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Supplementary Methods

The minimal model displaying symmetry breaking
We hypothesised the three conditions sufficient for symmetry breaking as de-
scribed in the main text (under ‘Sufficient conditions for functional symmetry
breaking’). To test that hypothesis, we drastically simplified the model chiefly
discussed in the main text (the main model, for short) and constructed a model
that minimally satisfies those conditions (the minimal model, for short). The
details of the minimal model are described in this section (for the details of the
main model, see Methods under ‘The implementation of the model’ in the main
text).

The minimal model is formulated as a hierarchical Moran process. It con-
sists of N replicators, which are partitioned into groups. In each time step, one
replicator is chosen for replication with a probability proportional to its fitness
defined below, and one replicator is chosen for removal with a probability 1/N .
A replicator can be chosen simultaneously for both replication and removal, in
which case replication precedes removal. If the number of replicators in a proto-
cell exceeds V , the protocell undergoes binary fission with its internal replicators
randomly distributed between the daughter cells. Note that this minimal model
abstracts away the features of the main model that are specific to RNA replic-
ators and are considered unnecessary for symmetry breaking (namely, it ignores
substrates, complementarity, and complex formation).

The fitness of replicators is determined by the degree of cooperation among
replicators. The cooperativeness of a replicator is determined by two numerical
parameters assigned to each replicator (denoted by kx, where x ∈ {1, 2}). The
values of kx determine the fitness of a replicator (denoted by f) as follows:

f(k1, k2; k̄1, k̄2) = ek̄1+k̄2−r(k1+k2), (1)

where a bar denotes an average taken over all replicators in the same protocell,
and r is a constant indicating the cost of cooperation (0 < r < 1).

Molecular-level evolution tends to minimise k1 and k2 because the selection
gradient at the molecular level is negative:

∂kx ln f = −r < 0, (2)

where ∂kx denotes a partial derivative with respect to kx, and k̄x is considered
independent of kx.

Conversely, cellular-level evolution tends to maximise k̄1 and k̄2 because the
selection gradient at the cellular level is positive, as shown below. Let the fitness
of a protocell be defined as the average fitness of replicators in the protocell,
i.e., f(k1, k2; k̄1, k̄2). The fitness of a protocell can be approximated by

f(k1, k2; k̄1, k̄2) ≈ f(k̄1, k̄2; k̄1, k̄2) (3)

under the assumption that the variance of kx within a protocell (denoted by
σ2
kx
) is sufficiently small and that the covariance between k1 and k2 within a
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protocell (denoted by σk1,k2) is zero (the latter assumption is reasonable if k1

and k2 are mutationally independent). Using the above approximation, the
selection gradient at the cellular level is calculated as

∂k̄x ln f̄ ≈ 1− r > 0. (4)

Because the gradient is positive, protocells tend to evolve toward maximising
k̄x.

When a new replicator is produced through replication, its kx values are
copied from the replicator serving as its template with possible mutation (com-
plementarity was ignored). The values of kx were mutated by three different
methods, which have distinct effects on the way the rate of molecular-level
evolution depends on the value of k̄x. To describe these effects in the following
sections, we here note that the rate of molecular-level evolution—i.e., the change
of f̄ per generation (denoted by ∆f̄)—is approximated by

∆f̄ ≈
2∑

x=1

f̄σ2
kx(1 + ∂kx ln f)∂kx ln f, (5)

where the derivatives are evaluated at kx = k̄x (see the section under ‘The
derivation of Equation (5)’ below). Note that

∆f̄ ≤ 0 (6)

because f̄ > 0, σ2
kx
≥ 0, and −1 < ∂kx ln f < 0.

The first method of mutating kx

This method is identical to the default method of mutation in the main model.
Namely, kx is mutated by adding a number randomly drawn from a uniform
distribution on the interval (−δ, δ). The value of kx is bounded above with a
reflecting boundary (kx ≤ 5 unless otherwise stated); however, it is not bounded
below (this boundary condition reflects the fact that there are far more geno-
types with low fitness than those with high fitness). According to this boundary
condition, the value of kx can be negative, in which case, however, kx is regarded
as zero in calculating f . Consequently,

∂kx ln f =

{
−r if kx > 0,

0 if kx < 0.
(7)

According to Equations (5) and (7), the rate of molecular-level evolution |∆f̄ |
decreases if either k̄1 or k̄2 decreases below zero. Therefore, symmetry breaking
is expected (see Supplementary Fig. 7).

