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File Name: Supplementary Movie 1 
Description: Ab initio molecular dynamics simulations showing migration of proton in H‐doped 
monoclinic SNO crystal at 300 K. The proton hops from one O atom to another neighboring O atom 
within the NiO6 octahedron in a facile manner (see Fig. 2e for details on the activation barriers). The 
Ni, O, Sm and H are depicted as green, red, yellow, and blue spheres respectively. For the sake of 
clarity, only the hydrogen, and the Ni/O atoms belonging to the two NiO6 octahedra closest to the 
hydrogen are shown as large spheres; the atoms far away from the hopping phenomena are 
depicted with small translucent spheres. Our AIMD simulations at 300 K at various H doping levels 
show that the SNO lattice monotonically expands with addition of hydrogen approaching lattice 
expansion of ~5% for 1 H per unit cell of SNO. 
 



 
 

  

Supplementary Figure 1 | Habituation response in the perovskite and learning mechanism in 

neural/non-neural organisms. Habituation is a ubiquitous behavior present across the phyla of living 

beings that help organisms to learn and adapt to different aspects of the environment. It has been 

demonstrated to cause short-term and long-term potentiation of synaptic connections (or synaptic 

plasticity) that is key to memory formation in neural organisms. In non-neural organisms such as slime, 

habituation is seen as a change in its shape in response to different environments. The perovskite’s non-

linear response to the environment (H2 and Air in this study) with varying conductance mimics simple 

adaptation behavior and motivates the Adaptive Synaptic Plasticity (ASP) learning (see Supplementary 

Fig. 10). In ASP, we incorporate habituation by weight leaking coupled with traditional spike timing 

correlation to demonstrate learning to forget for robust and stable learning of artificial neural systems.  
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Supplementary Figure 2 | Habituation-forgetting-habituation and complete recovery behavior of 

SmNiO3 (SNO) device. In organisms, if the stimulus is withheld for extended period of time, the original 

state can be recovered. Subsequent exposures to the environment will result again in habituation. 

Strikingly identical to this behavior, our nickelate devices can be made to forget previous exposures to 

hydrogen by resting in air. a, A set of experiments on a device after it was recovered by an air anneal then 

followed by testing for 15 cycles. The continuous diminished response demonstrates habituation behavior. 

b, After seven cycles of H2/Air treatments, the SNO was left in air for 12 h. The device started to recover 

and approached its original state. With the same manner of H2/Air exposure again, the habituation 

behavior could be reproduced. This forgetting-habit forming process was repeated by resting the SNO 

device in air for another 12 h and re-exposure to H2/Air. c, non-habituation by fully recovering SNO. It is 

worth noting that if the H2 treatment was followed by an extended exposure of the nickelate device in air 

for 48 h, no habituation phenomenon would be present, again similar to what is observed in experiments 

conducted on organisms. The dotted conducting line in (a) and (b) indicated the trend of diminished 

response. These experiments were conducted in a manner identical to numerous experiments conducted 

on organisms in the biology literature and are all cited in the manuscript and Supplemental Information 

files. 
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Supplementary Figure 3 | Additional habituation experiments in ambient and inert environments. 

a, A set of tests on SmNiO3 (SNO) device in open ambient environment with repeatedly turning on/off 

H2 for 15 cycles. The decreased response of SNO to single stimulus H2 demonstrates the habituation 

behavior. The inset shows after resting in ambient environment for 12 h, the habituation behavior can be 

seen again. The forgetting-habituation behavior was reproduced by resting SNO for another 12 h and 

treating with H2 again. b, Another set of experiments on SNO in a custom-designed chamber. Distinct 

from the experiments shown in Fig. 2a, here we have inert Argon gas background. The evident habituation 

behavior with hydrogen demonstrates habituation is accomplished with just one stimulus, identical to 

experiments conducted in real organisms. The dotted conducting line in (a) and (b) indicated the trend of 

diminished response. 
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Supplementary Figure 4 | A set of representative in situ synchrotron X-ray diffraction patterns 

monitoring structural evolution upon breathing in H2 and air sequentially. a, X-ray diffraction 

patterns in H2 environment. SmNiO3 (SNO) thin film and substrate LaAlO3 (LAO) are indexed in 

pseudocubic lattice system. SNO (002) peak (labeled 1) appears close to LAO (002) peak. The peak at qz 

