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SUPPLEMENTARY INFORMATION

SUPPLEMENTARY NOTE 1: DEVICE CHARACTERIZATION

An optical microscopy image of the 2L-hBN flake and its AFM thickness measurement

is shown in Supplementary Fig. 1. Charge and spin transport measurements in graphene

are performed using low-frequency (21 Hz) lock-in measurements. All measurements are

performed in vacuum (∼ 1 × 10−7 mbar) at room temperature. In order to eliminate the

effect of the contact resistances, the graphene resistivity was characterized using a four-

terminal local geometry by applying an AC current between contacts 1-13 and measuring

the voltage drop across a pair of contacts in between 1 and 13 (see Fig. 1b of the main text).

The square resistance Rsq of graphene is consistently found to be ∼ 400 Ω for different

regions, suggesting that the background doping profile is uniform in the fully encapsulated

graphene flake.

(a) (b)

SUPPLEMENTARY FIGURE 1. hBN tunnel barrier characterization.(a) An optical micro-

scopic image of the hBN tunnel barrier flake on a Si/SiO2 substrate (tSiO2= 90 nm) where the

lighter contrast regions indicate the single-layer hBN. (b) An AFM height profile of the 2L-hBN

corresponding to the red line drawn in a, showing a thickness value ∼ 0.7 nm.

The differential contact resistances Rc(=dV/dI) of the cobalt/2L-hBN/graphene interface

were characterized using a three-terminal connection scheme. For example, to determine the
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differential resistance of contact 9, a small and fixed AC current (i) along with a DC current

bias (I) is applied between contacts 9-1, and a differential (AC) voltage is measured between

9-13 (Supplementary Fig. 2a) while sweeping the DC bias I. The resulting data is plotted

in the Supplementary Fig. 2b. The non-linear behaviour of the high resistive contacts is an

indication of the tunneling nature of the 2L-hBN tunnel barrier, whereas the nearly constant

differential resistance in the applied bias range, is a characteristic of a transparent (ohmic)

contact. For our sample, the differential contact resistances are in the range of 4 - 130 kΩ,

and the data is summarized in the Supplementary Table 1.
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SUPPLEMENTARY FIGURE 2. Electrical characterization of tunnel barrier. (a) Three-

terminal connection scheme for measuring the interface resistance of the cobalt/hBN/graphene

contacts (see Supplementary Note 1). (b) Differential contact resistance of all the contacts as a

function of the DC bias applied across the cobalt/hBN/graphene interfaces.

SUPPLEMENTARY NOTE 2: EXPRESSIONS FOR SPIN-INJECTION AND

DETECTION POLARIZATIONS, AND TWO-TERMINAL LOCAL SPIN-SIGNAL

A. Injection polarization

We derive an analytical expression for a DC/AC spin injection and detection polariza-

tions. In our measurements, we observe that the measured polarization depends on the

applied DC current bias (I) across the contact. For the DC current injection, the DC
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Contact #
Rc (kΩ)

(at V=0)

Width of contact (L)

(µm)

Rc*Area

(kΩ.µm2)
Rc/Rλ

No. of hBN layers

of the barrier

2 4.82 0.25 3.61 6.23 1

3 4.34 0.20 2.60 5.61 1

4 4.74 0.17 2.41 6.12 1

5 4.73 0.20 2.83 6.11 1

6 3.82 0.40 4.58 4.93 2

7 12.7 0.35 13.3 16.4 2

8 16.7 0.25 12.5 21.6 2

9 38.8 0.15 17.5 50.3 2

10 128 0.20 77.1 166 2

11 6.41 0.40 7.69 8.28 2

12 10.2 0.35 12.2 13.2 2

SUPPLEMENTARY TABLE 1. A summary of all the used contacts. Here Rλ = Rsqλs/W =

773 Ω is the spin resistance of the graphene flake with the width W = 3 µm, spin-relaxation length

λs = 5.8 µm, and Rsq ∼ 400 Ω. The number of hBN layers is determined from the optical contrast

analysis of the optical microscopic images and the AFM measurements.

polarization of an injector contact Pin is defined as:

Pin(I) =
Is
I

(1)

where Is is the DC spin current and I is the injected DC charge current. Similarly, the AC

(differential) polarization of the injection contact pin, in the presence of a DC bias current

I, is defined as:

pin(I) =
is
i

(2)

where is is the AC spin current and i is the injected AC charge current.