The second method of mutating kx

This method is the same as described above, except that the special rule that
applies when kx < 0 is removed (note that this is impossible in the main model
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because kxy in that model denotes a rate constant). According to this method,

∂kx ln f = −r (8)

irrespective of the value of kx. According to Equations (5) and (8), ∆f̄ is in-
variant with respect to k̄x. Therefore, symmetry breaking is not expected (see
Supplementary Fig. 9).

The third method of mutating kx

In this method, each replicator is assigned numerical parameters representing
a genotype (denoted by gx, where x ∈ {1, 2}). The value of kx (phenotype) is
defined as a logistic function of gx as follows:

kx =
1

1 + exp(−gx)
. (9)

The value of gx is mutated by adding a number randomly drawn from a uniform
distribution on the interval (−δ, δ). The value of gx is bounded above with a
reflecting boundary, but not bounded below (gi ≤ 5 unless otherwise stated).
In this case,

σ2
kx ≈ (∂gxkx)2σ2

gx → 0 as ḡx → −∞ (10)

because ∂gxkx → 0. According to Equations (5) and (10), the rate of molecular-
level evolution |∆f̄ | decreases as k̄x decreases. Therefore, symmetry breaking is
expected (see Supplementary Fig. 8).

The model incorporating the RNA-folding genotype-phenotype
map
This section describes the model incorporating a complex genotype-phenotype
map of replicators based on the RNA folding algorithm outlined in the section
under ‘RNA folding genotype-phenotype map’ in the main text.

The model is the same as that described in the previous section, except for
the definition of kx as described below. Each replicator is assigned a pair of
complementary RNA sequences of 50 bases (denoted by sx where x ∈ {P,M}).
The secondary structure of sx (denoted by px) is computed with Vienna RNA
Package 2.0 [1]. kx is defined as a function of sx, via px, as follows:

kx =

{
1−D(px, p0)/10 if D(px, p0) < 10,

0 else,
(11)

where p0 is a target structure (which is chosen arbitrary and fixed throughout
a simulation), and D(px, p0) is the distance between px and p0 defined as the
minimum number of base pairs that must be paired and unpaired to transform
px into p0.
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When a new replicator is produced through replication, its sequences are
copied from the template with possible point mutations. The probability of
mutation is m/100 per base per replication (thus, the probability of mutation
per genome per replication is approximately m).

The results obtained with this model are shown in Supplementary Figs. 10
and 11.

The derivation of Equation (5)
Let the frequency of a replicator with k1 and k2 be P (k1, k2). The fitness of a
protocell f̄ is

f̄ =

∫
f(k1, k2; k̄1, k̄2)P (k1, k2)dk1dk2. (12)

The frequency of a replicator with k1 and k2 in the next generation, denoted by
P ′(k1, k2), is

P ′(k1, k2) =
f(k1, k2; k̄1, k̄2)P (k1, k2)∫

f(k1, k2; k̄1, k̄2)P (k1, k2)dk1dk2

= f̄−1f(k1, k2; k̄1, k̄2)P (k1, k2).

(13)

Thus, the fitness of a protocell in the next generation is

f̄ ′ =

∫
f(k1, k2; k̄′1, k̄

′
2)P ′(k1, k2)dk1dk2

= f̄−1

∫
f(k1, k2; k̄′1, k̄

′
2)f(k1, k2; k̄1, k̄2)P (k1, k2)dk1dk2,

(14)

where k̄′x is the average value of kx in the next generation. Using the notation

∆k̄xf = f(k1, k2; k̄′1, k̄
′
2)− f(k1, k2; k̄1, k̄2), (15)

we can write f̄ ′ as

f̄ ′ = f̄−1

(∫
f2(k1, k2; k̄1, k̄2)P (k1, k2)dk1dk2

+

∫
f(k1, k2; k̄1, k̄2)∆k̄xfP (k1, k2)dk1dk2

)
= f̄−1

(
f2 + f∆k̄xf

) (16)

Therefore, the change in the fitness of a protocell f̄ ′ − f̄ (denoted by ∆f̄) is

∆f̄ = f̄−1
(
σ2
f + f∆k̄xf

)
, (17)

where σ2
f is the variance of the fitness of replicators within a protocell. This is

the Price equation [2].
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The variance σ2
f can be approximated by

