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SUMMARY

Many decisions arise through an accumulation of ev-
idence to a terminating threshold. The process,
termed bounded evidence accumulation (or drift
diffusion), provides a unified account of decision
speed and accuracy, and it is supported by neuro-
physiology in human and animal models. In many sit-
uations, a decision maker may not communicate a
decision immediately and yet feel that at some point
she had made up her mind. We hypothesized that
this occurs when an accumulation of evidence rea-
ches a termination threshold, registered, subjec-
tively, as an ‘‘aha’’ moment. We asked human partic-
ipants to make perceptual decisions about the net
direction of dynamic random dot motion. The diffi-
culty and viewing duration were controlled by the
experimenter. After indicating their choice, partici-
pants adjusted the setting of a clock to the moment
they felt they had reached a decision. The subjective
decision times (tSDs) were faster on trials with stron-
ger (easier) motion, and they were well fit by a
bounded drift-diffusion model. The fits to the tSDs
alone furnished parameters that fully predicted the
choices (accuracy) of four of the five participants.
The quality of the prediction provides compelling ev-
idence that these subjective reports correspond to
the terminating process of a decision rather than a
post hoc inference or arbitrary report. Thus,
conscious awareness of having reached a decision
appears to arise when the brain’s representation of
accumulated evidence reaches a threshold or
bound. We propose that such a mechanism might
play a more widespread role in the ‘‘piercing of con-
sciousness’’ by non-conscious thought processes.

INTRODUCTION

We are not consciously aware of all of the information delivered

from the senses to the brain, nor are we aware of the operations
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that underlie the thoughts that do pierce consciousness. Indeed,

the transition from non-conscious processing to conscious

awareness is one of the great mysteries of psychology and

neuroscience. In a series of classic studies, Libet and colleagues

used ‘‘mental chronometry’’ to identify the time that human

volunteers felt they made a conscious decision to initiate a

movement [1–3]. Libet suggested that this was the moment

that subjects ‘‘willed’’ their movement. He and others to follow

were fascinated by the observation that neural events related

to the movement could be detected hundreds of milliseconds

before the subjects were aware [4], leading to philosophical

speculation about volition and free will. However, it is unsurpris-

ing that neural events would precede conscious awareness.

Indeed, it has been suggested that the moment of awareness

might reflect the completion of a decision process [5, 6]—in

this case, a commitment to a proposition to move.

Studies of decision making in animals and humans indicate

that many decisions arise from an accumulation of evidence to

a criterion. The process, termed bounded evidence accumula-

tion or bounded drift diffusion, explains the speed and accuracy

of many types of decisions, including recognition memory, food

preference, and perceptual category [7–9]. The mechanism is

especially well suited to explain perceptual decisions that are

informed by a sequence of independent, noisy samples of evi-

dence. For example, when humans and monkeys are asked to

decide the net direction of motion (e.g., left versus right) of a dy-

namic random dot display, their choices and reaction times (RTs)

are explained by a model in which evidence is accumulated until

it reaches one of two bounds, thereby determining which deci-

sion is made and marking the end of deliberation. The mecha-

nism is supported by neural recordings in human, nonhuman

primates, and rodents, which demonstrate neural correlates of

evidence accumulation and termination thresholds [8, 10–15].

Termination thresholds might also apply to decisions that are

not communicated immediately, as they are in reaction time

studies, but instead occur without any overt sign of completion.

Even without time pressure, a decision maker might terminate a

decision covertly before all of the evidence has been received

and thus ignore potentially useful information. Without an

accompanying behavior, such termination has been deduced

indirectly by analyzing decisions and showing that they are not

affected by the late arrival of evidence [16]. However, this

conclusion is not widely accepted [17]. We hypothesized that a
gust 7, 2017 ª 2017 The Authors. Published by Elsevier Ltd. 2285
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Subjective Report of Decision

Termination in a Perceptual Task

(A) Controlled-duration task. On each trial, par-

ticipants fixated a central fixation point (FP).

A random dot motion stimulus then appeared at

the same time as a central clock started rotating.

Participants were asked to judge the direction of

motion (left versus right) and also the position of

the clock hand at the time they made their deci-

sion. After a computer-controlled time (0.2–0.8 s),

the motion stimulus was extinguished, and after a

delay (0.2–0.8 s), a tone sounded and participants

indicated the perceived motion direction by mov-

ing the cursor to one of two choice targets. They

then reported their subjective decision time by

moving a stylus to position the clock hand at the

remembered clock location at the time of their

decision about the motion direction (see STAR

Methods, Methods S1 and S2, and Figure S1).

(B) Information flow diagram showing visual

stimulus and hypothesized events leading to a

decision. The visual stimulus gives rise to a deci-

sion variable (black trace) that is the accumulation

of noisy evidence. The decision is complete when

a ‘‘right’’ or ‘‘left’’ bound is crossed (that is,

when ±B of evidence has accumulated). The

example illustrates a trial that gives rise to a

rightward choice with decision time around

500 ms, although the stimulus lasts 800 ms. Data

from neural recordings [16, 19] suggest that the

delay from motion onset to the beginning of the accumulation (ts) is around 200 ms. In general, the reported subjective decision time (tSD) might differ from the

actual moment of decision termination by additional delays attributed to perceptual and cognitive operations associated with storage and recall of the clock

position.
putative termination threshold might be registered, subjectively,

as an ‘‘aha’’ moment, similar to the moment that Libet’s partici-

pants reported about their will to move. We therefore set out to

test whether mental chronometry marks decision termination.