In our experiment, we apply a DC current at the injector contact along with a small and

fixed magnitude of the AC current. The total injected spin current can be represented as:

Is(I + i) = Pin(I + i)× (I + i) (3)
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Supplementary Eq. 3 can be expanded in to a Taylor series. For a small and fixed AC

current i, the second order terms can be neglected and the expression can be rewritten as:

Is(I) +

(
dIs
dI

)∣∣∣∣
I

× i = Pin(I)× I +

{
Pin(I) +

(
dPin

dI

)∣∣∣∣
I

× I
}
× i (4)

The AC (differential) polarization can then be written as:

pin(I) =
dIs
dI

=
is
i

= Pin(I) +

(
dPin

dI

)∣∣∣∣
I

× I (5)

Supplementary Eq. 5 can be used for a consistency check between the measured pin and

Pin(I) (Supplementary Fig. 6).

In our case, we observe that pin approximately scales linearly with bias I, implying that
dPin
dI
∼ constant. Supplementary Eq. 5 then gives Pin ≈ 1

2
pin(I).

B. Detection polarization

The spin-detection polarization is defined as a voltage measured at the detector due to

the spin accumulation underneath the detector contact. A charge current 4I will flow in

the ferromagnet via a spin-charge coupling due to a change in the spin accumulation 4µs

underneath the detector:

4I = 4µs(
dI↑
dV
− dI↓

dV
) (6)

where the net spin accumulation µs is the splitting of spin chemical potentials spin-up µ↑

and spin-down µ↓, i.e., (µ↑−µ↓)/2. Note that Supplementary Eq. 6 holds under the condition

of independent spin channels. For a fixed current bias I at the detector, to compensate for

4I, the change in the voltage 4V at the detector will give rise to a change in the charge

current 4I in the opposite direction:

4I = 4V (
dI↑
dV

+
dI↓
dV

) (7)

Solving Supplementary equations 6 and 7 leads to:

4V
4µs

=

dI↑
dV
− dI↓

dV
dI↑
dV

+
dI↓
dV

=
dI↑ − dI↓
dI↑ + dI↓

=
dIs
dI

(8)

Since the spin accumulations underneath the detector contacts are generally small, this

equation is valid for both the DC detector polarization Pd and the differential detector
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polarization pd, i.e.,

Pd(I) = pd(I) =
dIs
dI

= pin(I) (9)

Note that electrons can only inject one spin h̄/2 (up or down), which implies that Pin(I)

is restricted below ± 100%. However, this does not hold for the differential injection polar-

ization pin as well as detection polarizations pd(I) and Pd(I) which can in principle exceed

±100% in case of applied bias. Note however that when a detector is biased, it will also

inject spins resulting in a spin accumulation underneath the detector. When the detector is

fully spin polarized, the spin induced voltage V cannot exceed the total spin accumulation

±µs, total/e (due to injector and detector). As it can be seen from the Table I of the main

text, this condition is always satisfied, since the sum of the spin induced voltages cannot

be larger than µs, total/e = (3.9+4.1)/e = 8 mV which is in agreement with the signal in

Figure 5d of the main text.

C. Two-terminal local spin signals

We can calculate the bias-dependent two-terminal spin signal, provided the spin injection

and detection polarizations are known. For the two-terminal measurements, the injector

and detector are both biased with the same DC current I but they are biased with opposite

polarity. The two-terminal DC spin signal 4V DC
2t between contacts 8 and 9 (See Fig. 5 in

the main text) can be written as:

4V DC
2t = I × [P 9

in(I)P 8
d (−I) + P 8

in(−I)P 9
d (I)]× Rsqλs

W
× e−

L
λs (10)

which is equal to V ↑↑2t (I) − V ↓↑2t (I), the difference in two-terminal DC voltage signal V DC
2t

when the magnetization configuration of contacts 8 and 9 changes between parallel(↑↑) and

anti-parallel(↓↑) (see the main text).

