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The mathematical model of contact inhibition
The mathematical model deals with two particle/cell types, 1 (cancer) and 2 (normal) forming a
configuration xΛ over a large square area Λ of a 2-dimensional step-one lattice Z2. Theoretically,
it is convenient to treat xΛ as a restriction to Λ of a configuration x given over the whole of Z2.
Formally, x is characterized by a value x(y) = 0, 1, 2 assigned to each site y ∈ Z2: if x(y) = 0,
site y is treated as vacant, and if x(y) = 1 or 2, the site is considered as occupied by a cancer or
normal cell, respectively. We say that x is d-admissible (or simply admissible) if (i) any two sites
occupied by normal cells should be at distance greater than 1 (i.e., the minimal allowed distance
between them is 2 in the graph metric or

√
2 in the Euclidean metric), and (ii) cancer and normal

cells are separated by a distance at least d, in the graph metric. Cancer cells can be at distance
1 or larger. Formally, an admissible configuration obeys an exclusion principle with the specified
collection of minimal distances D = {D(i, j)} (in the graph metric):

dist (y, y′) ≥ 1, if x(y) = x(y′) = 1, i.e., D(1, 1) = 1,
dist (y, y′) ≥ 2, if x(y) = x(y′) = 2, i.e., D(2, 2) = 2,

dist (y, y′) ≥ d, if x(y) = 1, x(y′) = 2, i.e., D(1, 2) = d.
(1)

Parameter d can vary but our theoretical results remain the same for all values of d. (The only
part which is sensitive to the choice of d is the degree of closeness of the value r to 1 and the
position of the point P (r) (see Assertion (B) in Theorem 1 below).

We study probability distributions (or probability measures) µΛ( · |yΛ{) on AΛ(yΛ{), the col-
lection of admissible configurations xΛ over Λ compatible with a given boundary condition yΛ{ (in
the sense of the above notion of admissibility). We will focus on four specific configurations y: (i)
with y(x) = 1 for any x ∈ Z2, (ii) with y(x) = 2 for any even site x ∈ Z2 and y(x) = 0 for any odd
site x ∈ Z2, (iii) with y(x) = 2 for any odd site x ∈ Z2 and y(x) = 0 for any even site x ∈ Z2, (iv)
with y(x) = 0 for any x ∈ Z2. (A site x = (x1, x2) ∈ Zd is called even if the sum x1 +x2 is even and
odd if it is odd.) In case (i) the configuration is referred to as y(1), in case (ii) as y(EV), in case (iii)
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as y(OD) and in case (iv) as y(0). The pair y(EV), y(OD) represents close-packing configurations
of type 2 (here exactly a half of the lattice Zd is occupied). Similarly, y(1) yields a close packing
configuration of type 1 (all of Zd is occupied) while y(0) is an empty configuration.

Fix a pair of numbers p1, p2 > 0 with p1 + p2 < 1. The pair (p1, p2) represents a parameter
specifying the probability measure µΛ( · |yΛ{). The locus of points (p1, p2) ∈ R2 obeying the above
conditions p1, p2 > 0 and p1 + p2 < 1 is an (open) straight triangle T with vertices at (0, 0)
(the origin), (1, 0) and (0, 1): this is a parameter space for the family of probability distributions
µΛ( · |yΛ{). The triangle T is sliced into intervals

Ir = {(p1, p2) : p1, p2 > 0, p1 + p2 = r}, 0 < r < 1, (2)

which are parallel to the hypotenuse: T = ∪
0<r<1

Ir. Let P denote a Bernoulli distribution where

each site y ∈ Zd is vacant with probability 1 − p1 − p2, occupied with type 1 with probability p1

and occupied with type 2 with probability p2. Then P(AΛ(yΛ{)) > 0; this allows us to consider
the conditional distribution

µΛ( · |yΛ{) =
P( · ∩ AΛ(yΛ{))

P(AΛ(y{
Λ))

. (3)

We say that µΛ( · |yΛ{) is a Gibbs distribution in Λ with the collection of exclusion diameters D,
parameter (p1, p2) and a boundary condition yΛ{ . This distribution is associated with the grand
canonical ensemble. (In the Mathematical Physics terminology, numbers p1 and p2 can be related
to fugacities of particles of type 1 and 2.)

The existing theory allows us to analyse the limiting picture as Λ↗ Z2; see Theorem 1 below.
For the concept of a DLR measure and an extreme DLR measure, cf., e.g., [H.-O. Georgii. Gibbs
measures and phase transitions. Berlin, New York: De Gryter, 2011, Part III]. The notion of a
small perturbation of a probability measure is established in terms of the Pirogov–Sinai theory ; cf.
[Ya.G. Sinai. Theory of phase transitions: rigorous tresults. Oxford et al.: Pergamon Press, 1982].

