
Supporting Text S1: proofs omitted from the main
text

Here, we provide full proofs for Lemmas 2, 3, 5, Theorem 4, and Proposition 2. We
conclude with a few remarks on the size of rNNI neighborhoods.

Lemma 2. Let N be a binary rooted network on X, and let N ′ be obtained by applying
an arc flip to N . Then, unless N and N ′ are the same network (that is, they are
isomorphic), N can be turned into N ′ in exactly two rNNI moves.

Proof. Let uv be the arc being flipped in N . First suppose that the parent s of u and
the parent t 6= u of v are distinct vertices. Then we apply a type-(2) rNNI move
(su, uv, tv → sv, uv, tu). This is allowed because if there were a u-t path, there would be
a nonelementary u-v path in N , which is not the case by the assumption that arc uv
can be flipped. Now we can apply a type-(2∗) move (sv, uv, tu→ su, vu, tv), because no
u-s path can exist in N . The net effect of these two moves is that arc uv is reversed
to vu, see Figure S1.
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Fig S1. Reversing an arc uv when u and v have different parents.

Now suppose that u and v have a common parent p but the child ŝ 6= v of u and the
child t̂ of v are distinct vertices. Then we apply a type-(1) rNNI move
(uŝ, uv, vt̂→ ut̂, uv, vŝ). This is allowed because if there were an ŝv path in N , this
path would need to pass through p, and hence imply the existence of a directed cycle
in N . Now we can apply a type-(1∗) move (ut̂, uv, vŝ→ uŝ, vu, vŝ), because no t̂-v path
can exist in N . The net effect of these two moves is that arc uv is reversed to vu, see
Figure S2.
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Fig S2. Reversing an arc uv when u and v have a common parent but different
children.

If we are in neither of the previous cases, u and v have a common parent p and a
common child c. But then it is easy to see that that N and N ′ are isomorphic (just map
u to v and viceversa), meaning that no rNNI move is needed to turn N into N ′.

Lemma 3. Let N be a binary rooted phylogenetic network and let Nu be its underlying
unrooted network. If an unrooted network N ′u can be obtained by applying a single NNI
move to Nu, then there exists a sequence of rNNI moves turning N into a network that
has N ′u as its underlying unrooted network.

Proof. There are four ways in which the edges affected by the NNI move can be oriented
in N , see the four networks to the left in Fig. 4 in the main text. In each case, there is at
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least one move that satisfies conditions 1 and 2 of Def. 1 (the degree conditions). Hence,
there exists a (possibly cycle-creating) rNNI move turning N into N ′ such that N ′

has N ′u as its underlying unrooted network. However, N ′ may contain a directed cycle.
Note that a move of type (3) cannot create a directed cycle. Moreover, if the move is of
type (1∗) or (2∗), then it can be replaced by a move of type (1) or (2) without changing
the underlying unrooted network. Hence, we only need to consider moves of types
(1),(2),(3∗) and (4). These moves can create a directed cycle in the following cases:

(1) (us, uv, vt→ ut, uv, vs) and there is an s-v path in N ;

(2) (su, uv, tv → sv, uv, tu) and there is a u-t path in N ;

(3∗) (su, uv, vt→ sv, vu, ut) and there is a nonelementary u-v path in N ;

(4) (us, uv, tv → vs, uv, tu) and there is a s-t path in N .

For each of these cases, we show that an acyclic network N ′′ with the same underlying
unrooted network as N ′ can be obtained from N by applying a sequence of rNNI moves.

Case (1). (us, uv, vt→ ut, uv, vs) and there is a s-v path in N , see Figure S3.
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Fig S3. A cycle-creating rNNI move of type (1).

The s-v path must contain at least one internal vertex since N does not contain an
arc on {s, v}. Let w be the last internal vertex on this path.

First suppose that w is a bifurcation. Then we reverse the arc wv to vw using rNNI
moves. To see that this is possible, note that w is a bifurcation and v a reticulation, and
that there cannot be a nonelementary w-v path in N : this path would have to go via u
and would form a directed cycle in combination with the s-w path in N . Hence,
reversing wv to vw is an arc flip, which by Lemma 2 can be reproduced using rNNI
moves. We can then apply a type-(1) rNNI move (us, uv, vt→ ut, uv, vs) and obtain an
acyclic network N ′′ with the same underlying unrooted network as N ′. See Figure S4.
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Fig S4. Avoiding directed cycles in Case (1) when w is a bifurcation. Note that the
arc leaving w that does not point at v could point at t.