Similarly, the two-terminal differential spin signal 4RAC
2t between contacts 8 and 9 (See

Fig. 5 in the main text) can be written as:

4RAC
2t = [p9in(I)p8d(−I) + p8in(−I)p9d(I)]× Rsqλs

W
× e−

L
λs (11)

which is equal to R↑↑2t (I) − R↓↑2t (I), the difference in the two-terminal differential signal

RAC
2t when the magnetization configuration of contacts 8 and 9 changes between parallel(↑↑)

and anti-parallel(↓↑).
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Here L is the separation between the contacts 8 and 9. pin and pd are obtained by

following the procedure explained in the Supplementary Notes 3.

SUPPLEMENTARY NOTE 3: DETERMINING THE BIAS DEPENDENT SPIN-

INJECTION POLARIZATIONS FROM NON-LOCAL SPIN SIGNALS

In a typical non-local spin-valve measurement, a differential voltage signal vnl, measured

by a detector contact ’d’ with differential detection polarization pd, located at a distance L

from an injector contact ’in’ with differential injection polarization pin, is given by

vnl =
iRsqλs

2W
pinpde

−L/λs (12)

where Rsq is the square resistance of graphene, λs is the spin relaxation length in graphene

and W is the width of the graphene flake.

i

87 109 13
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v
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SUPPLEMENTARY FIGURE 3. Schematics of the measurement configurations for de-

termining the spin-injection polarization of the contact 8. (a) Measuring non-local spin

signals as a function of bias on injector contact. (b) Measuring unbiased non-local spin signal with

the two detector contacts 9 and 10.

Consider a group of five contacts 7, 8, 9, 10, and 13 in Supplementary Fig. 3a, where the

current (I + i) is injected through a ferromagnet in contact 8 and extracted through 7, and

the total differential spin accumulation is detected as a non-local differential voltage, using

a low-frequency lock-in detection scheme, between the contacts 9 and 13 v9−13nl .
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The non-local voltage measured with the magnetization of the contacts 7, 8, 9, and 13

are aligned in one direction (say ↑↑↑↑) is given by,

v9−13nl (↑↑↑↑) =
iRsqλs

2W

[
p9
(
p8e
−L8−9/λs − p7e−L7−9/λs

)
− p13

(
p8e
−L8−13/λs − p7e−L7−13/λs

)]
(13)

In our measurements, the outer detector 13 is far enough from the injectors (L7−13, L8−13

> 2-3*λs) to not detect any spin signal and serves as a reference detector for the rest of the

analysis. So, the non-local differential resistance Rnl = vnl/i detected by 9 due to injection

from 7 and 8 is given by

R↑↑↑nl =
Rsqλs
2W

[
p9
(
p8e
−L8−9/λs − p7e−L7−9/λs

)]
(14)

In a spin-valve measurement, when the magnetization of one of the contact (say, 8)

switches, the resulting non-local resistance can be written as,

R↑↓↑nl =
Rsqλs
2W

[
p9
(
−p8e−L8−9/λs − p7e−L7−9/λs

)]
(15)

The detected signals in the Supplementary equations 14 and 15 include the contribution

of spin signal from the outer injector 7 (second term of the expressions) as well as some field

independent background signal.

Since the only change in Supplementary equations 14 and 15 is due to contact 8, the

non-local spin signal measured by 9 corresponding to the spin accumulation created only by

8 is obtained from

∆R8−9
nl =

R↑↑↑nl −R
↑↓↑
nl

2
=
Rsqλs
2W

[
p9

(
p8e

−L8−9
λs

)]
(16)

As explained above, one can determine the spin signal measured via inner detector contact

9 correspond to the spin injection through inner injector contact 8 as given by Supplementary

Eq. 16. Further, as shown in Supplementary Fig. 3(b), we can simultaneously measure the

spin signal via inner detector contact 10 corresponding to the spin injection through inner

injector contact 8, given by

∆R8−10
nl =

R↑↑↑nl −R
↑↓↑
nl

2
=
Rsqλs
2W

[
p10

(
p8e

−L8−10
λs

)]
(17)
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The contact polarization of the contacts 9 and 10 can be expressed as a ratio of 4R8-9
nl

and 4R8-10
nl i.e.