σ2
f ≈ [f(k1, k2; k̄1, k̄2)− f(k̄1, k̄2; k̄1, k̄2)]2

≈ [(k1 − k̄1)∂k1f + (k2 − k̄2)∂k2f ]2

= σ2
k1(∂k1f)2 + σ2

k1(∂k2f)2,

(18)

where the derivatives are evaluated at kx = k̄x (assuming that σ2
kx
� 1 and

σk1,k2 = 0 as before).
To calculate f∆k̄xf , we need to calculate the change of k̄x through the

evolution of replicators in a protocell (denoted by ∆k̄x). According to the Price
equation [2],

∆k̄x = f̄−1
(
σf,kx + f∆δkx

)
, (19)

where σf,kx is the covariance between f and kx, and ∆δkx is the mean change
of kx due to mutation. The covariance σf,kx can be approximated under the
assumptions that σ2

kx
is sufficiently small and that σk1,k2 = 0:

σf,kx ≈ σ2
kx∂kxf. (20)

Moreover,
f∆δkx = 0 (21)

under the assumption that mutation is unbiased. Combining these equations,
we obtain

∆k̄x ≈ σ2
kx∂kx ln f. (22)

Using Equation (22), ∆k̄xf can be approximated by

∆k̄xf ≈ (∂k̄1f)∆k̄1 + (∂k̄2f)∆k̄2

= f∆k̄1 + f∆k̄2 (using ∂k̄xf = f)

= fσ2
k1∂k1 ln f + fσ2

k2∂k2 ln f

(23)

under the assumption that ∆k̄x is sufficiently small. Using the above equation,
we obtain

f∆k̄xf ≈ f2(σ2
k1∂k1 ln f + σ2

k2∂k2 ln f)

= (σ2
f + f̄ 2)(σ2

k1∂k1 ln f + σ2
k2∂k2 ln f).

(24)

Substituting Equations (24) and (18) into Equation (17), we obtain

∆f̄ = f̄−1
[
σ2
k1(∂k1f)2 + σ2

k2(∂k2f)2

+ {σ2
k1(∂k1f)2 + σ2

k2(∂k2f)2 + f̄ 2}{σ2
k1∂k1 ln f + σ2

k2∂k2 ln f} ] .
(25)

The terms involving (σ2
kx

)2 can be ignored because σ2
kx
� 1 has been assumed:

∆f̄ ≈
2∑

x=1

f̄−1[σ2
kx(∂kxf)2 + f̄ 2σ2

kx∂kx ln f ] (26)

The above equation can be transformed into Equation (5) by substituting ∂k1f =
f∂k1 ln f .
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Supplementary Figures
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Supplementary Figure 1: Symmetry breaking in the alternative models of muta-
tion. The equilibrium average catalytic activities (kxy) are plotted as functions
of cell size (V ). The values of kxy were first averaged over all replicators at
each time point. Then, the average (symbols) and s.d. (error bars) of kxy over
time were calculated after equilibration. a. The model in which kxy is bounded
below by zero with a reflecting boundary. b. The model in which kxy is mutated
in a logarithmic scale. The parameters were the same as in Fig. 2.
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Supplementary Figure 2: Symmetry breaking in the model incorporating the
continual emergence through mutation of parasitic replicators providing no cata-
lysis. The equilibrium average catalytic activities (kxy) are plotted as functions
of cell size (V ). The values of kxy were first averaged over all replicators at
each time point. Then, the average (symbols) and s.d. (error bars) of kxy over
time were calculated after equilibration. In this model, mutation occurs with
probability m per replication. With probability 0.1, mutation sets all the kxy
values of a replicator to zero; with probability 0.9, it changes the kxy values of
a replicator by the default method described in the main text. The parameters
were the same as in Fig. 2.
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Supplementary Figure 3: The absence of symmetry breaking in the model as-
suming one-step replication (instead of two-step replication). The equilibrium
average kxy values are plotted as functions of cell size (V ). The values of kxy
were first averaged over all replicators at each time point. Then, the average
(symbols) and s.d. (error bars) of kxy over time were calculated after equilib-
ration. In this model, replication occurs without explicitly involving complex
formation. Accordingly, the kxy values were re-defined as the rates of replica-
tion. Replication was modeled as a third-order chemical reaction involving three
particles: a replicator serving as a catalyst, a replicator serving as a template,
and a substrate. Specifically, the reaction algorithm was modified as follows.
After the first and second particles (denoted by X and Y ) are chosen as in the
original algorithm, a third particle (Z) is randomly chosen from the protocell
containing X and Y (see Methods under ‘The implementation of the model’
in the main text for the notation). Replication can occur if and only if two
particles are replicators and one is a substrate. For example, if X and Z are
replicators and Y is a substrate, Z replicates X with a probability αβkZzx, and
X replicates Z with a probability αβkXxz. Moreover, X decays with a probabil-
ity αd if X is a replicator (Y and Z do not decay). The value of α was chosen
such that the inequality α(2βkmax + d) ≤ 1 always holds, where kmax is the
maximum possible value of kxy (kmax = 1 in this figure). The value of β was
set to 1/6 in order to cancel out the fact that there are six possible orders in
which three particles are chosen to react. The other parameters were the same
as in Fig. 2. The simulation was run only for 4.8× 106 (instead of ≥ 107) time
steps for V = 100, 000.
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Supplementary Figure 4: The fraction of particles that are replicators (NR/N
where NR ≡ NP +NM) as a function of cell size (V ). The average (symbols) and
s.d. (error bars) of NR/N over time are plotted (calculated after equilibration).
The symbols indicate different models: the full model, i.e., the model in which no
symmetry is imposed (•); the model in which kinetic symmetry is imposed (�);
the model in which functional symmetry is imposed (N); the model in which
both kinetic and functional symmetry are imposed (H). The open symbols
indicate metastable states.
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Supplementary Figure 5: The dynamics of a single protocell along its line of
descent. Colour coding: the number of particles in a protocell normalised by V
(V = 1700) (black); cell division (◦); the value of kP averaged over the replicators
in a protocell (red); the range of kP in a protocell (orange). See Methods for
the details of simulations. kM was set to a negative value so that replicators
were functionally asymmetric throughout a simulation. a. A protocell ceases
reproduction and dies. The average value of kP steadily decreases owing to
molecular-level evolution. b. The same simulation as above with a different
random seed. A protocell revives its growth (time ≈ 12000). The average of
kP abruptly increases before the revival; the range of kP drastically shrinks,
indicating an intracellular population bottleneck.