= 2.98 Å-1 (peak 2) is related to HSmNiO3 (H-SNO)1. It is clearly seen that when treated with H2, peak 1 

drops with exposure time (t1→t2→t3), while peak 2 increases with longer exposure, indicating H-SNO 

phase emergence. The proton concentration can be estimated to be of the order of 0.03-0.05 doping per 

unit cell by comparing the intensity to that of a fully doped sample. b, X-ray diffraction patterns in air 

environment. The gas environment was switched to air and structural evolution was monitored. It is 

evident that no new peaks are present. An opposite trends is observed, i.e. the SNO phase is restored and 

H-SNO phase diminished when breathing in air. The areas of peak 2 for all measured data during H2/air 

breathing are calculated via integration of the region shown in dotted line box and plotted in Fig. 2c. 
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Supplementary Figure 5 | Density of States (DOS) based on different magnetic orderings of doped 

SmNiO3 (SNO). a, DOS for fully doped (1e-/Ni) SNO - all Ni2+ - with various magnetic orderings. Despite 

the magnetic ordering, all band gaps are on the same order. The structures are fully relaxed and the Ni2+ 

are in high spin configurations, which is favored over the low spin configuration due to the Hund’s 

coupling. Colored states are the unoccupied Ni projected DOS (PDOS), corresponding to eg states. b, The 

occupied Ni eg electrons on each Ni site for each magnetic ordering. The colors of the octahedra 

correspond to the colored PDOS in (a). 
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Supplementary Figure 6 | Band structure of the monoclinic structure with Jahn-Teller distortion. 

a-d show the band structure with (a) antiferromagnetic orderings with layers perpendicular to the z-axis 

(A-type); (b) with columns along the z-axis, forming a checkerboard in the xy-plane (C-type); (c) with a 

three dimensional checkerboard (G-type); and (d) ferromagnetic ordering (F-type). For A-, C-, and G-

type, the bands are spin degenerate. The two highest valence bands are the 4 occupied Ni eg electrons (one 

on each Ni site). The 6 bands between 0 and 4 eV are the unoccupied Ni eg states. For F-type, the spin up 

bands are shown in solid blue, and the spin down bands are shown in dashed red. The four highest valence 

bands are the 4 occupied Ni eg electrons (one on each Ni site). All of these bands are spin up (the four 

bands can be clearly seen at the U point), leaving 8 unoccupied spin down bands and 4 spin up. The bands 

between 0 and 4 eV are the unoccupied Ni eg states.  
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Supplementary Figure 7 | Resonant magnetic X-ray scattering (RMXS) study of SmNiO3 (SNO) 

after breathing in H2. a, The experimental setup at beamline 23-ID-1 (CSX-1) at the NSLS-II. In the 

SNO region (orange), the sample is identical to the pristine (un-doped) SNO. The film regions close to Pt 

bars (gray) are hydrogenated and marked as HSmNO3 (H-SNO, blue). b, Ni-L3 X-ray absorption profiles 

of H-SNO (blue) and SNO (red). The absorption peak at 853 eV in SNO corresponds to the Ni-L3 edge as 

noted in literature2. When doped with electrons, the absorption edge shifts to lower energy, and develops 

a shoulder on the high energy side. This shift in spectral weight is indicative of an increase of electron 

filling on the Ni site suggesting doping-induced changes in the orbital filling and electronic structure. c, 

Spatial RMXS study of SNO. Position-dependent magnetic peak intensity was collected at 853 eV (dashed 

line in b). The magnetic reflection is only present in the SNO region. 



 

  

Supplementary Figure 8 | Typical magnetic scattering signal for SmNiO3 (SNO) and HSmNiO3 (H-

SNO) region of sample after breathing in H2. a, Detector images of the magnetic reflection peak from 

different regions of the sample. A diffuse magnetic peak centered at the wavevector Q = (1/4,1/4,1/4) can 

be clearly seen when the undoped SNO is illuminated (left), while no peak was found in H-SNO (right). 

