SUPPORTING INFORMATION

Electron Paramagnetic Resonance Characterization of Three Iron-Sulfur Clusters Present in the Nitrogenase Cofactor Maturase NifB from *Methanocaldococcus infernus*

Authors:

Jarett Wilcoxen^{†,§}, Simon Arragain^{‡,§}, Alessandro A. Scandurra[‡], Emilio Jimenez-Vicente[‡], Carlos Echavarri-Erasun[‡], Stephan Pollmann[‡], R. David Britt^{*,†}, Luis M. Rubio^{*,‡}

[§]These authors contributed equally to this work

*Corresponding authors e-mail: lm.rubio@upm.es; rdbritt@ucdavis.edu

Author affiliations:

[†]Department of Chemistry, University of California, Davis, CA 95616, USA [‡]Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.

Scheme S1. Minimal mechanism of NifB-co synthesis in NifB

WT <i>Mi</i> NifB Preparation	Fe ^a	S
Anaerobically purified <i>Mi</i> NifB		
As isolated	3.3 ± 0.1	4.0 ± 0.2
Reconstituted with Fe and S	9.2 ± 0.3	8.0 ± 0.2
apo- <i>Mi</i> NifB	< 0.1	< 0.1
apo-MiNifB reconstituted with Fe and S	10 ± 0.2	11.2 ± 0.4
Aerobically purified <i>Mi</i> NifB	0.8 ± 0.1	1.2 ± 0.3
MiNifB Variant ^b	Fe	S
As isolated		
SM	3.3 ± 0.3	4.5 ± 0.4
AM	5.3 ± 0.4	6.3 ± 0.1
DM	2.6 ± 0.2	3.5 ± 0.3
Reconstituted with Fe and S		
SM	6.1 ± 0.3	7.4 ± 0.4
AM	5.5 ± 0.2	6.4 ± 0.2
DM	4.6 ± 0.4	5.5 ± 0.3

Table S1. Fe and S content of as-isolated and reconstituted MiNifB

^a Data represent mean ± SD. ^b Proteins purified under anaerobic conditions

Table S2. Estimated molecular weights of WT *Mi***NifB and the site-directed variants AM, SM and DM**. Table includes the molecular weight standards used to calibrate the Superdex 200 used for size exclusion chromatography.

Sample	Elution volume (ml)	Kav	Measured MW (Da) ^a	Theoretical MW (Da)	Probable oligomeric state
Aprotenin	103.75	0.7930	6,843	6,500	
Ribonuclease A	95.21	0.6843	13,559	13,700	
Carbonic anhydrase	87.27	0.5832	25,613	29,000	
Ovalbumin	78.71	0.4742	50,849	43,000	
Conalbumin	74.74	0.4237	69,865	75,000	
<i>Mi</i> NifB WT	85.29	0.5581	29,995	37,543	monomer
MiNifB SM variant	83.59	0.5364	34,383	37,446	monomer
MiNifB AM variant	85.25	0.5575	30,108	37,478	monomer
MiNifB DM variant	85.30	0.5582	29,976	37,382	monomer

^a Kav= 2.1967-0.366 * log MW; $R^2 = 0.989$. Column Geometric volume = 120 ml. Column void volume = 41.46 ml.

	\mathbf{g}_1	\mathbf{g}_2	g ₃	g _{av}					
RS	2.038	1.931	1.916	1.962					
AC1	2.062	1.917	1.875	1.951					
AC2	2.039	1.923	1.886	1.949					
ACx	2.058	1.985	1.909	1.984					
		WT							
	σ_1	σ_2	σ ₃						
RS	0.028	0.015	0.04						
AC1	0.015	0.015	0.018						
AC2	0.03	0.03	0.05						
ACx	-	-	-						
		AM			SM			DM	
	σ1	σ_2	σ3	σ1	σ_2	σ_3	σ_1	σ_2	σ_3
RS	0.028	0.018	0.04	-	-	-	-	-	-
AC1	-	-	-	0.025	0.018	0.018	-	-	-
AC2	0.03	0.04	0.08	0.03	0.03	0.08	0.03	0.04	0.08
ACx	-	-	-	0.017	0.018	0.03	-	-	-

	-SAM (µM)	+SAM (µM)
WT	52	111
SM	65	82
AM	66	92
DM	53	59

Table S4. Spin quantitation of *Mi*NifB variants in the absence or presence of SAM

Table S5. NifB amino acid sequences used to determine strictly conserved residues

