
Supplement S1 :
Stability of persistence-based signatures

Given two neuron trees T1 and T2, in (Step 1) we first map them to their respective persistence
diagrams D1 and D2 induced by some descriptor function(s). In (Step 2), we further vectorize these
persistence diagrams into persistence feature vectors, say V1 and V2 respectively. It is desirable that
such a feature generation and vectorization process is stable in the sense that “small perturbations”
in input neuronal trees and in the induced descriptor functions should only cause small changes in
the distances between them. Making such a stability statement precise is not trivial, depending
also on how “perturbations” are modeled and measured. While we do not yet have a full stability
statement for our persistence-based feature vectors, below we discuss some partial results. We
separately consider the stability for persistence diagrams (after Step-1) and that of persistence-
based feature vectors (after Step-2).

Stability of persistence diagrams. To discuss stability, we first need to measure the distance
between two persistence diagrams. Given two persistence diagrams D1 and D2 (each of which
consists of a set of points in IR2), there is a natural distance measure, the bottleneck distance
dB(D1, D2) first introduced in [1]. Consider matching points in D1 with points in D2 such that
each point in D1 (resp. in D2) has to be matched, either to a unique point in D2 (resp. in D1), or to
its nearest neighbor in the diagonal L := {(x, x) | x ∈ R}: The latter case corresponds to treating
this feature point as noise, in which case it is matched to a persistent point with zero persistence.
See Fig 2C in the main submission for an illustration. Find the optimal correspondence so that
the maximum distance between pairs of corresponding points is minimized; dB(D1, D2) equals this
smallest possible maximum distance.

More precisely,

Set D̂1 := D1 ∪ L and D̂2 := D2 ∪ L, then dB(D1, D2) = inf
γ:D̂1→D̂2

sup
u∈D̂1

‖u− γ(u)‖∞, (1)

where ‖u− v‖∞ = max{|u.x− v.x|, |u.y− v.y|} denotes the L∞ distance between two points; and γ
ranges over all bijections between D̂1 and D̂2. It is known that the bottleneck distance dB(D1, D2)
can be computed in O(m1.5 logm) time, where m is the total number of points in D1 ∪D2.

Given two functions f, g : |T | → R, suppose that g is a perturbation of f with bounded distance
in L∞-norm, that is ‖f − g‖∞ := maxx∈|T | |f(x) − g(x)| measures the amount of perturbation
of g from f . The Stability Theorem [1] states that for a function f and its perturbation g, the
bottleneck distance between their persistence diagram summaries is bounded from above by the
size of the perturbation; that is, dB(Dgf,Dg g) ≤ ‖f − g‖∞. This result is later generalized to
more general persistence modules, and show that the bottleneck distance between two persistent
diagrams is bounded by the so-called interleaving distance between the corresponding persistence
modules that generate them [2, 3].

In our setting, given two neuron trees T1 and T2 with descriptor functions f1 : |T1| → R and
f2 : |T2| → R, we cannot directly compare these two descriptor functions since they are defined
on different domains (T1 and T2, respectively). We instead use the so-called functional distortion
distance [4] dFD(f1, f2) to measure how different the functions f1 and f2 are. Intuitively, dFD
considers all pairs of mappings between T1 and T2 as a way to align them, say φ : |T1| → |T2| and
ψ : |T2| → |T1| to align T1 to T2 (via φ) as well as align T2 to T1 (via ψ). It then compares f1 and
f2 composited with these maps so that they are then defined on a common domain. Each such pair
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of maps (alignment) (φ, ψ) will give a cost, measuring how well f1 and f2 are aligned under these
two maps, and dFD(f1, f2) returns the minimum cost under all possible such alignments (pairs of
maps). We refer the readers to [4] see the formal definition. It follows from results of [4] that
dB(Dgf1,Dgf2) ≤ dFD(f1, f2).
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Figure 1: T ′
1 is a noisy version of T1: there could be local combinatorial changes such as the subtrees B,

C and D merge at slightly different height, and there could also be spurious noisy branches. However, such

changes do not perturb the tree metric much: in this specific example, the metric distortion is bounded by

ε. As a result, their corresponding persistence diagram summaries are also close with dB(D,D′) ≤ ε.

This stability result applies to any descriptor functions. For example, suppose we consider the
Euclidean distance functions f1 and f2 on the two trees in Figure 1. Then their persistence diagram
summaries are close (at most ε), despite that there are noisy branches, as well as combinatorial
changes in the tree structures from T1 to T2 – Indeed, it is not hard to establish maps φ : T1 → T2
and ψ : T2 → T1 and show that the cost of the Euclidean distance function incurred by them is at
most ε, thus upper bounds dFD(T1, T2) by ε too.