The following theorem takes place ([A. Mazel, I. Stuhl, Y. Suhov. Work in progress]):

Theorem 1. For any d ≥ 1, given a collection of minimal allowed distances D = {D(i, j)} as
in (1), there exist (a) a number q ∈ (0, 1] (which turns out to equal 1) and (b) for every r ∈ (0, 1)
a point (P (r), r − P (r)) lying in segment Ir, with the following properties.

(A) The limit lim
r→1

P (r) = q.

(B) Suppose r is close to 1. Then:

(B1) For any pair (p1, p2) ∈ Ir with p1 + p2 = r and p1 > P (r) there is exactly one extremal
DLR measure µ(1). This measure is a small perturbation of the degenerate measure sitting on a
single configuration y(1). Furthermore, if p1 < P (r) then for all admissible configurations y,

lim
Λ↗Zd

µΛ( · |yΛ{) = µ(1). (4)

(B2) For any pair (p1, p2) ∈ Ir with p1 + p2 = r and p1 < P (r) there are exactly two extremal
DLR measures µ(EV) and µ(OD). These measures are space-shifts of each other, and µ(EV) is a small
perturbation of the degenerate measure sitting on a single configuration y(EV) while µ(OD) is a
small perturbation of the degenerate measure sitting on a single configuration y(OD). Furthermore,
for p1 < P (r):

lim
Λ↗Zd

µΛ( · |y(EV)

Λ{ ) = µ(EV), lim
Λ↗Zd

µΛ( · |y(OD)

Λ{ ) = µ(OD) (5)

and
lim

Λ↗Zd
µΛ( · |y(1)

Λ{ ) = lim
Λ↗Zd

µΛ( · |y(0)

Λ{ ) = (µ(EV) + µ(OD))/2. (6)

(B3) For any pair (p1, p2) ∈ Ir with p1 +p2 = r and p1 = P (r) there are exactly three extremal
DLR measures µ(EV), µ(OD) and µ(1). As before, µ(EV) and µ(OD) are space-shifts of each other,
and each of µ(EV), µ(OD) and µ(1) is a small perturbation of the degenerate measure sitting on the
respective single configuration y(EV), y(OD) or y(1). Furthermore, for p1 = P (r),

lim
Λ↗Zd

µΛ( · |y(EV)

Λ{ ) = µ(EV), lim
Λ↗Zd

µΛ( · |y(OD)

Λ{ ) = µ(OD) (7)
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and
lim

Λ↗Zd
µΛ( · |y(1)

Λ{ ) = µ(1), lim
Λ↗Zd

µΛ( · |y(0)

Λ{ ) = (µ(1) + µ(EV) + µ(OD))/3. (8)
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Pictorially, Theorem 1 shows a competition between different types in a high-density regime
(p1 + p2 = r close to 1). Namely, there is a curve r ∈ (0, 1) 7→ (P (r), r − P (r)) inside triangle T
with the property that, for r close to 1, interval Ir (cf. (2)) is divided by the point (P (r), r−P (r))
into two halves. On one half, where p1 > P (r), we have a single stable/dominant phase µ(1).
On the other half we have coexistence of two stable/dominant phases, µ(EV) and µ(OD) (a double
co-existence.). Finally, at the meeting point where p1 = P (r), p2 = r−P (r), there are three phases
co-existing, µ(1), µ(EV) and µ(OD) (a triple co-existence).

It has to be said that the choice of the minimal distance collection D may result in different
patterns of behavior. The above specification, with D(1, 1) = 1, D(2, 2) = 2, leads to a picture
which is relatively well understood. In particular, empty boundary condition yΛ{ (used in actual
simulations) generate symmetric formulas in Eqns (6) and (8). Other choices of the self-exclusion
minimal distances D(1, 1) and D(2, 2) would produce more complex patterns. This might lead
to a slower convergence to a Markov chain steady-state distribution and result in a considerable
instability of simulation results.