Now suppose that w is a reticulation. Let (s = x0, x1, x2, . . . , xk = w) be a longest
s-w path. Let xi be the first reticulation on this path. Note that there cannot be a
nonelementary xi−1-xi path because otherwise there would be a longer s-w path. Hence,
we can flip the orientation of arc xi−1xi using rNNI moves by Lemma 2. We repeat this
procedure until there is no s-w path. Then we apply type-(1) rNNI move
(us, uv, vt→ ut, uv, vs) and obtain an acyclic network N ′′ with the same underlying
unrooted network as N ′. See Figure S5.

Case (2). (su, uv, tv → sv, uv, tu) and there is a u-t path in N , see Figure S6.
First suppose that t is a bifurcation. Then we flip arc tv to vt using rNNI moves. To

see that this is possible, assume that there were a nonelementary t-v path. This path

PLOS 2/10



(1)s

u v

t

w

xi−1

xi

Fig S5. Avoiding directed cycles in Case (1) when w is a reticulation.
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Fig S6. A cycle-creating rNNI move of type (2).

would then have to enter v through u. However, since there is also a u-t path, this
would imply the existence of a directed cycle in N . Hence, we can perform an arc flip
on tv via rNNI moves by Lemma 2. Then we can apply a type-(3∗) rNNI move
(su, uv, vt→ sv, vu, ut). This move is possible because there can be no nonelementary
u-v path since v has indegree 1. We have thus obtained an acyclic network N ′′ with the
same underlying unrooted network as N ′. See Figure S7.
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Fig S7. Avoiding directed cycles in Case (2) when t is a bifurcation.

Now suppose that t is a reticulation. Let (u = x0, x1, x2, . . . , xk = t) be a longest u-t
path in N . Let xi be the first reticulation on this path. Then we flip arc xi−1xi (which
is again possible since we chose a longest u-t path) using rNNI moves, and keep
repeating this procedure until there are no u-t paths left. Then we apply type-(2) rNNI
move (su, uv, tv → sv, uv, tu) and obtain an acyclic network N ′′ with the same
underlying unrooted network as N ′. See Figure S8.
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Fig S8. Avoiding directed cycles in Case (2) when t is a reticulation.

Case (3∗). (su, uv, vt→ sv, vu, ut) and there is a nonelementary u-v path in N , see
Figure S9.
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Fig S9. A cycle-creating rNNI move of type (3∗).

First suppose there exists at least one nonelementary u-v path where the last
internal vertex w of the path is a bifurcation. Then we flip arc wv using rNNI moves.
This is possible by Lemma 2 because a nonelementary w-v path would have to pass
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through u and hence imply the existence of a directed cycle in N involving u and w.
After that, there can be no nonelementary u-v path since v has only one incoming arc
which comes from u. Therefore, we can apply the type-(3∗) move
(su, uv, vt→ sv, vu, ut) and we are done. See Figure S10.
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Fig S10. Avoiding directed cycles in Case (3) when w is a bifurcation.

Now suppose that in all nonelementary u-v paths the last internal vertex is a
reticulation. Then we take a longest u-v path (u = x0, x1, x2, . . . , xk = v) and let xi be
the first reticulation on this path. Then we flip arc xi−1xi, which is again possible since
we chose a longest u-v path. We repeat this procedure until there are no nonelementary
u-v paths left. Then we can apply the type-(3∗) move (su, uv, vt→ sv, vu, ut) and we
are done. See Figure S11.
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Fig S11. Avoiding directed cycles in Case (3) when w is a reticulation.

Case (4). (us, uv, tv → vs, uv, tu) and there is an s-t path in N , see Figure S12.
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Fig S12. A cycle-creating rNNI move of type (4).

First suppose that t is a bifurcation. Then we flip arc tv using rNNI moves. As
before, this is possible because a nonelementary t-v path would need to pass through u
and hence imply the existence of a directed cycle in N . Then we apply a type-(1) rNNI
move (us, uv, vt→ ut, uv, vs). This is possible because any s-v path would have to pass
through u and hence imply the existence of a directed cycle in N . See Figure S13.
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Fig S13. Avoiding directed cycles in Case (4) when t is a bifurcation.