p9
p10

=
4R8-9

nl

4R8-10
nl

e
−L9−10

λs (18)

In order to determine the unbiased values of detector polarizations p9 and p10, we need

one more equation with these variables which is obtained by measuring 4Rnl between 9 and

10, by applying only an AC injection current between contacts 7 and 9 and measuring a

non-local voltage between 10 and 13. The effect of the outer injector contact 7 is subtracted

using the procedure described above(see Supplementary equations 13 - 16). Now we obtain:

∆R9−10
nl =

Rsqλs
2W

[
p10

(
p9e

−L9−10
λs

)]
(19)

We can obtain the product p9 × p10 from Supplementary Eq. 19 and the ratio
p9
p10

from

Supplementary Eq. 18 and thus determine the unbiased polarizations p9 and p10.

Using the unbiased polarization values of detectors obtained from Supplementary equa-

tions 18 and 19, we can determine the bias dependent polarization of the injector contact

8 from the two non-local spin signals measured via contacts 9 (Supplementary Eq. 16) and

contact 10 (Supplementary Eq. 17), independently. The resulting differential spin-injection

polarization of contact 8 is plotted in Supplementary Fig. 4(b).

The above procedure is repeated with three more different groups of contacts to deter-

mine the differential polarization of injection contacts, and the results are plotted in the

Supplementary Fig. 4(a-d). The results are also summarized in the Supplementary Table 2.

SUPPLEMENTARY NOTE 4: DETERMINING THE BIAS-DEPENDENT DE-

TECTOR POLARIZATIONS

In order to measure the bias dependent detector polarization of contact 9, we keep the

injector contact 8 at a fixed DC current bias I, where p8(I) is known from the previous

measurements, and sweep a bias current Id across the detector 9. We apply a fixed I and

a small i through the injector electrode 8 and measure a non-local signal at detector 9 via

low-frequency lock-in detection method, while sweeping the DC current bias Id across the

detector 9 (Supplementary Fig. 5). Note that the spin transport is non-local only for the

AC measurements. For the DC measurements we have a non-zero charge current and an

electric field in the spin transport channel between contacts 8 and 9. A differential non-local
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SUPPLEMENTARY FIGURE 4. Differential spin-injection polarization for different in-

jector contacts as a function of DC voltage bias across the injector. The spin injection

into graphene from the FM cobalt is facilitated via a 2L-hBN tunnel barrier, clearly demonstrating

the change in the magnitude and the sign of the injector polarization as a function of the bias

current I . The injection polarizations of contact 7 p7 in (a), contact 8 p8in (b), contact 9 p9 in

(c), and contact 10 p10 in (d) are shown.

signal 4R8-9
nl is measured as a function of detector bias current Id and can be expressed

via Supplementary Eq. 16. Here, we know the spin-injection polarization p8(I) obtained

from the previous measurements (Supplementary Note 3) and can extract the spin detection

polarization as a function of the bias current Id using Supplementary Eq. 16 (see the main

text).
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At V = 0 At V = +Vmax At V = -Vmax

Set of contacts
Injector-detector

(in− d)

pin

(%)

pd

(%)

∆Rin−dnl

(Ω)

pin

(%)

∆Rin−dnl

(Ω)

pin

(%)

7-8 p8 = -2.0 -1.5 24.5 2.3 -38.5
7-8-9

7-9
p7 = 1.4

p9 = 1.1 0.5 17.3 -1.1 -42.6

8-9 p9 = 1.3 1.2 26.9 -1.9 -50.0
8-9-10

8-10
p8 = -2.3

p10 = 3.0 1.6 22.9 -3.8 -52.6

9-10 p10 = 2.4 3.7 51.3 -5.2 -71.0
9-10-11

9-11
p9 = 4.3

p11 = 3.2 3.9 61.8 -4.5 -70.8

10-11 p11 = 3.2 1.9 23.2 -2.6 -31.6
10-11-12

10-12
p10 = -1.7

p12 = 2.0 0.9 23.1 -1.5 -37.9

SUPPLEMENTARY TABLE 2. A summary of spin-valve signals and obtained differential

spin-injection/detection polarizations. ∆Rin−dnl (V ) is the non-local signal from spin-valve data