CDH1 Immunofluorescence
In cell co-culture experiments, cells were seeded in 24-well plates at 250 cells/mm2 with glass
coverslips. Each day, three coverslips were removed from the plate and cells were washed with PBS
and fixed with cold methanol:acetone (1:1) solution for 15 minutes at 10 °C. After fixation, cells
were briefly washed with PBS followed by antigen blocking with 5% bovine serum albumin (BSA)
in PBS for 1 hour at room temperature. Cells were washed briefly in 1% BSA and incubated with
1:200 anti-CDH1 primary antibody (BD Transduction Laboratories, 610182) in 1% BSA solution
for 1 hour at room temperature. After washing cells with incubation solution for 10 minutes
three times at room temperature, cells were then labeled with 1:400 anti-mouse AlexaFluor546-
conjugated antibody (Molecular Probes, A11003) and 50 µg/mL Hoechst 33258 stain (Molecular
Probes, H3569) in 1% BSA for 2 hours at room temperature. After washing cells with incubation
solution for 10 minutes three times at room temperature, slides were mounted with 1:1 glycerol:PBS
solution and coverslips sealed.

Image Analysis
The 30 images for each day (10 from each coverslips) were acquired using E600 Nikon microscope
under 20x objective with the respective fluorescent light filters for each marker. The difference
in CDH1 label patterns was used to distinguish between HaCaT and SK-MEL-147 in co-culture
images. Images have had the background noise subtracted and contrast enhanced in each channel.
Colors were merged and cell count was estimated based on the pseudo-colored blue nuclei present
in each image using ImageJ’s Cell Counter plug-in [1]. The distances between cells were measured
based on the centroid point of the selected cell nuclei.

Data Fitting
Cells counted in each image were analyzed using R software [2]. First, the data was read and
each cell type was counted, resulting in the number of cells per image for cancer and normal cells.
Averages of counts and standard deviation were calculated. The data was fitted and parameters of
the logistic growth function (Eq. 9) estimated using the implemented nls function [3], where K is
the carrying capacity (asymptote) given in the same units of the cell population P (cells/image), ρ
is the proliferation rate (days−1) and τ is the time t when half-asymptote is reached

(
P (τ) = K

2

)
[4].

P (t) =
K

1 + e−ρ·(t−τ)
(9)
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Below is presented the summary of the parameter values estimated for single cell culture pro-
liferation of SK-MEL-147 and HaCaT cell lines.

Formula: SK147 population ~ K/(1 + exp(-rho * (time - tau)))

Parameters:
Estimate Std. Error t value Pr(>|t|)

K 5043.5128 316.4690 15.94 < 2e-16 ***
rho 1.0462 0.1738 6.02 7.52e-08 ***
tau 4.8593 0.2126 22.86 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 778.4 on 69 degrees of freedom

Number of iterations to convergence: 9
Achieved convergence tolerance: 5.141e-06

Formula: HaCaT population ~ K/(1 + exp(-rho * (time - tau)))

Parameters:
Estimate Std. Error t value Pr(>|t|)

K 1779.5603 130.4704 13.640 < 2e-16 ***
rho 1.1360 0.3978 2.856 0.00567 **
tau 2.5736 0.3345 7.695 7.22e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 638.7 on 69 degrees of freedom

Number of iterations to convergence: 6
Achieved convergence tolerance: 2.953e-06

Keratinocytes reach lower cell density than melanoma cells at confluence
To distinguish between keratinocytes and melanoma cell lines in co-culture experiments we marked
cells with anti-CDH1 antibodies. The immortalized keratinocytes HaCaT cell line present a distinct
membrane pattern of CDH1 under fluoresce microscopy (Fig. S1A) and the human metastatic
melanoma SK-MEL-147 cell line present low expression of E-cadherin (CDH1) (Fig. S1B). To
evaluate cell proliferation, cells were seeded in a 24-well plate at 250 cells/mm2. Cell density was
calculated daily from counts in Neubauer chamber. The maximal density of melanoma cells was 2.8
times of keratinocytes after 8 days in culture (Fig. S1C). This indicates that the apparent growth
arrest of keratinocytes cells is associated with cell density and a degree in contact inhibition.

Cell Co-culture
For co-culture experiments, cells were seeded at a proportion of 10 keratinocytes for each melanoma
cell. This ratio was selected to mimic the epidermal basal layer [5]. However, cells were seeded at
the same proportion (1:1) resulted in the formation of a "normal" cell clusters surrounded by tumor
cells after 5 days. This indicates that cancer cells will eventually occupy all the space available
(Fig. S4). As we can see on panel presented on Fig. S2, the melanoma cell clusters sizes range
from 1000 µm2 to 5.5 × 104 µm2 in area.