Now suppose that t is a reticulation. Then we take a longest s-t path
(s = x0, x1, x2, . . . , xk = t) and let xi be the first reticulation on this path. If i = 0, i.e.
if s is a reticulation, then we flip arc us, apply a type-(2) move (su, uv, tv → sv, uv, tu)
and we are done. Otherwise, we flip arc xi−1xi which is, as before, possible since we
chose a longest s-t path, and we repeat the procedure until there are no s-t paths left.
Then we can apply the type-(4) move (us, uv, tv → vs, uv, tu) and we are done. See
Figure S14.
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Fig S14. Avoiding directed cycles in Case (4) when t is a reticulation.

Lemma 5. For any nonempty X and r ≥ 1, there exists a flip-friendly binary rooted
network on X with r reticulations.

Proof. Any network with just one reticulation is level-1, and thus, by Lemma 4, also
flip-friendly. In order to prove the lemma for r ≥ 2, we proceed as follows: we introduce
a special type of rooted binary networks, the laddered networks, and then we show that
(1) there are laddered networks on X with any number of reticulations r ≥ 2, and (2)
laddered networks are flip-friendly.

A rooted ladder is a binary rooted network that can be obtained in the following
manner (see Fig. S15, left): take a directed path P = p1p2 . . . pr and another directed
path Q = q1q2 . . . qr, both on r vertices, and add an arc from pi to qi for each
i ∈ {1, . . . , r}. Then add a vertex x with children p1 and q1, and a vertex y with
parents pr and qr. Finally add a root ρ whose only child is x and a leaf l whose parent
is y. Note that the reticulations in a rooted ladder are the vertices of the Q path, and
the y vertex. Clearly, for each r ≥ 2 there exists a rooted ladder with r reticulations.
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Fig S15. A rooted ladder L with 5 reticulations (left) and a laddered network (right),
obtained by grafting L on the root arc of a rooted tree on {m,n}.

A laddered network is a rooted binary network obtained by taking a rooted binary
tree N , then grafting a rooted ladder on the arc between the root of N and its child; if
we denote these two nodes by ρN and c, respectively, and the root of the rooted ladder
by ρ, this means replacing the arc ρNc in N with two new arcs ρNρ, ρc and then adding
to N the remaining vertices and arcs of the rooted ladder. See Fig. S15 (right) for an
example of laddered network. We can now prove the claims on laddered networks that
are necessary to conclude our proof.

Claim (1). For any nonempty X and r ≥ 2, there exists a laddered network on X
with r reticulations.

Let l be any element of X, and L be the rooted ladder having r reticulations and l
as its leaf. Then let N be a laddered network obtained by taking a binary rooted tree
on X \ {l}, then grafting L on the branch between the root of this tree and its child. If
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X \ {l} = ∅, then let N simply be L. Thus, N is a laddered network on X with r
reticulations.

Claim (2). Laddered networks are flip-friendly.

Let N be a laddered network on X, and N ′ another binary rooted network on X
with the same underlying unrooted network. We show that N can be transformed into
N ′ by only using arc flips.

First observe that in the “tree part” of N ′ all arcs will be oriented in the same way
as in N . If this were not true, N ′ would be rooted in a different degree-1 node than N ,
and the two networks would not be on the same set X. Therefore the only arcs
appearing in N but not in N ′ will be in its “ladder part”. So consider this part of N ,
and let x, y, l, p1, . . . , pr, q1, . . . , qr be the vertices in N described in the definition of a
rooted ladder (see Fig. S15). For notational convenience let p0 = q0 = x, and let
pr+1 = qr+1 = y.

Consider the set W0 = {x, p1, . . . , pr, q1, . . . , qr, y, l}. The only vertex in W0 with a
neighbor outside of W0 is x, and every vertex in W0 has indegree at least 1 (as W0 does
not contain the root of N). Therefore if N ′ contains the arc p1x or q1x, it holds that for
every w ∈W0 there exists z ∈W0 such that zw is an arc in N ′. But this implies that
N ′ has a cycle contained in W0, a contradiction. Thus N ′ can have neither of the arcs
p1x, q1x, and so instead N ′ must have arcs xp1, xq1.

We have thus shown that N ′ contains the arcs p0p1, q0q1. We will now show by
induction that for each i ∈ {1, . . . , r}, N ′ contains the arcs pipi+1 and qiqi+1.

Consider the set Wi = {pi, . . . , pr, qi, . . . , qr, y, l}. The only vertices in Wi with a
neighbor outside of Wi are pi and qi. If N

′ contains the arc pi+1pi then, as N
′ contains

the arc pi−1pi, N
′ must also contain the arc piqi. But then we have that for every

w ∈Wi there exists z ∈Wi such that zw is an arc in N ′. This implies that N ′ has a
cycle contained in Wi, a contradiction. Thus N ′ cannot contain the arc pi+1pi. By a
symmetric argument N ′ cannot contain the arc qi+1qi. Thus we have that for any N ′

and every i ∈ {0, . . . , r}, N ′ contains the arcs pipi+1 and qiqi+1.