when the injection bias V applied across the injector(in) and measured via detector(d), pin(V ) is

the differential injection polarization of injector contact at bias V, calculated from the analysis

explained in the Supplementary Notes 4, and Vmax(min) is the maximum(minimum) bias applied

across the injector. Here, the detector polarization pd at zero bias obtained from following the

analysis described in the Supplementary Note 3.

SUPPLEMENTARY NOTE 5: DIFFERENTIAL POLARIZATION FROM DC

POLARIZATION

The differential spin-injection polarization pin(I) can be expressed as the sum of DC

injection polarization Pin(I), and
(

dPin(I)
dI

)∣∣∣
I
I (Supplementary Eq. 5). We determine the

differential spin-injection polarization of contact 8 p8in(I) as explained in the Supplemen-

tary Note 3. A similar analysis is used to determine the DC spin-injection polarization of
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I+i
v

Id

SUPPLEMENTARY FIGURE 5. Measurement geometry for biasing the detector to mea-

sure the spin-detection polarization

contact 8 P 8
in(I) from the DC spin transport measurements where a non-local spin signal

is measured via a DC voltmeter. Supplementary Fig. 6 shows p8in(I) determined both from

the measurements and from the analytical expression Supplementary Eq. 5. The measured

and the calculated differential polarization (pin(I)) are in a good agreement, supporting the

consistency of our approach.

SUPPLEMENTARY NOTE 6: LOW INTERFACE RESISTANCE CONTACTS

As indicated in the optical microscope picture in Fig. 1b of the main text and Supplemen-

tary Fig. 1a, a part of the hBN tunnel barrier flake consists of a monolayer(1L)-hBN region.

The contacts from 2 to 5, either fully or partially deposited on top of the monolayer region

of the tunnel barrier flake, show low interface resistance of ≈ 4-5 kΩ, whose differential

interface resistance Rc (= dV/dI) is constant as a function of bias (Supplementary Fig. 2b).

Supplementary Figure 7 shows the non-local spin-signal corresponding to the spin injec-

tion through the low Rc contacts 2 and 4, as a function of the applied bias. For a comparison,

the spin signal for the high Rc contact 9, ∆R9-10
nl is also shown. For the same range of the

applied voltage bias, low Rc contacts with 1L-hBN tunnel barriers do not show significant

change in the spin signal as well as no sign reversal around zero bias. Whereas the high
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SUPPLEMENTARY FIGURE 6. Differential spin injection polarization obtained from

AC and DC spin transport measurements.Differential spin-injection polarization of contact

8 obtained from the measurements (black curve) and from the analytical expression Supplementary

Eq. 5 (red curve).

resistive contacts, for example 9, with 2L-hBN tunnel barriers, show a large modulation as

well as change in sign of the non-local spin-signal.

- 0 . 1 0 - 0 . 0 5 0 . 0 0 0 . 0 5 0 . 1 0

- 1

0

1

 ∆ R 9 - 1 0
n l ;  R 9 ( w i t h  2 L - h B N )  =  3 8 . 8  k Ω

 ∆ R 4 - 5
n l  ;  R 4 ( w i t h  1 L - h B N )  =  4 . 7 4  k Ω

 ∆ R 2 - 3
n l  ;  R 2 ( w i t h  1 L - h B N )  =  4 . 8 2  k Ω

∆R
nl (Ω

)

B i a s  v o l t a g e  ( V )

SUPPLEMENTARY FIGURE 7. Non-local spin signal with mono and bi-layer of hBN

barrier.Comparison of spin signals from low and high resistive contacts with 1L-hBN and 2L-hBN

barriers.

For the used contactsRc/Rλ > 5 (see Supplementary Table 1) and L/λ ≈ 1, the maximum
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reduction in τs due to the contact induced spin relaxation is within 10%1. Here, Rλ=Rsqλs/W

with square resistance Rsq ∼ 400 Ω, width W = 3 µm of graphene, and spin-relaxation length

λs = 5.8 µm.