Clusters Circularity
There is a good agreement between the aspect ratios measured for median obtained from both
simulation and experiments (Fig. 4F). However the same level of agreement is not observed for the
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circularity (Fig. S3). The experimental images are in the 2D Cartesian domain. The simulations
geometry is a square grid where the diamond shape is the equivalent of a circle and its circularity
is π/4, that is, the shapes of the clusters are grid anisotropy dependent [6]. The surroundings
of the domains are rough and that causes a difference between the circularity as measured from
the clusters of our images and the expected circularity if shape of our clusters were an ellipse
(experiments) or a diamond (simulations) [7].

Distance Distribution Analysis
The distribution of distances between cells was performed in selected images acquired in LSM
510 Meta confocal microscope (Carl Zeiss) under 20x objective. Cells were counted as previously
described (See sections Image Analysis and Data Fitting) and the centroid position of each
cell nucleus in an image was used as reference. The euclidean distance matrix was generated
using the dist function and the distribution was calculated using density function. The distance
distribution of keratinocytes assumes only distances that are found within the same distance as the
melanoma cell clusters. The minimal distance is defined as the most frequent distance observed
(mode) for each cell type in a given image. The mean minimal distance and standard deviation
for each day was calculated. When confluence is reached, the average minimal distance between
melanoma cells is reduced showing its lower exclusion diameter (Fig. S5A). An increase in the
difference between the minimal distances of the two cell types indicates the clustering of melanoma
cells (Fig. S5B).

Simulations
Additional simulation results are presented aiming to demonstrate that the cell type having the
smallest exclusion diameters shall prevail on the spatial domain (Fig. S6). Here we kept the same
values for all the remaining parameters of the model as our goal is to exemplify the importance
of loss of contact inhibition for the prevalence of the tumor cells. On the left graph we have kept
the exclusion diameters of the tumor cells to be smaller than for the healthy cells. We show that
the tumor cells will prevail at the steady state regime. On the right graph we have inverted the
exclusion diameters and made the healthy cells to have the smallest exclusion diameters and we
show their prevalence at the steady state regime.
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Figure S1: Keratinocytes reach lower cell density than melanoma cells at confluence. (A) and (B)
Immunofluorescent staining of E-Cadherin (CDH1) on HaCaT and SK-MEL-147 cells, respectively.
Different pattern on CDH1 staining was used as marker to count cells in co-culture experiments.
Cells grown in DMEM (Gibco) were fixed with cold methanol:acetone. Then, cells were stained
with mouse anti-E-cadherin and Alexa Fluor 546 Anti-mouse secondary antibody, (pseudo-colored
in red). Nuclei staining was with DAPI (pseudo-colored blue). The images were captured on Nikon
Eclipse E600 microscope and merged using ImageJ software. Scale bar: 50 µm. (C) Comparison
of proliferation curves attained by HaCaT and SK-MEL-147 cell lines. Cells were seeded in 24-well
plate at initial density of 250 cells/mm2 and counted daily in Neubauer chamber. Points represents
averages of three independent experiments in triplicates and bars standard deviations. Lines are
the fitted data obtained from logistic growth model parameter estimation.

Figure S2: Panel of melanoma cell clusters surrounded by keratinocytes after 8 days in co-culture.
Each image represents one field of view (∼ 412 x 330 µm2) from co-culture slides with cells fixed
and stained for nuclei (pseudo-colored in blue) and CDH1 (pseudo-colored in red). Scale bar: 50
µm.
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Figure S3: Clusters circularity. The difference in the circularity is due to the geometry of the
simulations is a square grid where the diamond shape is the equivalent of a circle.

Figure S4: Co-culture of SK-MEL-147 and HaCaT cell lines. Cells were seeded at 1:1 proportion
in 24-well plate with coverslips. Each image represents one field of view (∼ 412 x 330 µm2)
from co-culture slides with cells fixed and stained for nuclei (pseudo-colored in blue) and CDH1
(pseudo-colored in red). Scale bar: 50 µm.

Figure S5: (A) The minimal distance observed for each day of co-culture experiment. SK-MEL-
147 confluence shows a shorter distance than HaCaT cells. (B) The increasing distance between
SK-MEL-147 and HaCaT cell lines indicates the greater tolerance and clustering pattern of cancer
cells. Points indicates the averages and bars the standard deviation.
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Figure S6: The density dynamics of the stochastic model for different sets of the exclusion di-
ameters. The division rates b α1 = α2 = 0.1, the degradation rates ρ1 = ρ2 = 0.01 and the
migration rates δ1 = δ2 = 0.001. The exclusion diameters were chosen to be D(1, 1) = 2,
D(1, 2) = D(2, 1) = 4, and D(2, 2) = 3 on the left graph and right graph has D(1, 1) = 3,
D(1, 2) = D(2, 1) = 4, and D(2, 2) = 2.
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