It follows that the only arcs in N that may not be in N ′ are the piqi for some
i ∈ {1, . . . , r}. For any such arc there is no nonelementary pi-qi path in N , pi is a
bifurcation and qi is a reticulation. Therefore, we can perform an arc flip on each arc in
N and not in N ′, meaning that N ′ can be obtained from N by a sequence of arc flips.

Theorem 4. Let N and N ′ be binary rooted networks. Then, N can be turned into N ′

with one rNNI move if and only if N can be turned into N ′ with one rSPR1 move.

Proof. We first prove that every rSPR1 move is an rNNI move (which implies the if
part of the theorem). In order to do this, we consider four different cases for the
position of the recipient arc x′y′ relative to the donor arcs xz, zy (see Fig. 7 in the main
text). We refer to Lemma 1 for the definitions of the rNNI types (1), (1∗), . . . , (4).

(a) y′ = x, that is the recipient arc enters x. In this case the rSPR1 move coincides
with the rNNI (x′x, xz, zy → x′z, zx, xy), which is an rNNI of type (3∗) with
s = x′, u = x, v = z, t = y.

(b) x′ = x, that is the recipient arc exits x. In this case the rSPR1 move coincides with
the rNNI (xy′, xz, zy → zy′, xz, xy), which is an rNNI of type (1) with
s = y′, u = x, v = z, t = y.

(c) x′ = y, that is the recipient arc exits y. In this case the rSPR1 move coincides with
the rNNI (xz, zy, yy′ → xy, yz, zy′), which is an rNNI of type (3∗) with
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s = x, u = z, v = y, t = y′.

(d) y′ = y, that is the recipient arc enters y. In this case the rSPR1 move coincides
with the rNNI (xz, zy, x′y → xy, zy, x′z), which is an rNNI of type (2) with
s = x, u = z, v = y, t = x′.

We now proceed to prove the only if direction of the theorem. That is, if N can be
turned into N ′ with one rNNI move, then the same can be done with one rSPR1 move.
Similarly to above, we consider each possible type of rNNI in turn.

(1) (us, uv, vt→ ut, uv, vs). This rNNI move is an rSPR1 with donor arcs uv, vt and
recipient arc us.

(1∗) (us, uv, vt→ ut, vu, vs), where v is a reticulation in N . Let x be the only parent
of u in N , and x′ the parent of v other than u. Now consider the rSPR1 move
with donors xu, uv and recipient arc x′v, that is [xu, uv, x′v → x′u, uv, xv]. The
resulting network is the same as N ′ (formally, isomorphic to N ′), the network
produced by the rNNI above: both networks contain the arcs x′α, xβ, αβ, αs, βt,
with α = v, β = u in N ′, and α = u, β = v in the network produced by the rSPR1.

(2) (su, uv, tv → sv, uv, tu). This rNNI move is an rSPR1 with donor arcs su, uv and
recipient arc tv.

(2∗) (su, uv, tv → sv, vu, tu), where u is a bifurcation in N . Let y be the only child of
v in N , and y′ the child of u other than v. Now consider the rSPR1 move with
donors uv, vy and recipient arc uy′, that is [uv, vy, uy′ → uv, vy′, uy]. The
resulting network is the same as N ′ (formally, isomorphic to N ′), the network
produced by the rNNI above: both networks contain the arcs sα, tβ, αβ, αy, βy′,
with α = v, β = u in N ′, and α = u, β = v in the network produced by the rSPR1.

(3) (su, uv, vt→ sv, uv, ut), where u is a reticulation and v a bifurcation in N . Let x′

be the parent of u other than s in N , and y the child of v other than t. Now
consider the rSPR1 move with donors uv, vy and recipient arc x′u, that is
[uv, vy, x′u→ x′v, vu, uy]. The resulting network is the same as N ′ (formally,
isomorphic to N ′), the network produced by the rNNI above: both networks
contain the arcs x′α, sβ, αβ, αt, βy, with α = u, β = v in N ′, and α = v, β = u in
the network produced by the rSPR1.

(3∗) (su, uv, vt→ sv, vu, ut). This rNNI move is an rSPR1 with donor arcs su, uv and
recipient arc vt. Interestingly, it is also an rSPR1 with donor arcs uv, vt and
recipient arc su.