11



100 1,000 10,000
0

0.5

1

kxy

V

kPP
kPM
kMP
kMM

a

b

100 1,000 10,000
0

0.5

1

kxy

V

kPP
kPM
kMP
kMM

Supplementary Figure 6: The effect of preventing bottleneck-induced growth
restoration. The equilibrium average catalytic activities (kxy) are plotted as
functions of cell size (V ). The values of kxy were first averaged over all replic-
ators at each time point. Then, the average (symbols) and s.d. (error bars) of
kxy over time were calculated after equilibration. a. Bottleneck-induced growth
restoration was prevented by killing small protocells, i.e., protocells whose cell
sizes fell below a threshold 0.1V . This threshold was set much higher than the
minimum number of molecules during population bottlenecks so that growth
restoration was prevented (see Supplementary Fig. 5). The killing was imple-
mented by converting all internal molecules of a protocell into substrates so that
the total number of molecules and substrates was kept constant. The paramet-
ers were the same as in Fig. 2. b. For the sake of comparison, the results
obtained without preventing bottleneck-induced growth restoration (Fig. 2a) is
shown again.
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Supplementary Figure 7: Symmetry breaking in the minimal model with the
first method of mutation (see Supplementary Methods under ‘The first method
of mutating kx’). The population averages of kx values are plotted as functions
of time (one unit of time corresponds to N birth-death steps). Colour coding:
k1 (black), k2 (red). a. V = 400. Both k1 and k2 are maximised (i.e., no
symmetry breaking). b. V = 500. The value of k1 is maximised, but that of k2