As another example, if we use the geodesic distance to the root as the descriptor function, then
by using results from [5], the bottleneck distance between resulting persistence diagrams is stable
w.r.t. changes in the input neuron trees as measured by the Gromov-Hausdorff distance between
these trees. The Gromov-Hausdorff distance is popular way to measure the level of near-isometry
between two metric spaces [6, 7]. The Gromove-Hausdorff distance between the two neuron trees in
Figure 1 is at most ε, implying that using the geodesic distance as descriptor functions f : T1 → IR
and f ′ : T ′1 → IR, we have dB(Dgf,Dgf ′) ≤ ε as well.

In our framework, to improve computational efficiency, we vectorize the persistent diagrams
describe in (Step 2), and the natural Lp-distance between them are sum-based, instead of max-
based (as in bottleneck distance). One can extend the bottleneck distance to the so-called degree
p-Wasserstein distance dW,p(D1, D2) between two persistence diagrams D1 and D2 which we will
introduce shortly in Eqn (2). The stability for the Wasserstein distance of persistence diagrams is
not as well understood as in the bottleneck distance case (which is in fact the case when p = ∞),
although there are some results for some special cases [8].

Stability of the persistence feature vectors. We now discuss the stability of feature vec-
torization step. Specifically, suppose we are given two persistence diagrams D1 and D2, with
corresponding feature functions ρ1 = ρD1 , ρ2 = ρD2 : IR→ IR induced from D1 and D2 as described
in Section 2.2 of the main text.

First, the degree-p Wasserstein distance between D1 and D2, for 1 ≤ p <∞, is defined as:

dW,p(D1, D2) = inf
γ:D̂1→D̂2

∑
u∈D̂1

‖u− γ(u)‖p∞

1/p

, (2)

PLOS 2/5



where D̂1 := D1 ∪ L and D̂2 := D2 ∪ L are the persistence diagrams augmented with points in the
diagonal L as before.

Theorem 0.1 The L1-distance between feature functions ρ1 and ρ2 is stable w.r.to the 1-Wasserstein
distance between the diagrams D1 and D2 generating them. Let ∆ denote the largest persistence
value of any point in D1; that is, ∆ = max〈u,u′〉∈D1

|u′ − u|. Specifically,

‖ρ1 − ρ2‖1 ≤ (1 +

√
2

π
∆) · dW,1(D1, D2).

We now prove this theorem. First, we need the following result bounding the distance between
two 1-dimensional Gaussians [9].

Lemma 0.2 ([9]) Given u ∈ IR, let gu : IR → IR denote the normalized 1-dimensional Gaussian
centered at u ∈ IR: gu = 1

σ
√
2π
e−(z−u)

2/2σ2
. For a, b > 0 and u, v ∈ IR, we then have:

‖agu − bgv‖1 ≤ |a− b|+
√

2

π

min{a, b}
σ

|u− v|.

Now let γ∗ : D̂1 → D̂2 denote the optimal bijection to give rise to dW,1(D1, D2); that is,

dW,p(D1, D2) =
∑
w∈D̂1

||w − γ∗(w)||∞.

Assume w.o.l.g that all persistent points lie above the diagonal in the persistence diagrams D1 and
D2. Recall by Eqn (4) of the main text, for i = 1 or 2, the two feature functions are

ρi = ρDi =
∑

〈u,u′〉∈Di

(u′ − u) · gu.

Since for all points (u, u′) ∈ L in the diagonal L, we have that u = u′. It then follows that
equivalently, we have that

ρi =
∑

〈u,u′〉∈D̂i

(u′ − u) · gu.

Finally, for each point w = 〈u, u′〉 ∈ D̂i, we also denote w.birth = u (the birth time of this
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point) and w.pers = |u′ − u| (the persistence of this point). We now have:

‖ρ1 − ρ2‖1 =

∫
x∈IR
|ρ1(x)− ρ2(x)|dx =

∫
x∈IR

∣∣∣∣∣∣
∑

〈v,v′〉∈D̂1

(v′ − v) · gv(x)−
∑

〈u,u′〉∈D̂2

(u′ − u) · gu(x)

∣∣∣∣∣∣ dx
=

∫
x∈IR

∣∣∣∣∣∣
∑

w=〈u,u′〉∈D̂1

[
(u′ − u) · gu(x)− γ∗(w).pers · gγ∗(w).birth(x)

]∣∣∣∣∣∣ dx
≤
∫
x∈IR

∑
w=〈u,u′〉∈D̂1

∣∣(u′ − u) · gu(x)− γ∗(w).pers · gγ∗(w).birth(x)
∣∣ dx

=
∑

w=〈u,u′〉∈D̂1

∫
x∈IR

∣∣w.pers · gu(x)− γ∗(w).pers · gγ∗(w).birth(x)
∣∣ dx

≤
∑

w=〈u,u′〉∈D̂1

[|w.pers− γ∗(w).pers|+
√

2

π
·min{w.pers, γ∗(w).pers} · |w.birth− γ∗(w).birth|]

≤
∑

w=〈u,u′〉∈D̂1

[‖w − γ∗(w)‖∞ +

√
2

π
∆‖w − γ∗(w)‖∞ ≤ (1 +

√
2

π
∆) · dW,1(D1, D2).

Theorem 0.1 then follows.
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