(4) (us, uv, tv → vs, uv, tu). Let y be the only child of v in N , and x′ the only parent
of u. Now consider the rSPR1 move with donors uv, vy and recipient arc x′u, that
is [uv, vy, x′u→ x′v, vu, uy]. The resulting network is the same as N ′ (formally,
isomorphic to N ′), the network produced by the rNNI above: both networks
contain the arcs x′α, tα, αβ, βs, βy, with α = u, β = v in N ′, and α = v, β = u in
the network produced by the rSPR1.

Proposition 2. Let N be a binary rooted network. Within N , let eBB denote the
number of arcs from a bifurcation to a bifurcation, eBR the number of arcs from a
bifurcation to a reticulation, eRB the number of arcs from a reticulation to a bifurcation,
and eRR the number of arcs from a reticulation to a reticulation. Then, the number of
different binary rooted networks that can be obtained from N by one rNNI move is at
most 2(eBB + eRR) + 3eBR + 4eRB.

PLOS 7/10



Proof. Every rNNI move applied to N must be around some arc uv in N , where both u
and v are internal vertices (that is, neither the root or a leaf). Thus, u and v are either
bifurcations or reticulations. To prove the statement, we consider the four possible
assignments of u and v to these categories.

In the following, we show that if u and v are both bifurcations (case BB) or both
reticulations (case RR), then at most 2 networks can be obtained with an rNNI move
around uv (top two lines in Fig. 8 in the main text). If instead u is a bifurcation and v
a reticulation (case BR), then at most 3 networks can be obtained (third line in Fig. 8).
Finally, if u is a reticulation and v a bifurcation (case RB), then at most 4 networks can
be reached with an rNNI move around uv (bottom line in Fig. 8). These observations
allow us to obtain the upper bound of 2(eBB + eRR) + 3eBR + 4eRB on the size of the
rNNI neighborhood. In the following four paragraphs, we provide the detailed (but
tedious) proofs for cases BB, RR, BR and RB.

Case BB. If both u and v are bifurcations, name the vertices adjacent to u or v,
and networks N1 and N2 in the way described in Fig. 8 (top line), where we may have
β = γ or β = δ, but no other equality between vertices (any such equality would either
imply a cycle or parallel arcs). The only rNNI moves that can be applied to N are of
type (1) and (3∗), as all other rNNI types require that either u or v is a reticulation.
The type-(1) move (uβ, uv, vγ → uγ, uv, vβ) and the type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) result in network N1, whereas the type-(1) move
(uβ, uv, vδ → uδ, uv, vβ) and the type-(3∗) move (αu, uv, vγ → αv, vu, uγ) result in
network N2. Note that if β = γ or β = δ, then some of the moves above may not be
applicable. Thus at most 2 networks can be obtained with an rNNI move around uv in
this case.

Case RR. If both u and v are reticulations, name the vertices adjacent to u or v,
and networks N1 and N2 in the way described in Fig. 8 (2nd line), where we may have
β = γ or α = γ, but no other equality between vertices. The only rNNI moves that can
be applied to N are of type (2) and (3∗), as all other rNNI types require that either u or
v is a bifurcation. The type-(2) move (βu, uv, γv → γu, uv, βv) and the type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) result in network N1, whereas the type-(2) move
(αu, uv, γv → γu, uv, αv) and the type-(3∗) move (βu, uv, vδ → βv, vu, uδ) result in
network N2. Note that if β = γ or α = γ, then some of the moves above may not be
applicable. Thus at most 2 networks can be obtained with an rNNI move around uv in
this case.

Case BR. If u is a bifurcation and v a reticulation, name the vertices adjacent to u
or v, and networks N1, N2 and N3 in the way described in Fig. 8 (3rd line), where we
may have α = β, δ = γ, γ = β. Here type-(3) rNNI moves cannot be applied, as they
require that u is a reticulation. All other moves, if applicable, result in one among N1,
N2 and N3: the only type-(1) move (uγ, uv, vδ → uδ, uv, vγ) results in N3; the only
type-(1∗) move (uγ, uv, vδ → uδ, vu, vγ) results in N2; the only type-(2) move
(αu, uv, βv → βu, uv, αv) results in N2; the only type-(2∗) move
(αu, uv, βv → βu, vu, αv) results in N3; the only type-(3∗) move
(αu, uv, vδ → αv, vu, uδ) results in N1; the only type-(4) move (uγ, uv, βv → vγ, uv, βu)
results in N1. Once again (when some of the involved vertices are not distinct, or when
N contains a γ-β path) some of the moves above may not be applicable. Thus at most 3
networks can be obtained with an rNNI move around uv in this case.