Up to now, it has been thought that objective validation of a sub-

jective decision time is a logical impossibility, given the absence

of an objective manifestation with which to compare it [18]. How-

ever, bounded evidence accumulation models furnish a test of a

stringent prediction: if subjective times correspond to decision

termination, then they ought to predict decision accuracy.

Here, we test this prediction and show that they do.

RESULTS

Experiment 1: Controlled Viewing Duration with
Subjective Decision Times
Five participants performed a direction discrimination task in

which they were asked to decide the net direction of dynamic

random dots, viewed on a computer display (Figure 1A). The dif-

ficulty of the decision was controlled by the probability, C, that

each dot will reappear Dt later, either at displacement, Dx, along

an axis of motion, or randomly replaced by a new dot (see STAR

Methods). We refer to C as the motion coherence (or motion

strength) and use its sign to indicate a direction. Both the direc-

tion and strength of motion were randomized from trial to trial,

and viewing duration was controlled by the experimenter. Be-

sides the random dot motion, the display consisted of a central

fixation point, two ‘‘choice targets,’’ and a ‘‘clock’’. After the mo-

tion display ended and an additional delay period, participants
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indicated their decision about the direction of motion by using

a hand-held stylus to move a cursor to the left or right choice

target. They were then asked to restore the clock ‘‘handle’’ to

the position it had attained at the moment they felt they had

decided the direction, what we term ‘‘subjective decision

time’’. The participants received extensive training on the use

of the clock (see STAR Methods and Methods S1 and S2), and

we ensured that they could use the clock accurately to report

the time of an auditory cue presented at a random time during

motion viewing (Figure S1).

Subjective decision times (tSDs) varied as a function of motion

strength. The data in the top row of Figure 2 were obtained using

a motion stimulus duration of 800 ms. The tSDs were shortest

when the motion was strong and longest when the motion was

weak. This pattern was statistically reliable for four of five sub-

jects as well as at a group level (p < 10�6; GLM; see STAR

Methods). The pattern is qualitatively similar to mean response

times observed in free-response paradigms, in which viewers

are allowed to indicate their decision with an action whenever

ready (e.g., [20]). The solid blue curves in these panels are fits

of a parsimonious drift-diffusionmodel to themean tSDs (see Fig-

ure 1B and STAR Methods), treating them as if they are reaction

times. The idea is that a decision completes when the accumu-

lation of noisy samples of evidence reaches an upper or lower

bound. The shape of the curve is determined by two parameters:

(1) a term, k, that determines the evidence drawn at each time

step, dt, from a Gaussian distribution with mean kCdt and vari-

ance dt and (2) the bound height, ±B. Translations along the ab-

scissa and ordinate are captured by a coherence bias term (C0)



Figure 2. Subjective Decision Times Reflect Termination of a Decision Process

Data are from five participants tested on a controlled-duration task for the trials in which the motion display lasted 800 ms. Subjective decision times (top) and

proportion of rightward choices (bottom) are plotted as a function of motion strength (negative and positive values indicate leftward and rightward direction,

respectively). Blue solid lines are drift-diffusion fits to the tSD data, and blue dashed lines are predictions using the parameters of the tSD fits (parameters in

Table 1). For subject 5, the gray lines are the joint fits to the tSD and choice. Points are means ± SEM.
(see [21]) and a non-decision time (tND), respectively (parameters

in Table 1). Based on the tND, the actual time of decision termina-

tion occurred within the stimulus duration for subjects 1–4. By

eye, the fits capture the data reasonably well for all subjects

except subject 5. Thus, for four of the subjects, tSDs appear to

conform to the same regularities as explicit reaction times. To

evaluate this assertion, the same diffusionmodel should account

for the choices the subjects made about direction.

The graphs in the lower row of Figure 2 show the influence of

motion strength and direction on the subjects’ choices. Deci-

sions were perfectly accurate at the strongest motion strengths

(leftmost and rightmost points) and near chance at the weakest

motion strengths (middle of the graph). Note that the dashed

curves are not fits to the data. They are predictions of the

choice proportions from the diffusion model using the parame-

ters derived from the fits to the tSDs. If the tSDs reflect the

termination of a bounded diffusion process, then the choice

proportions are a logistic function of 2Bk(C � C0), where C is

signed motion strength. These predictions are remarkably

good for subjects 1–4 (p = 0.002, 0.005, 0.045, and 0.01,

respectively; comparison with log likelihood of the observed
Table 1. Parameters of the Drift-Diffusion Model Fit to the tSD Data

B k

Subject 1 0.62 ± 0.01 40.4 ± 3.3

Subject 2 0.62 ± 0.13 5.7 ± 3.9

Subject 3 0.74 ± 0.02 19.2 ± 2.6

Subject 4 0.70 ± 0.02 24.3 ± 3.4

Subject 5 0.33 ± 0.10 24.6 ± 7.7

Parameters are shown ±SE.
choices given shuffled tSDs; see STAR Methods). For the fifth

subject, not surprisingly, we could not use tSDs to predict the

choices (p = 0.71). Instead, we show the combined fit of the

choice and tSDs from this subject’s data (gray curves). The fit

is driven primarily by the choice frequencies (lower panel).