Both measurements have been performed at 20 K, well below the Neel temperature (200 K) of SmNiO3. 

The black line crossing the center of CCD is the shadow of wires holding beam stop (shown as a black 

spot near center). The color-map figure indicates the intensity of signal. b, Magnetic reflection signal for 

three different regions of the sample (SNO, H-SNO, and Pt bar), with Gaussian fit (plus baseline) overlaid. 

To obtain the RMXS intensity, we integrated the CCD signal along vertical slices (with 50 pixels lateral 

width) through the peak center in order to average out the intensity fluctuations (speckle pattern) arising 

from domain interference (b).  When the beam is on the Pt bar, no signal can be measured, due to the 

opacity of the heavy metal layer to soft X-rays. The fluorescence background increases in the H-SNO 

region, where, however, no magnetic scattering can be detected. The magnetic reflection only appears in 

the undoped SNO region. All linecuts are fitted using a Gaussian lineshape with a uniform background. 

The position-dependent magnetic peak intensity can then be extracted as shown in Supplementary Fig. 

7c.  
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Supplementary Figure 9 | Spiking Neural Network (SNN) topology for pattern recognition 

consisting of input, excitatory and inhibitory layers arranged in a hierarchical fashion.  The topology 

consists of an input layer followed by excitatory and inhibitory layers. The input layer contains 28x28 

pixel image data (with one neuron per image pixel) from MNIST dataset3. Each input pattern or image is 

converted to a Poisson spike train based on the pixel intensities of the images in the dataset. The input 

layer is fully connected to the excitatory neurons, that are connected to the corresponding inhibitory 

neurons in a one-to-one manner. Each of these neurons inhibit the excitatory layer neurons except the one 

from which it receives the forward connection. This connectivity structure provides lateral inhibition that 

limits the simultaneous firing of various excitatory neurons in an unsupervised learning environment, 

promotes competitive learning causing them to learn different input patterns from each other. Besides 

lateral inhibition, we employ an adaptive membrane threshold mechanism called homeostasis4 that 

regulates the firing threshold to prevent a neuron to be hyperactive. It equalizes the firing rate of all 

neurons preventing single neurons from dominating the response. During learning, the excitatory synaptic 

weights from the input layer to each excitatory neuron are modulated to learn a particular input digit using 

the learning rule. Towards the end of the learning phase, the weights (or excitatory connections) that are 

randomly initialized eventually learn to encode a generic representation of the digit patterns. Specifically, 

the weights fanning out of the higher-intesity  (or white)  pixel regions will get potentiated while the 

weights from the low-intensity regions on the input image will be depressed during the learning phase. 

Correspondingly, the color-map figures shown in Fig. 1d, Fig. 3 and Supplementary Fig. 10b represent 

the weight values learnt corresponding to each excitatory neuron when learning stops. 



 

  

Supplementary Figure 10 | Adaptive Synaptic Plasticity (ASP) learning for weight modulation in a 

Spiking Neural Network (SNN). a, When a spiking activity is observed at the post/pre neuronal synaptic 

terminal, the recovery phase begins. This phase involves an exponential increase (potentiation) or decrease 

(depression) based on the temporal difference between the spiking activities of the pre- and post- neurons. 

The decay or forgetting phase in a synaptic weight ensues when there is no spiking activity (or input 

stimulus) observed at both post/pre neuron. The weights are dynamic during the training phase when input 

patterns are presented. The leak dynamics determine which post-neuronal connections (that have learnt 

old or insignificant data) should be forgotten to learn the new data. Whilst, the recovery phase 

potentiation/depression is geared towards making synaptic weight updates to learn a generic 

representation rather than learning specific training patterns. For instance, the weights of an excitatory 

layer post-neuron learning a digit 2 should spike for different instances of 2 so that it learns a more generic 

representation rather than just mimicking a specific instance. Thus, synaptic depression (based on spike 

timing correlation) and leak (based on habituation) have different roles in ASP learning. ASP incorporates 

the significance of the inputs to modulate the weights (see Supplementary Note 3 for details on 

implementation). That is, the weight updates during recovery phase are more prominent for frequently 

spiking input neuron. Also, the leak rate during the decay phase is varied taking into account the post-