Entry	Organism	Sequence length (Amino acids)
P10390	Klebsiella pneumoniae	468
P17434	Rhodobacter capsulatus	452
P27714	Herbaspirillum seropedicae	525
P24427	Rhizobium leguminosarum	490
P11067	Azotobacter vinelandii	502
P46044	Frankia alni	510
O43883	Trichormus azollae	475
C C	(Anabaena azollae)	
P06770	Bradyrhizobium japonicum (strain USDA 110)	499
P20627	Nostoc sp. (strain PCC 7120 / UTEX 2576)	475
Q53205	Rhizobium sp. (strain NGR234)	493
P09824	Rhizobium meliloti (strain 1021)	490
O7MRF5	Wolinella succinogenes	449
B6IXL5	Rhodospirillum centenum (strain ATCC 51521 / SW)	492
D5ANH7	Rhodobacter capsulatus (strain ATCC BAA-309 / NBRC 16581 / SB1003)	497
B5YH11	Thermodesulfovibrio vellowstonii (strain ATCC 51303 / DSM 11347 / YP87)	293
A0B690	Methanosaeta thermophila (strain DSM 6194 / PT)	299
D5VRM1	Methanocaldococcus infernus (strain DSM 11812 / JCM 15783 / ME)	302
A6UUJ9	Methanococcus aeolicus (strain Nankai-3 / ATCC BAA-1280)	318
Q58493	Methanocaldococcus jannaschii (strain ATCC 43067 / DSM 2661 / JAL-1 / JCM 10045 / NBRC 100440)	300
Q8TIF7	Methanosarcina acetivorans (strain ATCC 35395 / DSM 2834 / JCM 12185 / C2A)	323
06I ZH0	Methanococcus marinaludis (strain S2 / LL)	297
027899	Methanothermobacter thermautotrophicus (strain ATCC 29096 / DSM 1053 /	288
0210))	JCM 10044 / NBRC 100330 / Delta H)	200
Q46G74	Methanosarcina barkeri (strain Fusaro / DSM 804)	321
Q8PYU4	Methanosarcina mazei (strain ATCC BAA-159/ DSM 3647 / Goe1 / Go1 / JCM 11833 / OCM 88)	328
B3EH81	Chlorobium limicola (strain DSM 245 / NBRC 103803)	424
A0LH03	Syntrophobacter fumaroxidans (strain DSM 10017 / MPOB)	423
Q72WT2	Desulfovibrio vulgaris (strain Hildenborough / ATCC 29579 / NCIMB 8303)	514
A4J8B5	Desulfotomaculum reducens (strain MI-1)	299
A6TTX6	Alkaliphilus metalliredigens (strain QYMF)	415
D6Z0A8	Desulfurivibrio alkaliphilus (strain DSM 19089 / UNIQEM U267 / AHT2)	424
C0GKD1	Dethiobacter alkaliphilus AHT 1	418
A5N6Z7	Clostridium kluyveri (strain ATCC 8527 / DSM 555 / NCIMB 10680)	423
Q44481	Anabaena variabilis	484
A1KYD1	Cyanothece sp. (strain ATCC 51142)	490
B5ER81	Acidithiobacillus ferrooxidans (strain ATCC 53993)	522
A8IIJ5	Azorhizobium caulinodans (strain ATCC 43989 / DSM 5975 / ORS 571)	519
Q6N0X9	Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009)	518
Q2J1J1	Rhodopseudomonas palustris (strain HaA2)	518
G7DEY1	Bradyrhizobium japonicum USDA 6	527
B2JYC0	Burkholderia phymatum (strain DSM 17167 / STM815)	535
A4WRX8	Rhodobacter sphaeroides (strain ATCC 17025 / ATH 2.4.3)	491
A6UMF6	Sinorhizobium medicae (strain WSM419)	490

Strictly conserved NifB residues. *M. infernus* NifB (*Mi*NifB) amino acid sequence showing in **Bold** those amino acid residues that are conserved in all 42 NifB sequences. Regions where deletion variants were generated are underlined.

MEKMSKFSHLLKAHPCFNEKVHDKYGRVHLPVAPRCNIACKFCKRSVSKECCEHRPGVSLGVLKPEDVEDY LKKILKEMPNIKVVGIAGPGDSLFNKETFETLKIIDEKFPNLIKCISTNGLLLSKYYKDLANLNVRTITVT VNAIKPEILEKIVDWVYYDKKLYRGLEGAKLLIEKQIEGIKKASEEDFIIKINTVLIPEINMDHVVEIAKF FKDYAYVQNIIPLIPQYKMKELRAPTCEEIKKVRKECEKYIPQFRA<u>CGQC</u>RADAVGLIKEKELLKEFFKEK NKEKNIKLEVFDLKHFSH