A group level analysis using the data from subjects 1–4 reveals

that choices were significantly better described by the predic-

tions from the fit to each subject’s own tSDs than by a random

combination of the parameters from the other subjects (none of

the 531,441 combinations were better than the original; see

STAR Methods). From these fits and predictions, we conclude

that, for four of the subjects, the tSD reports correspond to the

termination of evidence accumulation and commitment to a

perceptual decision.

Our main conclusion rests on the capacity to predict the

choice functions. We wished to evaluate the assertion that the

quality of these predictions suggests that tSDs were in fact indic-

ative of actual terminations of a drift-diffusion process. Clearly,

random reports of decision time would not yield sensible predic-

tions, nor does the pattern of tSDs displayed by subject 5. How-

ever, one might reasonably ask whether any systematic use of
in the Controlled-Duration Task

C0 tND

0.007 ± 0.004 0.131 ± 0.006

�0.053 ± 0.030 0.562 ± 0.166

�0.001 ± 0.006 0.790 ± 0.027

0.018 ± 0.007 0.227 ± 0.015

�0.050 ± 0.008 1.463 ± 0.050
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Figure 3. Many Possible Clock Reports Could Reflect Motion Strength but Would Furnish Inferior Predictions of Choice Behavior

The tSDs and choice proportions are shown by the black points in the upper two rows (same data as in Figure 2; subjects 1–4). Top row: examples of possible

functions of difficulty generated from reflected cumulative beta distributions, scaled and shifted to best fit the observed tSDs. These functions were used to

produce surrogate clock settings at the 11 values of motion strength. Middle row: examples of predicted choice functions using the surrogate clock times from

the functions in the top row (corresponding colors). The surrogate clock settings (tsurr) were fit by Equation 2 to derive parameters that specify the choice function

(Equation 1). Bottom row: comparison of the quality of the predictions from surrogate clock times to the prediction obtained from the observed tSDs. Log-

likelihood ratio of the choice predictions is shown as a function of the degree to which the surrogates approximate the real data (R2) for a range of possible

functions (black trace). The examples in the upper rows are shown by colored points. Log-likelihood ratio less than zero indicates inferior predictions from the

surrogate times compared to the observed tSDs. Only functions that do not distort the observed tSDs (R
2z1) predict the choice functions as well as the data. See

also Figure S2.
the clock would yield predictions of the choice functions like

those in Figure 2. We pursued two approaches to this challenge,

shown in Figures 3 and S2.

We considered a broad family of functions that describe an in-

crease in tSDs with difficulty. Figure 3 (top) shows representative

functions, which range from a squashed semicircle to a very

peaky spike. We used these functions to distort the observed

tSD means from subjects 1–4 and asked whether they could pro-

duce reasonable predictions of the choice functions. For each

parameterization, we scaled and shifted the function to best fit

the observed tSDs. As shown in the top row of Figure 3, some

of these functions lie close to the actual data (e.g., yellow

peaked, R2 = 0.88; averaged across subjects 1–4), whereas

others do not (e.g., blue semicircle, R2 = 0.53). We then sampled

these curves at the 11 motion strengths to obtain surrogate tSDs

and applied the same procedure used on the actual tSD to predict

the choices (Figure 3, middle row). That is, we fit the surrogate

tSDs with the parsimonious bounded drift-diffusion model, ex-

tracted the three parameters (B, k, and C0), and generated the

logistic choice predictions. The quality of the prediction is

captured by the log likelihood of the 11 observations given the

prediction from the surrogate tSDs, which we compare to the
2288 Current Biology 27, 2285–2295, August 7, 2017
log likelihood given the predictions based on the real tSDs

(log likelihood ratio; logLR). As shown in the bottom row, the pre-

dictions from surrogate tSDs are generally extremely poor (logLR

<< 0). They only rival the predictions from the actual data when

the function approximates the real data (e.g., R2z1). The exer-

cise reveals that even modest distortions of the data (i.e.,

reduced R2) produce markedly inferior predictions of the choice

functions (Figure 3, bottom row). We reached the same conclu-

sion using a second strategy to produce surrogate tSDs, in which

we permuted the intervals between the original tSDs, preserving

their rank order (Figure S2).