synaptic or excitatory neuron’s spiking activity and membrane threshold 𝑉thresh +  𝜃, such that recent 
input patterns do not overwrite old but significant data. The leak rate decreases as the weights become 

more and more prominent (either in potentiation or depression window), that is basically habituation. This 

behavior helps to retain significant information (corresponds to weights with higher negative/positive 

values) while forgetting (or leaking) the weights corresponding to insignificant information. b, To show 

the effectiveness of the proposed learning model for larger problems, we trained an SNN of 200 excitatory 

neurons with Spike Timing Dependent Plasticity (STDP) and ASP in a dynamic environment when all 

digits 0 through 9 are presented sequentially. To ensure that the earlier digits are not completely forgotten, 

the number of training instances of each digit category were arranged in a decreasing order i.e. digit 0 had 

more training instances than digit 1 and so on. So, the network will try to retain more significant data 

while learning recent patterns. It is clearly seen that the SNN learnt with our proposed ASP encodes a 

better representation of the input patterns in comparison to the standard STDP trained network. In fact, 

the network is able to represent all digits. Without habituation in STDP trained SNN, most of the 

representations are illegible due to substantial overlap. As noted in Supplementary Note 4, ASP learning 

can also be naturally integrated with filamentary switch or spin-based devices. The color intensity of the 

patterns are representative of the value of synaptic weights with lowest intensity (white) corresponding to 

a weight value of -0.5 and highest intensity (black) corresponding to 0.5. 
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Supplementary Note 1: Related work for habituation based learning 

There have been prior efforts on integrating habituation for implementing autonomous mobile robots5-7. 

Essentially, the non-associative learning rule that represents a decreased response after exposure to repeated 

stimuli, has been demonstrated to be crucial for the attention phenomenon. Consequently, in Ref. 5, the 

authors had demonstrated that inserting such a rule at the synaptic level increased a robot’s adaptation 

capability (that was controlled by a Spiking Neural Network (SNN)) by enabling the robot to ignore broader 

contextual irrelevant information. In Ref. 6, the authors investigated operant conditioning in neurobotics 

context in multiple learning scenarios. Specifically, in Ref. 6, the authors used the habituation enhanced 

synaptic plasticity to model simple operant conditioning learning in mobile robots that can perform complex 

behaviors with simpler neural components. On the other hand, from neuroscience perspective, habituation 

mechanisms (not related with synaptic plasticity) have been used to model visual cortical dynamics to better 

understand how the brain perceives slanted, curved surfaces and 2D as 3D objects8,9. The model shows how 

chemical transmitters that habituate in an activity dependent manner trigger attention that eventually affects 

3D/2D perception. Our work, in contrast to the above studies, integrates habituation with synaptic plasticity 

to emulate the forgetting capability of the brain in order to build a stable-plastic self-adaptive SNN for 

dynamic environments without catastrophic forgetting. Adaptive Synaptic Plasticity (ASP) learning 

facilitates the gradual degradation or forgetting of already learnt weights to realize new and recent 

information while preserving some memory about old significant data. While the current work focuses on a 

visual recognition application, the ASP learning rule can serve as a general unsupervised learning model 

across neuromorphic applications that addresses the catastrophic forgetting issue. 

 

Supplementary Note 2: First-Principles calculation of SNO band structure   

The undoped (pristine) calculation are carried out on monoclinic SNO with a Jahn-Teller distortion, relaxed 

from a Pbnm structure and freezing in a monoclinic distortion with β ≄ 90. This structure (space group P21/n) 

is a √2 x √2 x 2 supercell with two inequivalent Ni sites. Considering 10 atom/cell magnetic orderings for 
the monoclinic structure, we found the energies of all these relaxed structures to be within 0.1 eV/Ni of each 

other with band gaps all smaller than 1 eV (See Supplementary Table 1 for further details). Consequently, 

the specific choice of the underlying magnetic structure in the spin-polarized DFT+U is not expected to 

influence appreciably the evolution of the band structure with doping. Previous computational work on rare 

earth nickelates, employing both dynamical mean field theory (DMFT) and DFT+U, has shown that the 

