Improving a genetically-encoded voltage indicator by modifying the cytoplasmic charge composition

- Sungmoo Lee^{1,2}, Tristan Geiller^{1,3}, Arong Jung^{1,4}, Ryuichi Nakajima¹, Yoon-Kyu Song^{2,5} and Bradley J. Baker^{1,6}
- 1. The Center for Functional Connectomics, Korea Institute of Science and Technology, Seoul, South Korea
- 2. Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon, South Korea
- 3. Department of Psychology, Korea University, Seoul, South Korea
- 4. College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- 5. Advanced Institutes of Convergence Technology, Suwon, South of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea

Correspondence should be addressed to Dr. Bradley Baker; bradley.baker19@gmail.com

Supplementary figure 1. Normalized fluorescence intensities of three GEVIs showing their photobleaching rates in HEK 293 cells. ArcLight A242, Bongwoori or Bongwoori-R3 expressing cells were excited with a Xenon arc lamp by repeating a 40s light-on / 20s light-off trial. Fluorescence intensities were measured every 40s and fitted to an exponential decay function. Time constants for all three GEVIs were longer than 450s. Excitation light intensity was 1 mW/mm².

* Low pass filtered

Supplementary figure 2. Optical imaging of evoked action potentials from cultured mouse hippocampal neurons with two untuned GEVIs, CC1-Pos6 and D164N-Pos6. For low-pass filtration, Gaussian filter was used. Upper trace is unfiltered and lower trace is low-pass filtered. Scale bar = 20µm.

High buffer pipette solution

Supplementary figure 3. Baseline change in Δ F/F measured with Bongwoori-R3 correlates with the number of evoked action potentials. The amplitude of baseline change of soma was plotted against the number of evoked action potentials. Pipette solution with normal buffering capacity (5 mM HEPES) or with high buffering capacity (100 mM HEPES) were used and plotted separately.

Primer	Sequence	Construct
NEG1-A	GAATATTTGACTCCCACCAAGAGATGGGGGGATCCCATGAG	
NEG1-B	GGGATCCCCCATCTCTTGGTGGGAGTCAAATATTCTTGC	CC1-Neg1
NEG2-A	GAATATTTGATTCCCACGAGGAAATGGGGGGATCCCATGAG	
NEG2-B	GGGATCCCCCATTTCCTCGTGGGAATCAAATATTCTTGC	CC1-Neg2
NEG3-A	GAATATTTTATGACCACCAAGAGATGGGGGGATCCCATGAG	CC1-Neg3
NEG3-B	GGGATCCCCCATCTCTTGGTGGTCATAAAATATTCTTGC	
NEG-4AA		CC1-Neg4
NEG4-BB		
POS5-A	GAATATTTAGGTCCCACCAAAGAATGGGGAGGCCTATGAG	
POS5 B		CC1-Pos5
POS6 A		
POS6 B		CC1-Pos6
POS7 A		
		CC1-Pos7
PUS0-AA		CC1-Pos8
PUS8-BB		
SMU14A		CC1-M240
SM014B		
SM020A	GCTGCGTGTGGTTATCTTAGCAAGAATATTTAGATCCCACAGAAGG	Bongwoori-Pos6
SM020B	AAATATICTIGCTAAGATAACCACACGCAGCAATCTGGCCAACAC	
SM029A		D164N-Pos6 CC1-Pos6-Ks
SM029B	GGCAAATATCCTTAATCCTAAATTCAGCATGAAATAACAAG	
SM042A	TTTAAATCCCACAAAAAGATGGGGAAGCCTATGAGTAAAGGAG	
SM042B	GGCTTCCCCATCTTTTGTGGGATTTAAATATTCTTGCTAACCG	
SM030A	CGCCGGAGAAGGCGGAGAAGGCGCATGAGTAAAGGAGAAGAACTTTTC	CC1-9Rs
SM030B	GCGCCTTCTCCGCCTTCTCCGGCGTCTAAATATTCTTGCTAACCGAACC	
SM048A	GAAAAAGAAGAAAAAGAAAAAGAAGATGAGTAAAGGAGAAGA	CC1-9Ks
SM048B	CTTCTTTTCTTTTCTTCTTTCTTAAATATTCTTGCTAACCGAACC	001-0103
SM049A	GGAAGAAGAGGAAGAGGAGGAAGAAATGAGTAAAGGAGAAGA	CC1-9Es
SM049B	TTCTTCCTCCTCTTCCTCTTCTTCCTCAAATATTCTTGCTAACCGAACC	
SM050A	CTCATCTTCCTCATCCTCTCCAATGAGTAAAGGAGAAGAACTTTTC	CC1 05s
SM050B	TGAGGAAGAGGATGAGGAAGATGAGGAAAATATTCTTGCTAACCGAACC	001-003
SM051A	GCAGCAACAGCAGCAACAGCAGCAAATGAGTAAAGGAGAAGAACTTTTC	CC1 90s
SM051B	TTGCTGCTGTTGCTGCTGCTGCTGAAATATTCTTGCTAACCGAACC	001-903
SM055A	GATGACGATGATGACGATGATGACATGAGTAAAGGAGAAGAACTTTTC	CC1 0Dc
SM055B	ATCATCGTCATCGTCATCATCAAATATTCTTGCTAACCGAACCAC	001-905
SM056A	GCTGCCGCAGCTGCCGCAGCTGCCATGAGTAAAGGAGAAGAACTTTTC	001.040
SM056B	AGCTGCGGCAGCTGCGGCAGCGGCAAATATTCTTGCTAACCGAACCAC	CCT-9AS
BR1A	GGTTATCTTAGCAAGAATATTTAGGTCCCACCAACAAGGGG	Bongwoori-R1
BR1B	CCCCTTGTTGGTGGGACCTAAATATTCTTGCTAAGATAACC	
BR2A	CTTAGCAAGAATATTTTATAGGCACCAACAAGGGGATCCC	Bongwoori-R2
BR2B	GGGATCCCCTTGTTGGTGCCTATAAAATATTCTTGCTAAG	
BR3A	GCAAGAATATTTTATTCCAGGCAACAAGGGGATCCCATGAG	Bongwoori-R3
BR3B	CTCATGGGATCCCCTTGTTGCCTGGAATAAAATATTCTTGC	
BR4A	GAATATTTTATTCCCACAGGCAAGGGGATCCCATGAGTAAAGG	Bongwoori-R4
BR4B	CCTTTACTCATGGGATCCCCTTGCCTGTGGGAATAAAATATTC	
BR5A	GAATATTTATTCCCACCAAAGGGGGGGATCCCATGAGTAAAGG	
BR5B	CCTTTACTCATGGGATCCCCCCTTTGGTGGGAATAAAATATTC	Bongwoori-R5
BR6A	GAATATTTTATTCCCACCAACAAAGGGATCCCATGAGTAAAGG	
BR6B	CCTITACTCATGGGATCCCTTTGTTGGTGGGGAATAAAATATC	Bongwoori-R6
BR7A	GAATATTTTATTCCCACCAACAAGGGAGGCCCATGAGTAAAGGAG	Bongwoori-R7
BR7B		
BR8A		
BD8B		Bongwoori-R8

Supplementary table 1. Primer sequences used for PCR reactions to generate DNA gene constructs in this work.