is minimised (i.e., symmetry breaking). Note that both k1 and k2 first decreases,
and k1 starts to increase after k2 decreases to zero. This dynamics is similar
to that depicted in Fig. 4. c. V = 600. Both k1 and k2 are minimised (i.e., no
symmetry breaking). Parameters: m = 0.03, δ = 0.05, r = 0.5, N = 50V .
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Supplementary Figure 8: Symmetry breaking in the minimal model with the
third method of mutation (see Supplementary Methods under ‘The third method
of mutating kx’). The population averages of kx values are plotted as functions
of time (one unit of time corresponds toN birth-death steps). a. V = 200. Both
k1 and k2 are maximised (i.e., no symmetry breaking). b. V = 500. The value
of k1 is maximised, but that of k2 is minimised (i.e., symmetry breaking). Note
that both k1 and k2 first decreases, and k1 starts to increase after k2 decreases
sufficiently. This dynamics is similar to that depicted in Fig. 4. c. V = 800.
Both k1 and k2 are minimised (i.e., no symmetry breaking). Parameters: m =
0.04, δ = 1, r = 0.5, N = 50V .
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Supplementary Figure 9: The absence of symmetry breaking in the minimal
model with the second method of mutation (see Supplementary Methods under
‘The second method of mutating kx’). The population averages of kx values
are plotted as functions of time (one unit of time corresponds to N birth-death
steps). a. V = 420. Both k1 and k2 are maximised (i.e., no symmetry breaking).
Qualitatively the same result was obtained for V = 100, 200, 300, 400, 410 (data
not shown). b. V = 430. Both k1 and k2 are minimised (i.e., no symmetry
breaking). Qualitatively the same result was obtained for V = 430, 440, 450,
· · · , 500, 600, 700, · · · , 1000 (data not shown). Note that the difference between
a and b in V is very small. Note also that the model displays symmetry breaking
for V = 500 if the first method of mutation is employed (Supplementary Fig. 7).
Given that the first and second methods of mutation are similar, these results
suggest that the model does not display symmetry breaking if the second method
of mutation is employed. The parameters were the same as in Supplementary
Fig. 7.
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Supplementary Figure 10: Symmetry breaking in the model incorporating
the RNA-folding genotype-phenotype map (see Supplementary Methods un-
der ‘The model incorporating the RNA-folding genotype-phenotype map’).
The averages of kP (black) and kM (red) and the maximum value of kP (or-
ange) and kM (blue) in the population are plotted as functions of time (one
unit of time corresponds to N birth-death steps). a. V = 100. Both k1

and k2 are maximised (i.e., no symmetry breaking). b. V = 562. The
value of k1 is maximised, but that of k2 is minimised (i.e., symmetry break-
ing). c. V = 5623. Both k1 and k2 are minimised (i.e., no symmetry
breaking). Parameters: m = 0.1, r = 0.1, N = 50V . The target struc-
ture (p0) was set to ‘......(((....)))....(((..(((((((....))))))))))....’
in the dot-bracket notation. The population was initialised with sequence
GAAAGCCUGAAUCCAGAGAGACCCAGUGGCAGGACGUUGUUACGGUAAGA and its complementary
sequence, both of which fold into the target structure. See Supplementary
Fig. 11 for how the target structure and initial sequences were selected.16
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Supplementary Figure 11: Symmetry breaking in the model incorporating the
RNA-folding genotype-phenotype map for many target structures (see Supple-
mentary Methods under ‘The model incorporating the RNA-folding genotype-
phenotype map’). The model was run with 28 distinct target structures (the
parameters were the same as in Supplementary Fig. 10). In each simulation, the
degree of functional asymmetry |(kP − kM)|/|(kP + kM)| and average cooperat-
iveness (kP + kM)/2 of replicators were averaged over time after equilibration.
The mean (symbols) and s.d. (error bars) for the 28 target structures are plot-
ted. Colour coding: |(kP − kM)|/|(kP + kM)| (black circle, left coordinate),
(kP + kM)/2 (red triangle, right coordinate). The results show that the degree
of functional asymmetry increases for an intermediate range of V , indicating the
robustness of the symmetry breaking in this model. The target structures were
generated as follows: 32 RNA sequences were randomly generated (each base
with an equal probability). The sequences were folded with the RNA folding al-
gorithm. For each of the 32 structures obtained, a genetic algorithm was used to
obtain a pair of complementary sequences both of which fold into the structure
(Fisher-Wright process; random initial population of size 2000; m = 1). Four
of the 32 structures did not yield such sequences within an arbitrarily-chosen
number of generations and were discarded. The remaining 28 structures were
selected as the target structures, together with the sequences obtained through
the genetic algorithm as the initial sequences.
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Supplementary Figure 12: Kinetic symmetry breaking in the model on which
functional asymmetry is a priori imposed by setting kMP = kMM = 0 through-
out simulations. The equilibrium average catalytic activities (kxy) are plotted
as functions of cell size (V ). The values of kxy were first averaged over all rep-
licators at each time point. Then, the average (symbols) and s.d. (error bars)
of kxy over time were calculated after equilibration. The parameters were the
same as in Fig. 2.
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Supplementary Figure 13: Symmetry breaking in the model incorporating the
cross-chiral replicators envisaged in the Sczepanski-Joyce experiment (see Dis-
cussion for details). The equilibrium average catalytic activities (kxy) are plot-
ted as functions of cell size (V ). The values of kxy were first averaged over
replicators for each member of the hypercycle at each time point. Then, the
average (symbols) and s.d. (error bars) of kxy over time were calculated after
equilibration. a. The kxy values of L isomers (i.e., one member of a hypercycle).
b. The kxy values of D isomers (i.e., the other member of the hypercycle).
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