insulating phase exhibits a disproportionated structure, which is often exaggerated by DFT+U10; furthermore, 

room temperature experiments show only a small11 or no12 disproportionation.  For each added electron, its 

localization can be observed through the magnetic moment of the Ni, the oxygen octahedral size or the PDOS 

of the Ni. The localized electron on a Ni site resulting in a high-spin Ni2+, where Hund’s rules are favored 

over a Jahn-Teller distortion. This can be clearly seen for 1/4 and 1/2 e-/Ni in Supplementary Table 2. The 

octahedral distortions observed for 3/4 and 1 e-/Ni are also constrained by the volume of the cell, which is 

not allowed to change in the ionic relaxation in these calculations. 

 

 

 

 

 

 



 

Supplementary Table 1: 

Total energies, band gaps, lattice vectors and non-orthorhombic angle of the 20 atom/cell of the monoclinic 

structures. A, C, G and F are 10 atom/cell antiferromagnetic orderings of the monoclinic structure. 

Magnetic 

Order 

Total Energy 

(eV) 
Gap(eV) a (Å) b (Å) c (Å) β (°) 

A -134.80 0.54 5.300 5.724 7.481 90.007 

C -134.64 0.43 5.270 5.812 7.441 90.011 

G -134.59 0.75 5.278 5.818 7.421 90.005 

F -135.01 0.30 5.328 5.553 7.600 90.031 

 

Supplementary Table 2:  
Magnetic moment of each of the four Ni and properties of the compassing oxygen octahedron in the doped 

SNO structures with G-type magnetic ordering. We elected to keep the overall volume of the calculations 

fixed as in reality the electron doping will not occur the same regularity present in the calculation. While the 

overall octahedral tilt pattern is not affected by electron doping, the tilt angles become more acute. When the 

lattice parameters are allowed to relax the overall volume increases; however, the octahedral volume 

increases that the tilt angles become even more acute. 

Property Ni1  Ni2 Ni3 Ni4 

0 added electrons per Ni 

Magnetic Moment (µB) 0.92 -0.92 0.92 -0.92 

Octahedral Volume (Å3) 10.62 10.62 10.62 10.62 

Ni-O Distances (Å) 2.17, 1.91, 1.93 1.91, 2.17, 1.93 1.91, 2.17, 1.93 2.17, 1.91,1.93 

Ni-O-NiB Angle (°) (NiB) 148.8 (Ni2) 148.6 (Ni3) 148.8 (Ni4) 148.6 (Ni1) 

1/4 added electrons per Ni 

Magnetic Moment (µB) 0.81 -0.84 0.86 -1.65 

Octahedral Volume (Å3) 10.46 10.48 10.39 11.76 

Ni-O Distances (Å) 2.18, 1.92, 1.87 1.92, 2.17, 1.89 1.90, 2.05, 1.99 2.18, 2.03, 1.99 

Ni-O-NiB Angle (°) (NiB) 146.9, 146.8(Ni2) 145.6 (Ni3) 147.6, 148.0 (Ni4) 147.6 (Ni1) 

1/2 added electrons per Ni 

Magnetic Moment (µB) 0.80 -0.80 1.63 -1.63 

Octahedral Volume (Å3) 10.47 10.47 11.41 11.41 

Ni-O Distances (Å) 2.18, 1.93, 1.87 1.93, 2.18, 1.87 2.04, 2.08, 2.03 2.08, 2.04, 2.03 

Ni-O-NiB Angle (°) (NiB) 145.5(Ni2) 144.6 (Ni3) 145.4(Ni4) 144.6 (Ni1) 

3/4 added electrons per Ni 

Magnetic Moment (µB) 0.75 -1.61 1.62 -1.62 

Octahedral Volume (Å3) 10.24 11.50 11.35 11.40 

Ni-O Distances (Å) 2.09, 1.97, 1.88 2.05, 2.17, 1.96 2.06, 2.10, 1.98 2.06, 2.04, 2.04 

Ni-O-NiB Angle (°) (NiB) 143.6, 144.4(Ni2) 141.4 (Ni3) 144.5, 143.6 (Ni4) 142.8 (Ni1) 