These analyses highlight the precision in our capacity to pre-

dict the choice functions in Figure 2 based solely on the clock

settings (mean tSDs). Many systematic uses of the clock that

might have been used to communicate difficulty would not pre-

dict the choices as well as those established by our hypothesis—

the clock timesmark the termination of decisions arising from the

accumulation of noisy evidence until it reaches a left or right ter-

minating bound. Clearly, it is not the case that we could have pre-

dicted the subjects’ choices as well as we did using any arbitrary

but systematic clock settings. Put another way, had the clock

settings represented some post hoc assessment of difficulty,



they would have had to conform coincidentally to the functional

form of decision terminations that just so happened to predict

the choice proportions. These considerations bear on the main

alternatives to our hypothesis, considered below.

Another feature of the data supports the interpretation that the

tSDs mark the termination of a decision process. In actual reac-

tion time studies, in which subjects respond as soon as ready

with an answer (unlike our experiment 1), it has been shown

that the full distribution of response latencies across trials is ex-

plained by a more elaborate model of bounded evidence accu-

mulation—in particular, one in which the flat bounds are replaced

by time-dependent, collapsing bounds [22, 23]. We used such a

model to fit the tSD reports from the controlled-duration task (Fig-

ure S3). As shown in Figure 4, the conformance to data is impres-

sive for subjects 1–4 but less so for subject 5. To quantify the

goodness of fit, we calculated the Jensen-Shannon divergence

(JSD) between the fitted and observed distributions for each of

the five subjects (Figure S4). Random shuffling of the fitted and

observed distributions across motion strengths supports rejec-

tion of the null hypothesis that the quality of the fit would arise

by chance, knowing only choice proportions and the mean tSD
values (p < 0.02, subjects 1–4; p > 0.9, subject 5). We used a

bootstrap procedure to obtain confidence intervals on the JSD

(error bars; Figure S4), which, not surprisingly, identifies subject 5

as an outlier. The ability to explain the distribution of tSDs makes

it all the more unlikely that the clock settings from subjects 1–4

represent anything other than termination of an accumulation

of noisy evidence.

Finally, we analyzed themotion information in the RDM itself to

test whether the subjective decision times demarcate comple-

tion of the decisions. According to our hypothesis, motion infor-

mation in the display should support the choice only up to the

time that the accumulated noisy evidence reaches a bound.

On each trial, we estimated this time (tq) from the clock report

minus the non-decision time obtained from the fits in Figure 2

using the three weakest motion strengths and asked whether

the information before or after tq was the more informative about

the subsequent choice. To place these motion energy compari-

sons on equal footing, we always used the first and last half

(400 ms each) of the display (Figure 5A, inset). Importantly, we

restricted the analysis to trials in which tq was close to this

midpoint. To increase the power of the analysis, we examined

a range of tolerances on tq by requiring it to be within ±D ms of

the midpoint, thereby varying the number of trials that met the

criterion. Figure 5A compares the leverage of the integrated mo-

tion energy before and after the midpoint on choice, controlling

for motion strength (logistic regression; see STAR Methods).

The leftmost red and blue points contain data from the 82 trials

in which tq was within 400 ± 13.3 ms from motion onset (i.e.,

video frames 30 and 31). By widening the acceptance window

to 400 ± 26.6 ms (170 trials), we achieve greater power and infer

the greatest leverage of the motion information before the

midpoint. The graph shows that widening the tolerance (so that

eventually all trials are included) leads to a gradual dissipation

of the leverage of the motion energy before the midpoint and

an increase in the leverage of information after 400 ms. At larger

tolerance, the before/after designation no longer matters.

Because we always used the first and second halves of the

display to perform these calculations, a possible concern is
that the division at 400 ms merely reflects the fact that early

stimulus information is more influential than late and says little

about whether the tq are informative. To evaluate this, we per-

formed a bootstrap analysis (n = 5,000), in which we compared

the leverage of the pre- and post-400-ms motion energy on tri-

als with a tq within ±133 ms window of the midpoint with those

with tq outside this window (Figure 5B). We chose this window

to balance power against dissipation of the effect (see STAR

Methods). We evaluated the null hypothesis that the difference

in leverage for the pre- and post-400-ms motion energy was

the same for these two sets of trials. This showed that the

pre-400-ms motion energy had significantly more leverage

than the post-400-ms motion energy on choice only when tq
was within the ±133 ms window (p < 0.007; one-tailed). This

held for many windows from 26 to 160 ms (six p < 0.05 and

five p < 0.1).

Experiment 2: Free Response with Subjective Decision
Times
According to our hypothesis, tSDs mark the termination of the

same type of process that gives rise to reaction times, when sub-

jects control their viewing time. We therefore collected data on a

free-response version of the task from the same subjects after

they completed the first experiment. All aspects of the task,

including the clock, were the same as the version above, except

that, instead of waiting for the random dots to disappear after a

preset duration, the participant reported each decision as soon

as she was ready by moving the stylus to one of the choice

targets and subsequently set the clock to report a subjective

decision time. The tSDs in this experiment are not particularly illu-

minating, because they might be coupled to reaction times even

if they did not indicate decision termination. However, they do

serve as a sanity check, and in this regard, it is reassuring that

the tSDs were indeed correlated with RTs (Pearson’s r = 0.80–

0.96; p < 10�10), consistent with previous studies [24–26]. For

subjects 1–4, most tSDs preceded the RTs (range 52%–98%).