SUPPLEMENTARY NOTE 7: SPIN-INJECTION DUE TO HEATING

We use a large value of DC current up to ±20 µA, in order to modulate the spin-

injection and -detection polarizations of contacts, which might raise the electron temperature

underneath significantly and could inject spins into graphene via a spin-dependent Seebeck

effect2. We can roughly estimate the electron temperature in graphene due to Joule heating

(V I ∼ 10 µW) at the interface, provided the hBN-SiO2 thermal resistance (Rth) is known.

Since the thermal conductivity of hBN (κ ∼ 380 Wm−1K) is 200 times higher than

SiO2 (κ ∼ 1.2 Wm−1K), the heat flow will be limited by the SiO2 thermal conductivity.

The effective contact area is about 1 µm2 and in this area, the heat will flow and spread

approximately 1 µm in the SiO2/Si reservoir. The effective thermal resistance Rth of the

reservoir will be approximately 3 ×105 KW−1. An increase in the temperature 4T due to

heating can be related as:

4T = QRth (20)

where Q is the heat transport rate i.e., heating at the interface. We obtain 4T ∼ 3 K on

SiO2/Si substrate.

The high value of the DC current will heat up the tunnel junction and could mimic a

spin accumulation due to temperature gradient and the spin dependent Seebeck coefficient

of the interface2. In our experiments, however, we also demonstrate the modification of

the spin-detection polarization along with the spin-injection polarization, which cannot be

explained via these effects. Therefore, the effect of heating on the spin transport can be

disregarded in our case.

SUPPLEMENTARY NOTE 8: CARRIER DENSITY ESTIMATION UNDER-

NEATH THE CONTACT

In graphene, the carrier density can be estimated from the Einstein relation:
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σ =
1

Rsq

= e2Dcν(EF) (21)

where Dc is the charge diffusion coefficient, ν(EF) is the density of states at the Fermi energy

EF, which given by the following equation:

ν(E) =
gsgv2π|E|
h2v2F

(22)

where gs = 2 and gv=2, are the spin degeneracy and the valley degeneracy of the electron,

respectively, and vF = 106 m/s, is the Fermi velocity of the electron. The density of the

carriers n can be estimated by integrating Supplementary Eq. 22 from zero to EF:

n =
gsgvπE

2
F

h2v2F
(23)

Using Supplementary equations 22, 23, and 21, n can be obtained from3:

n =

(
hvF

Rsq2e2
√
gsgv
√
πDc

)2

(24)

For our device, we measure Rsq ∼ 400 Ω. In the absence of the magnetic moments,

the charge (Dc) and the spin spin diffusion coefficient (Ds) will be equal4. From the spin

transport measurements, we extract Ds = 0.04 m2/s and use this value to estimate n in the

graphene flake from Supplementary Eq. 24 ∼ 5*1012 cm−2. Using the relation σ = neµ, we

estimate the carrier mobility µ ∼ 3000 cm2V−1s−1.

When a bias is applied across a cobalt/2L-hBN tunnel barrier, it modifies the carrier

density underneath the contact5. In order to estimate this, we assume that initially, the

graphene is undoped (EF = 0) underneath the contact. However, the actual doping is

unknown. On applying the bias V , the Fermi level is changed by 4EF:

4n =
gsgvπ4E2

F

h2v2F
(25)

which can be related with the external bias V with the following relation:

4n = Co(V −
4EF

e
) =

ε0εr
d

(V − 4EF

e
) (26)

Here, Co is the geometrical capacitance of the 2L-hBN tunnel barrier, ε0 is the dielectric

permittivity (= 8.85 × 10−12 F/m), εr is the relative dielectric permittivity of the hBN (∼

14



4), e is the electronic charge, and d is the thickness of the tunnel barrier (= 7 �A). Now, we

can obtain 4EF by combining Supplementary Eq. 25 and 26:

4EF =
±
√

1 + 4ceV − 1

2c
(27)

where c = (4πde2)/(h2v2Fε0εr)

We obtain 4EF and 4n from the equations 27 and 25. For the applied bias V ∼ ± 0.6

V across the tunnel barrier, n can be modified up to ± 8*1012 cm−2, implying that it is

possible to tune the carrier density underneath the contact from p- to n-type or vice versa

around the charge neutrality point.