1 added electron per Ni 

Magnetic Moment (µB) 1.61 -1.61 1.61 -1.61 

Octahedral Volume (Å3) 11.31 11.31 11.31 11.31 

Ni-O Distances (Å) 2.09, 2.06, 1.98 2.06, 2.09, 1.98 2.06, 2.09, 1.98 2.09,2.06,1.98 

Ni-O-NiB Angle (°) (NiB) 142.5(Ni2) 139.3 (Ni3) 142.5 (Ni4) 139.3 (Ni1) 

1 added electron per Ni (Lattice Parameters Relaxed, Supplementary Fig. 5a, third panel) 

Magnetic Moment (µB) 1.66 -1.66 1.66 -1.66 

Octahedral Volume (Å3) 13.78 13.78 13.78 13.78 

Ni-O Distances (Å) 2.27, 2.11, 2.15 2.11, 2.27, 2.15 2.11, 2.27, 2.15 2.27, 2.11, 2.15 

Ni-O-NiB Angle (°) (NiB) 140.7(Ni2) 136.2 (Ni3) 140.7 (Ni4) 136.2 (Ni1) 



 

Supplementary Note 3: Adaptive Synaptic Plasticity Learning 

In the Spiking Neural Network (SNN) simulations for digit recognition, we use the Leaky-Integrate-and-Fire 

(LIF) model13,14 to simulate the membrane potential V of a neuron as 

𝜏
𝑑𝑉

𝑑𝑡
= (𝐸rest −  𝑉) + 𝑔e ∗  (𝐸exc −  𝑉) + 𝑔i ∗  (𝐸inh −  𝑉) 

where Erest is the resting membrane potential (-65 mV), Eexc (0 mV) and Einh  (-100mV) are the equilibrium 

potentials of excitatory and inhibitory synapses, τ is the time constant (100 ms) and ge and gi are the 

conductances of excitatory and inhibitory synapses respectively. The LIF model causes V to increase when 

pre-synaptic spikes are received and to otherwise decay exponentially. The post-neuron fires when V crosses 

the membrane threshold Vthresh (-52 mV) and THEN its membrane potential is reset to Vrst (-65 mV). After 

each firing event, a refractory period (5 ms) ensues during which the post-neuron is inhibited from firing 

even if additional input spikes arrive.   

Synapses are modeled by conductance changes13,14 wherein the conductance increases by the synaptic weight, 

w, only upon the arrival of pre-neuronal spike. Otherwise, the conductance continues to decay exponentially. 

The dynamics of both inhibitory and excitatory conductance are simulated as 

𝜏e

𝑑𝑔e

𝑑𝑡
= −𝑔e, 𝜏i

𝑑𝑔i

𝑑𝑡
= −𝑔i  

where τe (1ms) or τi (2ms) are the time constants for the excitatory or inhibitory post-synaptic potential. 

As discussed in Supplementary Fig. 9, homeostasis is used to prevent a single neuron from dominating the 

spiking pattern. Specifically, each excitatory neuron’s membrane threshold is not only determined by Vthresh 

but by Vthresh + θ, where θ is increased each time the neuron fires and then decays exponentially at an 

extremely slow rate. We use θ = 0.1 and a very high decay time constant of 108 ms in our simulations. 

Each input image is presented for 350 ms. There is resting period of 150 ms before presenting a new input to 

allow all neuronal parameters to decay to the reset values (except for the adaptive membrane threshold, 

𝑉thresh + 𝜃). We note to the reader that we use identical parameters for neuron and synapse models, input 

encoding and input image presentation time as Diehl & Cook14 for fair comparison of our ASP learning with 

standard STDP learning (Fig. 3b, Supplementary Fig. 10). The standard STDP learning model is implemented 

using the power law weight dependent rule14,15. 

ASP: Learning rules 

We examine the mathematical formulations for ASP to understand how the temporal dynamics dictate the 

plasticity that eventually enables the SNN to learn to forget as well as adapt to new patterns. 