For subject 5, only 15% of the tSDs preceded the RTs, consis-

tent with the observation that this participant deployed the clock

settings differently than the others. Presumably, the decision to

report and the decision to move are not the same process, just

as the decision to report with a saccade or a reach movement

is subserved by different circuits [27, 28]. Therefore, in principle,

the decision to report could occur after the decision to move the

stylus, using information from the randomdot display that did not

arrive in time to affect the hand movement [29–31]. Indeed, in

almost all of the trials in which the RT preceded tSDs, the differ-

ence was less than 400ms (99.5% of all trials and 97%of trials in

which the RT preceded tSDs, across subjects 1–4).

The choice and reaction time data from all five subjects were

well described by bounded drift diffusion (Figure 6). The black

curves are fits of the parsimonious model, used above, to the

choice-reaction time data from the free-response task. They

are joint fits to both sets of observations—choice and RT—rather

than predictions (parameters in Table S1). The fitted bound

height was higher in the free-response task, but this is not sur-

prising because subjects could avail themselves of up to 2.7 s

of evidence in this task, compared to a maximum of 800 ms in

the controlled-duration task. In contrast, we reasoned that the

parameter, k, should be similar in the two experiments, because
Current Biology 27, 2285–2295, August 7, 2017 2289



Figure 4. Distribution of tSDs

Each row represents a coherence level, each column a subject. Ordinate is proportion of responses with the tSDs from the controlled-duration experiment, signed

by the direction of response (positive, right; negative, left). The scale of each row is normalized to fit the row’s height for visualization. Black lines are the data, and

blue lines are the drift diffusion fit with collapsing bounds (parameters in Table S3). The data are smoothed in time with a Gaussian kernel (s = 0.05 s) for

visualization. Goodness of fit, quantified by the Jensen-Shannon divergence, is displayed in Figure S4. The more elaborate model also accounts for the reaction

time distributions (and slow errors) in the free-response task (data not shown). See also Figure S3.
it represents the conversion of motion strength to the signal-to-

noise ratio of momentary evidence, which tends to be stable

when humans and monkeys alter their speed-accuracy tradeoff

or their bias [10, 21]. As shown in Figure S5, the scaling param-

eters, k, estimated from the two tasks were similar for the sub-

jects (Pearson’s r = 0.97, p = 0.007 for subjects 1–5; r = 0.97,
2290 Current Biology 27, 2285–2295, August 7, 2017
p = 0.032 with subject 5 removed). Indeed, the red curves in Fig-

ure 6 for subjects 1–4 are fits that constrain k to the value derived

from the tSDs in the controlled-duration task (Table S2; for

subject 5, we used k from the joint fit to choice-tSD data). The

similarity to the black curves implies that deducing the signal-

to-noise parameter solely from subjective reports of the time of



A B Figure 5. Effect of Trial-to-Trial Variation in

the Noisy Motion Information on Choice

The analysis compares the leverage of information

before and after a putative threshold crossing that

terminates integration. Leverage is based on

logistic regression of motion energy (right minus

left; see STAR Methods), controlling for motion

strength.

(A) Leverage of early- and late-motion energy (blue

and red, respectively). The estimates are shown as

a function of the inclusion window. Pairs of points

include only trials with estimated termination times

(tq) near 400 ms. (Inset shows how the putative

termination time tq is acquired on each trial. It is the

tSD from the clock setting minus the non-decision

time estimated from the fits in Figure 2, top

row). Filled symbols designate non-zero leverage

(p < 0.05). Larger tolerances permit inclusion of more trials but blur the distinction between pre- and post-tq. Error bars indicate SE.

(B) Difference in the leverage of motion energy before and after 400 ms requires tq to be near 400 ms. The bars on the right side show the leverage values using

tolerance of ±133 ms (same value and SE as the points in A marked by arrows). Bars on the left show the average leverages obtained by sampling the com-

plementary trials with tq outside this tolerancewindow (5,000 bootstraps of sets of 873 trials; error bars are average of the SE from the bootstraps). The distribution

of differences (b1–b2) rarely exceeds the observed difference (p < 0.007). Combined data from subjects 1–4 using motions strengths 0%, ±3.2%, and ±6.4%

coherence.
decision completion in the controlled-duration task predicted a

key parameter of the mechanism that would give rise to deci-

sions in a later experiment.

These observations (Figures 6 and S5) lend further support to

our hypothesis that a common mechanism supports decision

times reported explicitly or via mental chronometry. They also

underscore the counterexample of subject 5, because the con-

sistency of k demonstrates that he used a similar mechanism

of evidence accumulation to make decisions on the controlled-

duration and free-response tasks, yet the tSDs obtained in the

controlled-duration task were uninformative.

Alternative Hypotheses
We considered several alternative explanations of the subjective

reports, which would imply that they are not signatures of deci-

sion termination. One possibility is that the tSDs do not represent

a termination at all because the subjects used all of the informa-

tion in the motion display to form their decisions. This alternative

cannot explain the capacity to use the tSDs to predict the choice

frequencies (Figure 2), and it is directly refuted by the analyses of

motion energy in Figure 5, which shows that subjects ignore late-

arriving information when the inferred termination times are near

the midpoint of the trial.