Figure S1. Biochemical characterization of MiNifB. (a) SDS-PAGE analysis of MiNifB purification steps. CFE, cell-free extract; SN, supernatant after removing cell debris; Heat treated, fraction obtained after heating the SN at 75°C for 30 min to precipitate most E. coli proteins; W1-3, 30-100 mM imidazole washing fractions; E, 250 mM imidazole eluted fraction containing pure *Mi*NifB. (b) UV-visible spectra of anaerobically as-isolated *Mi*NifB (blue, 19.9 μ M), aerobically as-isolated MiNifB (green, 19.9 µM), [Fe-S] cluster stripped apo-MiNifB (black, 21.9 µM), and [Fe-S] cluster reconstituted *Mi*NifB (red, 13 μ M). (c) Protein and substrate requirements for MiNifB-dependent in vitro reconstitution of apo-NifDK. Assays consisted of a 60°C NifB activity phase (that in the complete version contained Fe, S, SAM, DTH, and MiNifB) followed by a 30°C FeMo-co synthesis and apo-NifDK reconstitution phase (that in the complete version contained Mo, homocitrate, DTH, NifX, apo-NifEN, NifH, NafY, and apo-NifDK). Detailed assay conditions are described in the Methods Section. A reaction containing NifB-co in place of MiNifB (+NifB-co) was carried out as control of pathway functionality downstream NifB. Protein and substrate requirements were analyzed by removing one or more substrates/proteins at a time from the reaction mixtures, as indicated in the x-axis. (d) Time course of SAH and AdoH by-product formation during *Mi*NifB-dependent FeMo-co synthesis and apo-NifDK reconstitution. For (c) and (d) activity refers to nmol ethylene formed per min and mg of NifDK. Date are the mean \pm SD of at least two independent experiments.

Figure S2. TOF/TOF analysis of *Mi***NifB**. Analysis was carried out by using a 4800 Proteomics Analyzer. As-isolated *Mi*NifB yielded a main peak corresponding to a molecular weight of 37,483 Da and a second peak corresponding to a molecular weight of 75,180 Da that could account for a NifB dimer.

Figure S3: Electrospray Ionization Mass Spectrometry (ESI-MS) analysis showing the shift in m/z 253 abundance between the 5'-dAdoH control and 5'-dAdoD generated by incubating *Mi*NifB with CD₃-SAM. 5'-dAdoH elution profile (A) and MS analysis (B). Panel (C) shows the products formed by incubation of *Mi*NifB with CD₃-SAM. (D) MS analysis of the peak eluted at 3.8 min corresponding to 5'-dAdoD.

Figure S4. EPR spectra of [Fe-S] clusters reconstituted *Mi***NifB variants.** X-band CW EPR measurements of *Mi*NifB protein samples prepared anaerobically with 10 mM DTH in the absence (Blue) or Presence (Red) of 3 mM SAM. **Top Left**: Wild type *Mi*NifB **Top Right**: Auxiliary cluster substituted variant (AM); **Bottom Left**: SAM Binding cluster substituted variant (SM); **Bottom Right**: Double cluster substituted variant (DM). Typical conditions for recording spectra were 9.40 GHz microwave frequency, 1 mW power, 10 G modulation amplitude, and temperature of 15K.

Figure S5. Components of simulations for [Fe-S] cluster reconstituted *Mi***NifB**. X-band CW EPR measurements of *Mi*NifB protein samples prepared anaerobically with 10 mM DTH and frozen in an acetone/dry ice bath. (A) WT (274 μ M), (B) AM (159 μ M), (C) SM (159 μ M), and (D) DM (252 μ M). Data are presented in Black with composite spectral simulations in Blue for the WT *Mi*NifB and each of the variants. Contributions of each of the individual component clusters are included with RS (Red), AC1 (Fuchsia), AC2 (Light Blue) and degradation cluster, ACx, (Dark Green). Typical conditions for recording spectra were 9.40 GHz microwave frequency, 1 mW power, 5G modulation amplitude, and temperature of 15K.

Figure S6. Temperature dependence and spectral subtractions of WT and site-directed variants of *Mi***NifB**. All MiNifB samples were reduced with 10 mM DTH. (**Top Left**) Temperature dependence of 274 µM WT *Mi*NifB. (**Top Right**) Temperature dependence of 159 µM AM *Mi*NifB. (**Bottom Left**) Temperature dependence of 159 µM SM *Mi*NifB. (**Bottom Right**) Temperature dependence of 252 µM DM *Mi*NifB. Typical conditions for recording spectra are 9.40 GHz microwave frequency, 1 mW power, and 5G modulation amplitude. Spectra were recorded at various temperatures indicated to the right of each panel.