SUPPLEMENTARY NOTE 9: DRIFT EFFECTS ON SPIN INJECTION/DETECTION

POLARIZATION AND SPIN TRANSPORT

Jozsa et al.6 reported an enhanced differential spin-injection polarization using the pinhole

Al2O3 barriers from 18% at zero DC current bias upto 31% at +5 µA bias, while it approaches

zero at reverse bias due to a strong local carrier drift near the low resistive regions beneath

the contact. On the contrary, we observe an increase in the magnitude of the differential

polarization and a change in the sign on reversing the bias. This indicates that the observed

behaviour in our device is not due to the carrier drift.

The presence of a non-zero electric-field in the graphene spin transport channel could also

modify λs. The spin relaxation length due to the positive drift field (upstream of spins)λ+,

and due to the negative drift field (downstream of spins) λ− can be calculated from7

1

λ±
= ± vd

2Ds

+

√(
1√
τsDs

)2

+

(
vd

2Ds

)2

(28)

Here vd = µE is the drift velocity of the electron(or hole) in an electric-field E = IRsq/L,

µ is the field-effect carrier mobility, and L is length of the spin-transport channel. For an

applied bias of 20 µA and channel length of 1 µm with a carrier mobility ∼ 3000 cm2V−1s−1,

the calculations lead to λ+ = 4.9 µm and λ− = 6.7 µm, whereas the spin relaxation length

obtained from the Hanle fitting, under zero bias, is 5.8 µm which is nearly equal to the

average of λ+ and λ−. The polarization values, obtained using λ+ or λ−, differ by 10%,

compared to that extracted using λs in the absence of the drift field. This implies that the

injector and detector polarizations also have a similar uncertainty.
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SUPPLEMENTARY NOTE 10: BIAS DEPENDENCE FOR CO/TIO2/GRAPHENE

TUNNELING CONTACTS

We also perform the same experiment on a reference sample with TiO2 tunnel barriers.

The contact resistance for FM electrodes with the TiO2 was around 40 kΩ which is compa-

rable to the interface resistance of the contacts with a 2L-hBN tunnel barrier. However, we

do not see any sign reversal of the non-local spin-signal (4Rnl) within the range of applied

bias I on injector contact. Also, the magnitude of 4Rnl is hardly modified (Supplementary

Fig. 8).

SUPPLEMENTARY NOTE 11: ADDITIONAL TWO-TERMINAL SPIN VALVES

Here, we show additional results of two-terminal differential spin valve signals for contact

configurations with a contact separation of 1.5 m and 2.5 m. The two-terminal spin valve

measurement configuration is depicted in the inset of Fig. 5 of the main text.
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SUPPLEMENTARY FIGURE 8. (Bias dependent spin signal with oxide tunnel barrier.

(a) DC contact resistance Rc(= V/I) of a Co/TiO2/graphene tunnel barrier shows a non-linear

behaviour as a function of DC current bias I, implying a tunneling behaviour of contacts. (b)

A spin-valve measurement for graphene with TiO2 tunnel barriers. An offset at zero field is

subtracted from the non-local resistance. (c) Non-local spin signal 4Rnl for the spin injection

through an injector electrode with TiO2 tunnel barrier a function of DC current bias. Arrows

indicate the direction of the bias sweep. In contrast to the contacts with 2L-hBN tunnel barriers

(Supplementary Fig. 7), the contacts with TiO2 barriers show no change in the magnitude and the

sign of the injection polarization as a function of I.
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SUPPLEMENTARY FIGURE 9. Additional two-terminal spin valve signals. Two-terminal

differential spin-valve signal R2t as a function of By at DC current bias of +20 µA for three different

pairs of contacts. An offset resistance at zero magnetic field is subtracted from each spin valve

data for a clear data representation. The legend indicates the pairs of contacts involved and the

contact separations.
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