Another class of alternatives would allow for early termination

of evidence accumulation but posit that such events are not re-

flected in the tSDs. For example, the reports might be assigned,

inferentially or postdictively, to a moment between the start and

end of the dot motion [32–34]. The subject could believe in the

experience of completing the decision, but it would have no cor-

respondence to the actual time of commitment [35]. This is an

intriguing idea, but it fails to account for the dependency of

tSDs on motion strength. Any reasonable alternative must ac-

count for this regularity. For example, the subjects might have

used the clock as a rating scale for difficulty, setting the clock

nearer the starting position when the stimulus appeared more

coherent (or felt easier). There are three reasons to reject this

alternative: (1) monotonic transformations of difficulty are gener-

ally incapable of achieving choice predictions unless they
happen to be nearly identical to tSDs (Figures 3 and S2); (2) the

idea provides no explanation for the distribution of tSDs across

trials (Figure 4), and (3) it fails to explain the difference in leverage

of the early and late motion information on choice—specifically,

the sensitivity of this analysis to the use of the corresponding tri-

al’s tSD (Figure 5). These considerations rule out most ‘‘clock as

rating scale’’ alternatives, but there is one that remains.

It has been shown that elapsed decision time bears on confi-

dence that a decision is correct [36], and for some observers,

elapsed time is more important than motion strength. It might

therefore be argued that, despite the instruction to indicate the

time of a decision, subjects used the clock as a rating scale,

placing the hand closer to its initial position if they were more

confident. However, this possibility is incompatible with obser-

vations on the subset of trials in which motion was displayed

for only 200 ms. Not surprisingly, subjects were less sensitive

to the motion on these trials compared to trials with motion dis-

played for 800ms (p < 0.002 for all except subject 2, whose trend

was of the same sign: p = 0.32; see Figure S6), yet the tSDs were

shorter (Dduration range: �401 ms to �64 ms; p < 10�6). If the

clock settings were a report of confidence, they should have

exhibited the opposite trend. We conclude that four of the five

subjects reported tSDs that were linked to the time of decision

termination, as they were instructed.

DISCUSSION

Our findings exploit a well-studied task that has been used to

expose the neural mechanisms of a perceptual decision.

Although the decision is about a perceptual quality or category,

the task is less a model of perception, which is typically fast

[37, 38], and more like the kind of deliberative decisions we

make over more prolonged intervals based on a sequence of

samples of evidence [39, 40]. Its main advantages are the quan-

titative agreement with the mathematical depiction of bounded

evidence accumulation and the correspondence with neural re-

cordings, mainly from rhesus monkeys (e.g., [8, 41]). Thus, it fur-

nishes an empirical test of the hypothesis that the feeling of
Current Biology 27, 2285–2295, August 7, 2017 2291



Figure 6. Reaction Times and Choices in the Free-Response Task

Reaction times (top) and proportion of rightward choices (bottom) are plotted as a function of motion strength for the five subjects (mean ± SEM). Solid lines are

drift-diffusion fits to RT and choice data (black; parameters in Table S1). Red curves show fits with k fixed to the parameters from the tSD fits for each subject in the

controlled-duration task (parameters in Table S2). See also Figure S5.
‘‘having decided’’ corresponds to a threshold crossing that

marks themoment that the accumulated evidence reaches a ter-

minating bound.

In a free-response experiment, there is an overt manifestation

of decision termination, namely the reaction time, whereas, in

our controlled-duration experiment, there is only the memory

of the time of the feeling of having decided—that is, the clock

settings (tSDs). Without another indication of when the decision

terminated, it might seem impossible to associate tSDs with

termination of the decision [18]. However, we reasoned that we

could overcome this limitation by using the tSDs to account for

the one other experimental observation: the choices. We fit the

tSDs to a bounded evidence accumulation model to derive three

parameters (k, B, and C0) that would fully specify the choice fre-

quencies as a function of motion strength. The success of these

predictions was remarkable in four of the five subjects. Thus, we

conclude that the time that these subjects reported that they had

decided does indeed mark the time of decision termination. It is

not the actual time but offset by a constant, analogous to the

motor preparatory component of the reaction times in a free-

response experiment (see below).

Had the subjects indicated their choices at the time they made

them, we would suspect that their clock settings merely indi-

cated the time of the action—that is, a post hoc report of another

process, such as movement of the stylus. In that case, we could

not argue that they mark a subjective awareness of decision

termination. This is a reasonable interpretation of the tSDs in

the free-response task, but not in the controlled-duration task,

in which subjects only indicated their response after a variable

delay period. There was no event in the experiment or the sub-

ject’s behavior that could be assigned a time on the clock except

for the one that the subjects were asked to note—the feeling that

they had made up their mind.