Case RB. If u is a reticulation and v a bifurcation, name the vertices adjacent to u
or v in the way described in Fig. 8 (bottom line). The only rNNI moves that can be
applied to N are of type (3) and (3∗), as all other rNNI types require that either u is a
bifurcation or v a reticulation. They result in one among N1, N2, N3 and N4: the
type-(3) move (βu, uv, vγ → uγ, uv, βv) and the type-(3∗) move
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(αu, uv, vδ → αv, vu, uδ) result in N1; the type-(3) move (βu, uv, vδ → uδ, uv, βv) and
the type-(3∗) move (αu, uv, vγ → αv, vu, uγ) result in N2; the type-(3) move
(αu, uv, vγ → uγ, uv, αv) and the type-(3∗) move (βu, uv, vδ → βv, vu, uδ) result in N3;
the type-(3) move (αu, uv, vδ → uδ, uv, αv) and the type-(3∗) move
(βu, uv, vγ → βv, vu, uγ) result in N4. Note that in this case, no equality between any
of the named vertices can hold. Moreover, because no nonelementary u-v path can exist
in N , none of the moves above can create a cycle. Thus all of the moves above are
applicable, and exactly 4 networks can be obtained with an rNNI move around uv in
this case.

About the size of rNNI neighborhoods.

We now give a family of networks Nk, illustrated in Fig. S16, whose rNNI neighborhood
has size logarithmic in the number of arcs, in contrast with the upper bound given in
the Results section, which is linear in the number of arcs.

Each network Nk is built by taking two copies T k
1 and T k

2 of a complete binary
rooted tree with 2k leaves. For each pair of leaves u and v, add all possible arcs from
the copies of u and v in T k

1 to the copies of u and v in T k
2 . Finally, replace each arc uv

in T 2
k with the arc vu, so that the resulting network is binary with a single root and a

single leaf. This completes the construction of Nk (see Fig. S16).

u1

a

T
2

2

u2

u3

u4

u5

u6

T
2

1

Fig S16. The network N2, illustrating a family of networks Nk with O(2k) arcs and
only O(k) networks in the rNNI neighborhood.

For all k > 0, as the number of arcs of a complete binary subtree with 2k leaves is
2k+1 − 1, the number of arcs of Nk is 2× (2k+1 − 1) + 2× 2k, that is 3× 2k+1 − 2.
However, because of the extreme symmetry of this network, all arcs that lie at the same
height in the network are effectively indistinguishable, implying that rNNI moves
around different arcs often result in the same network. More precisely, consider two arcs
uv and u′v′ whose sources u and u′ are at the same distance d from the root, for
d ∈ {1, . . . , 2k + 1}. It is easy to see that the set of networks that can be obtained by
one rNNI move around uv is the same as the set obtained by one rNNI move around
u′v′, or around any other arc whose source is at distance d of the root. Thus, as Prop. 2
implies that there are at most 4 networks in each of these sets, the size of the rNNI
neighborhood of Nk is at most 4(2k + 1). This proves that the size of the rNNI
neighborhood of Nk is logarithmic in its number of arcs.

Finally, in Fig. S17, we illustrate the rNNI neighborhood of the network N3 of Fig. 9
in the main text, which consists of 12 networks. Now note that because
eBB = 3, eBR = 2, Prop. 2 gives an upper bound of exactly 12, showing that this bound
is tight in this case.
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ac db a db c b da c a db c d b c a db ca

a dc b d ab c a cb d a d cba db c a db c

N3;1 N3;2 N3;3 N3;4 N3;5 N3;6

N3;7 N3;8 N3;9 N3;10 N3;11 N3;12

Fig S17. The rNNI neighborhood of network N3 of Fig. 9 in the main text: N3,1 and
N3,2 are obtained by rNNI moves of type BB around arc vv1 of N3, N3,3 and N3,4 are
obtained by rNNI moves of type BB around arc v1v2, N3,5 and N3,6 are obtained by
rNNI moves of type BB around arc vv4, N3,7, N3,8 and N3,9 are obtained by rNNI
moves of type BR around arc v2v3 and N3,10, N3,11 and N3,12 are obtained by rNNI
moves of type BR around arc v4v3.
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