectra of $[1c]BF_4$ in $CH_2Cl_2/PhMe$ recorded at 110 K (top) and room temperature (bottom).

Figure S16. Cyclic voltammogram of [1c]BF₄.

Figure S17. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [1c](BF₄)₂.

Figure S19. ¹H NMR spectrum (CD₂Cl₂, 500 MHz) of [1c](BF₄)₂. Resonances at 3.43 (Et₂O), 1.31 (pentane), 1.12 (Et₂O) and 0.89 ppm (pentane) are from impurities in the NMR solvent.

Figure S20: Positive ion ESI mass spectra of [1c](BF₄)₂.

Figure S21. FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [2a]BF₄.

Figure S22. Positive ion ESI mass spectrum of [2a]BF₄.

Figure S23. Cyclic voltammogram of [2a]BF₄.

Figure S24. FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [2b]BF₄.

Figure S25. Positive ion ESI mass spectrum of [2b]BF₄.

Figure S26. Cyclic voltammogram of [2b]BF4.

Figure S27: FT-IR spectrum (v_{CO} region, CH_2Cl_2) of [2c]BF₄.

Figure S28. Positive ion ESI mass spectrum of [2c]BF₄.

Figure S29. X-band EPR spectra of $[2c]BF_4$ in $CH_2Cl_2/PhMe$ recorded at 110 K (top) and room temperature (bottom).

Figure S30. Cyclic voltammogram of [2c]BF4.

Figure S31: FT-IR spectrum (v_{CO} region, CH₂Cl₂) of [3](BF₄)₂.

Figure S32. Positive ion ESI mass spectrum of [3](BF₄)₂.

Figure S33. X-band EPR spectra of $[3](BF_4)_2$ in $CH_2Cl_2/PhMe$ recorded at 110 K (top) and room temperature (bottom).

Figure S34. Cyclic voltammogram of [3](BF₄)₂.