One might argue that the subjects were performing a mock

free-response task in their mind and reporting tSDs at the time

of their planned action. This is unlikely because four of the sub-
2292 Current Biology 27, 2285–2295, August 7, 2017
jects had never experienced a reaction time experiment and we

did not introduce the free-response task until after data collection

was completed on the controlled viewing duration task. There is,

of course, a sense in which this proposal is consistent with our

interpretation. We have argued forcefully that the subjective deci-

sion timesmark a mental event that is mediated by a threshold on

the evidence accumulation—that is, the same type of process

that underlies decision termination in a free-response (reaction

time) experiment. Finally, we cannot rule out the possibility that

subjects changed their mind (e.g., see [29, 42]), but that is likely

to have involved only a small fraction of trials.

There are several important implications of our result. First, it

confirms that the brain exercises a stopping criterion on a stream

of evidence, even when the environment (or experimenter) con-

trols the duration of the stream of evidence [16, 17]. Put another

way, even when there is no overt measure of reaction time, de-

cision makers terminate their decisions in a manner similar to

the way they would if they were responding when ready. It sug-

gests that accuracy in simple two-alternative, forced-choice ex-

periments is not determined solely by considerations of signal to

noise, as commonly assumed, but the speed-accuracy policy

adopted by the subject. Without a measure of RT, the speed of

a decision is not known, but it is conceivable that variation in ac-

curacy among individuals and during learning reflects differ-

ences in the speed-accuracy trade-off, even when there is no

outward manifestation of decision time. The present study

shows that this time may be consciously registered as an

‘‘aha’’ moment, available to the decision maker if asked (or

knew she would be asked).

A second implication concerns mental chronometry itself—

that is, the validity of the clock report. It has been argued that

such reports may be too unreliable or too biased to mark actual

mental events [26, 43, 44]. Further, without an objective measure

of the mental event, it seemed impossible to validate that the

thing being timed had actually occurred at that time or at some

lawful latency. The present findings support the validity of the



clock reports. No doubt they are imprecise, but the conformance

to actual RT distributions suggests that some of the imprecision

is a reflection of the variability of mental events themselves. We

provide an example in which they are tied to a mental event that

has no external manifestation and thus seems to be untestable,

just as in the Libet experiments. However, we showed that the

event had predictive power and that it corresponds to the type

of termination events that lead to reaction times in other experi-

ments, including the free-response experiment with our sub-

jects. We cannot argue that mental chronometry is valid in other

settings, such as the Libet experiments. However, to the extent

that an urge tomove (as in Libet) is effectively a decision tomove,

we are inclined to think so.

Like actual RTs, the time of the report—be it a movement or a

mental note of the position of the clock—differs from the time of

the decision. This discrepancy, termed the non-decision time

(tND) in RT experiments, is typically 300–400 ms for motion

discrimination, depending on the response modality. Electro-

physiology in the monkey suggests that �200 ms of this tND is

in the time it takes information in the video display to impact

the representation of the accumulated evidence [19]. The rest

of the tND is accounted for by a latency between the termination

of the accumulation and initiation of the motor response. For

mental chronometry, the tND might comprise systematic biases

in the perception of the clock position or the recall of the position

or both, as argued by skeptics of Libet’s use and interpretations

(e.g., [43, 45]). This does not negate the validity of tND, however,

as it allows us to infer the decision time (tq) from the subjective

report to predict not only the choices but an approximate point

in time that divides the stimulus into information used and

ignored on the trial (Figure 5).

The intriguing insight furnished by the present study is that the

moment of subjective awareness of having decided reflects the

termination of a decision process. Here, there is substantial ev-

idence that decision termination is mediated by application of a

threshold to the neural representation of accumulating evidence

[8, 46, 47], and this also holds in experiments that do not allow

for free responses, as in our controlled-duration experiment

[13, 16, 48]. This operation may be more widespread, as

many mental processes achieve a state of completion, which

is effectively a decision point. Of course, not all involve a choice

among discrete propositions, like the motion discrimination

task; nor are all as simple as a decision to commence a move-

ment, as in Libet’s studies. Some might involve a transition or

branching from one step of reasoning to another in more com-

plex problems involving strategy (e.g., foraging and medical

diagnosis). The common feature is a satisfaction of some termi-

nation criterion before proceeding. Such termination events do

not result invariably in conscious awareness, but the subjective

decision times assessed here (and by Libet) do necessitate

conscious awareness, by definition. Indeed, the main distinction

between non-conscious and conscious decisions might be

simply the possibility of reporting in some way, even if only pro-

visionally [5]. Thus, we suggest that the neurophysiological pro-

cess responsible for completing the decision to report is also

responsible for piercing conscious awareness. This assertion

may not satisfy philosophers who postulate a distinction be-

tween what is reportable and what is in conscious awareness

(e.g., access and phenomenal consciousness [49]). These phi-
losophers might think it is possible for consciousness aware-

ness to lag behind the decision to report. There may be some

room in the non-decision time to countenance this argument,

but it is narrow.