Figure S7. Spectral subtractions of WT *Mi*NifB and variants utilized in determining the clusters present by differences in the spectral composition of the variants. (A) WT *Mi*NifB; (B) AM variant; (C) SM variant; (D) DM variant; (E) WT minus AM; (F) WT minus SM; (G) Difference spectrum **F** minus DM to remove unsubtracted component and highlight the EPR signal from AC1 cluster. Asterisk marks g2 of ACx degradation cluster. Dashed lines are included to indicate defining g_1 and g_3 spectral features used in deconvolution. Typical conditions for recording spectra are 9.40 GHz microwave frequency, 1 mW power, 5G modulation amplitude, and a temperature of 15 K.

Figure S8. Codon optimized and amino acid sequences of WT *Mi*NifB and site-directed variants generated in this work

Codon optimized sequence (E. coli) of Methanocaldococcus infernus MiNifB (metin_0554):

MiNifB wild-type (WT) amino acid sequence:

MEKMSKFSHLLKAHPCFNEKVHDKYGRVHLPVAPRCNIACKFCKRSVSKECCEHRPGVSLGVLKPE DVEDYLKKILKEMPNIKVVGIAGPGDSLFNKETFETLKIIDEKFPNLIKCISTNGLLLSKYYKDLA NLNVRTITVTVNAIKPEILEKIVDWVYYDKKLYRGLEGAKLLIEKQIEGIKKASEEDFIIKINTVL IPEINMDHVVEIAKFFKDYAYVQNIIPLIPQYKMKELRAPTCEEIKKVRKECEKYIPQFRACGQCR ADAVGLIKEKELLKEFFKEKNKEKNIKLEVFDLKHFSH

Codon optimized sequence of the C36A/C40A/C43A (SM) MiNifB variant:

Amino acid sequence of MiNifB SM variant:

MEKMSKFSHLLKAHPCFNEKVHDKYGRVHLPVAPRANIAAKFAKRSVSKECCEHRPGVSLGVLKPE DVEDYLKKILKEMPNIKVVGIAGPGDSLFNKETFETLKIIDEKFPNLIKCISTNGLLLSKYYKDLA NLNVRTITVTVNAIKPEILEKIVDWVYYDKKLYRGLEGAKLLIEKQIEGIKKASEEDFIIKINTVL IPEINMDHVVEIAKFFKDYAYVQNIIPLIPQYKMKELRAPTCEEIKKVRKECEKYIPQFRACGQCR ADAVGLIKEKELLKEFFKEKNKEKNIKLEVFDLKHFSH

Codon optimized sequence of the C260A/C263A (AM) MiNifB variant:

CATATGGAAAAAATGTCAAAAATTCTCGCATCTGCTGAAAGCGCACCCGTGCTTCAACGAAAAAGTC CACGATAAATACGGTCGCGTCCACCTGCCGGTTGCAACGCGCGTTGCAACATCGCTTGCAAAATTTTGT

Amino acid sequence of *Mi*NifB AM variant:

MEKMSKFSHLLKAHPCFNEKVHDKYGRVHLPVAPRCNIACKFCKRSVSKECCEHRPGVSLGVLKPE DVEDYLKKILKEMPNIKVVGIAGPGDSLFNKETFETLKIIDEKFPNLIKCISTNGLLLSKYYKDLA NLNVRTITVTVNAIKPEILEKIVDWVYYDKKLYRGLEGAKLLIEKQIEGIKKASEEDFIIKINTVL IPEINMDHVVEIAKFFKDYAYVQNIIPLIPQYKMKELRAPTCEEIKKVRKECEKYIPQFRAAGQAR ADAVGLIKEKELLKEFFKEKNKEKNIKLEVFDLKHFSH

Codon optimized sequence of the C36A/C40A/C43A/C260A/C263A (DM) MiNifB variant:

Amino acid sequence of MiNifB DM variant::

MEKMSKFSHLLKAHPCFNEKVHDKYGRVHLPVAPRANIAAKFAKRSVSKECCEHRPGVSLGVLKPE DVEDYLKKILKEMPNIKVVGIAGPGDSLFNKETFETLKIIDEKFPNLIKCISTNGLLLSKYYKDLA NLNVRTITVTVNAIKPEILEKIVDWVYYDKKLYRGLEGAKLLIEKQIEGIKKASEEDFIIKINTVL IPEINMDHVVEIAKFFKDYAYVQNIIPLIPQYKMKELRAPTCEEIKKVRKECEKYIPQFRAAGQAR ADAVGLIKEKELLKEFFKEKNKEKNIKLEVFDLKHFSH