Recovery Phase 

To improve simulation speed, the weight dynamics are computed using synaptic traces16. In ASP learning, 

the synapses keep track of three different kinds of traces corresponding to pre and post-synaptic neuron’s 

spiking activity: a) Recent presynaptic trace (𝑃𝑟𝑒rec) that doesn’t accumulate over time (only accounts for 

the most recent spike), b) Accumulative presynaptic (𝑃𝑟𝑒acc) trace that adds over time (accounts for the entire 
spike history of the presynaptic neuron for a given time period or epoch during which a particular pattern is 

presented to the SNN), c) Postsynaptic trace (Post) that accumulates over time based on the postsynaptic 

neuron’s spiking activity. Each of the traces is evaluated as follows wherein the trace is increased when a 

spiking activity is observed, otherwise it decays exponentially:   

𝑃𝑟𝑒rec(𝑡) = exp (−
𝑃𝑟𝑒rec

𝜏rec
) ;  𝑃𝑟𝑒rec = 1 when 𝑡pre occurs        (1)   



 

𝑃𝑟𝑒acc(𝑡) = exp (−
𝑃𝑟𝑒acc

𝜏acc
) ;  𝑃𝑟𝑒acc+= 1 when 𝑡pre occurs   (2) 

𝑃𝑜𝑠𝑡(𝑡) = exp (−
𝑃𝑜𝑠𝑡

𝜏post
) ;  𝑃𝑟𝑒𝑎𝑐𝑐+= 1 when 𝑡post occurs       (3)        

Now, the time constant for decay of the accumulative pre-trace (𝑃𝑟𝑒acc) has to be larger than that of the 

recent pre-trace (𝑃𝑟𝑒rec ) so that spike history can be appropriately added. In our simulations, 𝜏acc =
10𝜏rec, 𝜏post = 2𝜏acc. We adopt a modified version of the power-law weight dependent STDP model13,14 to 

obtain the weight changes during the recovery phase (i.e. in presence of input stimulus) of ASP. When a 

postsynaptic spike arrives at the synapse, the weight change Δw is calculated based on the presynaptic trace 

(𝑃𝑟𝑒rec, 𝑃𝑟𝑒acc) 

Δ𝑤 = 𝜂(𝑡)(𝑃𝑟𝑒rec − 𝑜𝑓𝑓𝑠𝑒𝑡) −
𝑘const

2𝑃𝑟𝑒acc
     (4) 

where η(t) is a time dependent learning rate that is inversely proportional to the post-synaptic trace value 

(Post(t) from Eqn. 3) at a given time instant. As the post-synaptic neuron in the excitatory layer starts spiking 

for a given input, the learning rate will decrease. This will ensure that a particular neuron retains and stably 

learns a particular input pattern. It also prevents the neuron from quickly adapting to a new pattern (or 

catastrophic forgetting). The offset ensures that the presynaptic neurons that rarely lead to firing of the 

postsynaptic neuron will become more and more disconnected (or the synaptic weight values will depress). 

In case of digit inputs, the black (or off) pixel region for a particular digit will become disconnected resulting 

in lowering of synaptic weight values corresponding to the pre-neurons in the lower pixel intensity region. 

In Eqn. 4, the first part represents the weight change (potentiation or depression) based on the most recent 

pre-synaptic spike (as with STDP). However, as seen earlier, erasure of memory traces is prominent with 

STDP as in its simplest form any pre/post spike pair will modify the synapse. Besides precise spike timings 

that identify the correlation between input patterns, learning rule should incorporate the significance of the 

inputs to modulate the weights. As the inputs are continually changed, an SNN (with fixed resources or size) 

should gradually forget obsolete data while retaining important information. Thus, input based significance 

driven learning would enable the SNN to learn in a stable-plastic manner in a dynamic environment.   

The second part of Eqn. 4 quantifies the dependence of the weight change on the significance of the input 

pre-neuron. We define an input neuron to be significant if it has more frequent spikes. In that case, 

𝑃𝑟𝑒acc value will be high that would eventually make the second term in Eqn. 4 less dominant for determining 
the final weight update. Thus, for more frequent input spikes at the pre-neuron, the weight update will be 

more prominent. Hence, the learning rule encompasses significance of the inputs with standard synaptic 

plasticity. It can be deduced that the prominent weights will essentially encode the features that are common 

to different input classes as the pre-neurons across those common feature regions in the input image will have 

higher firing activity. This eventually helps the SNN to learn more common features across different input 

patterns to obtain more generic representation of the data.  

Decay Phase 

The decay phase in ASP learning is activated in the absence of input stimulus i.e. when no spiking activity 

is observed at the synaptic terminals connecting pre and post neuron. It involves the forgetting of the weights 

for insignificant information to enable the SNN to learn new data without catastrophic forgetting or overlap 

of representations. As discussed earlier, the weights undergo an exponential decay towards a baseline value 

as 

𝜏leak

𝑑𝑤

𝑑𝑡
=  −𝛼𝑤         (5) 



 

where α is a decay constant and 𝜏leak is the time constant of decay. 𝜏leak is a time dependent quantity that is 
proportional to the post-synaptic trace value (Post(t) from Eqn. 3) and the membrane threshold value 

( 𝑉thresh + 𝜃 obtained from homeostasis behavior) at a given time instant.  

Now, it is desirable that the weights that have learnt a pattern should leak less in order to retain the learnt 

information.  A neuron that has learnt a particular pattern will have a higher spiking activity (or higher post 

trace value Post(t)) that will increase the time constant of decay, 𝜏leak. Higher 𝜏leak causes the weight to 
forget or leak less. Post(t) will be higher for an excitatory neuron that has learnt an  input pattern that is recent 

and presented latest to the network. The overall leak rate can be defined as 𝛼/𝜏leak that decreases with 

increasing 𝜏leak. 

While Post(t) is indicative of how recent and latest the input pattern is, it does not account for the significance 

of the input pattern. We define significance in terms of number of times a particular pattern has been 

presented to an SNN. The membrane threshold (obtained from homeostasis) of a post-neuron is representative 

of the significance of the input pattern. A neuron that has learnt a given pattern will spike more when that 

pattern is presented several times to the network. An excitatory layer neuron’s membrane threshold will be 

high only when it is firing more. Higher membrane threshold implies that the corresponding excitatory layer 

neuron has learnt a significant pattern. Hence, the SNN learns to forget insignificant older information while 

trying to retain more recent and significant, yet old, data using ASP.  

A key aspect to note here is that the weight leak in the decay phase is based only on the post-neuron’s spiking 

activity (and membrane threshold). All weights connected to a post-neuron in the excitatory layer will have 

the same decay time constant, 𝜏leak  and hence show uniform leak dynamics during the decay phase. On the 
contrary, during recovery phase, the weight dynamics of each synapse will be different as it is determined by 

both the post and pre-neuronal spiking activity. 

 

Supplementary Note 4: ASP-based learning to forget is compatible with other proposed 

neuromorphic device technologies 

As discussed earlier, the dopant interaction with the perovskite lattice seen in experiment and studied by ab 

initio dynamical simulations enables habituation-based plasticity. This is key to the perovskite’s forgetting 

capability that motivates the ASP learning. In recent years, non-volatile and/or filamentary switch device 

elements including spin-based and memristors to emulate the behavior of neural systems have been 

proposed17-25. While our correlated perovskite can emulate forgetting similar to the animal world, other non-

volatile devices can be made to forget or leak their conductance by applying electrical pulses. Our proposed 

ASP can therefore be synergistic with those devices as well. Thus, ASP can be incorporated with a broad 

range of programmable devices to construct robust self-adaptive artificial neural systems for dynamic 

environments.  

 

Supplementary Note 5: AIMD Movie 

Ab initio molecular dynamics simulations showing migration of proton in H-doped monoclinic SNO crystal 

at 300 K. The proton hops from one O atom to another neighboring O atom within the NiO6 octahedron in a 

facile manner (see Fig. 2e for details on the activation barriers). The Ni, O, Sm and H are depicted as green, 

red, yellow, and blue spheres respectively. For the sake of clarity, only the hydrogen, and the Ni/O atoms 

belonging to the two NiO6 octahedra closest to the hydrogen are shown as large spheres; the atoms far away 

from the hopping phenomena are depicted with small translucent spheres. Our AIMD simulations at 300 K 

at various H doping levels show that the SNO lattice monotonically expands with addition of hydrogen 

approaching lattice expansion of ~5% for 1 H per unit cell of SNO. 
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