The capacity to report is the criterion we use informally to

query whether an agent is consciously aware of something,

but it has a deeper significance. We speculate that the decision

to report—even if only provisionally—is the common element

connecting those mental processes that pierce conscious

awareness. Consider that non-conscious knowledge of objects

(e.g., position, shape, and desirability) corresponds to affordan-

ces [50], a term that refers to ways of interacting with the object

(e.g., position for looking, shape for grasping, and desirability for

eating, mating, or fleeing). These provisional affordances confer

properties that are as much about our possible actions as they

are about the object. The possibility of reporting a feature of an

object to another agent—or to oneself in the future (e.g., using

episodicmemory)—changes the balance away frommy possible

actions and toward the object, which inhabits not just the per-

sonal space of my own actions but also the mental space of

another’s mind [51]. For example, the location of the object tran-

scends my personal frame of reference, and the object itself

seems to possess qualities that are independent of my ac-

tions—an essence, as it were [52]. These philosophical specula-

tions concern the content of conscious experience (e.g., what it

is that we might report), whereas the tSDs in our experiment

merely mark the time that the subject decided to possibly render

it. Of course, many decisions arise without triggering a decision

to report, and these remain unconscious to us.

Importantly, we do not claim that our subjects were not

conscious of the deliberation process itself. They might have

been consciously aware of some or all of the random dot mo-

tion leading to the decision. There are two ways to account

for this within our framework. First, the visual system might

analyze other features of the random dot display and reach pro-

visional decisions to report (e.g., a cluster of dots resembling a

geometric shape). Second, during deliberation, one might reach

a decision by applying a lower threshold but then change one’s

mind [29, 30] or reaffirm by applying a more conservative

threshold. Each of these mini-decisions might pierce con-

sciousness. Second, when a process pierces consciousness,

it carries with it content and associations that are there to be re-

ported as well. Some of this content could be in visual working

memory (e.g., appearance of some pattern in the dots) or work-

ing memory of the experience of deliberating [53], what is

sometimes referred to as metacognition [54]. These explana-

tions are not mutually exclusive. In the first, there are many

piercings. In the second, there could be only one, with content

from the past. Our experimental findings do not address the

second idea, as we only asked participants to report left and

right and the moment that they ‘‘felt they had decided in their

mind’’ (see STAR Methods). Rather, they suggest that the

piercing of conscious awareness might be mediated by a pro-

cess resembling the termination of simpler decisions with overt

manifestations of completion (e.g., reaction time). This raises

the intriguing possibility that consciousness itself may be closer

to a neuroscientific explanation than is commonly thought, as

knowledge of the neurobiology of decision making is rapidly

advancing.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Michael Shadlen

(shadlen@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Five human participants (3 male and 2 female aged 25–38) provided written informed consent and took part in the study. All partic-

ipants were naive about the hypotheses of the experiment. No gender specific analyses were performed, owing to sample size. All

participants had normal or corrected-to-normal vision. The study was approved by the local ethics committee (Institutional Review

Board of Columbia University Medical Center).

METHOD DETAILS

Apparatus
Participants sat in a semi-dark booth in front of amonitor (VisionMaster 1451; 14003 1050 resolution, 75 Hz refresh rate). A headrest

and chinrest ensured a viewing distance of 55 cm. Hand movements were recorded using a hand-held stylus on a tablet surface

(Wacom Intuos4 XL, Kazo, Japan; 200 Hz, resolution 0.005 mm). The position of the stylus was mapped onto the stimulus screen

and indicated by a small green cursor.

Tasks
Participants discriminated the net direction (left or right) of stochastic random dot motion [11, 55]. The dots were displayed for one

frame (13.3 ms), and four frames later a subset of these dots were displaced in the direction of motion while the rest of the dots were

displaced randomly. Thus dots in frame fivemight contain displaced dots from frame 1; same for frames 6 and 2, and so forth. The dot

density was 16.7 dots deg-2 s-1 and displacements were consistent with a motion speed of 1.25� s-1 (2.64 pixels per 53.3 ms). The

difficulty of the task was manipulated through the coherence of the stimulus, defined as the probability that each dot would be dis-

placed as opposed to randomly replaced (onlineMATLAB code for themotion stimulus [56]:). Motion direction to the left or right (indi-

cated by the sign ofC) occurred with equal probability. Themotion strengths (jCj) were sampled uniformly from 6 different coherence

levels (0, 3.2, 6.4, 12.8, 25.6, and 51.2%). On the 0% coherence trials, the direction deemed correct was assigned randomly.

The dots were restricted to an annulus defined by invisible concentric circles with diameters 1� and 5� at the center of the screen.

A timing device, termed a clock (1� diameter), after Libet [1–3], was centered at the fixation point and surrounded by the random dots.

Based on extensive piloting, we settled on this geometry because it facilitated simultaneous processing of the random dot motion

while tracking the clock (i.e., minimized interference). The clock had a hand and a small tick mark that indicated the position of

the clock hand at the time of the motion onset. The initial position of the clock hand was random (uniform distribution on circle).

The clock hand period was 2.7 s (2.3 rad/s), which is 1.7 times the longest motion stimulus plus longest delay.

Participants initiated a trial by moving the stylus on the tablet to place the cursor at the ‘home’ position, indicated by a gray circle

(0.3� diameter) at the bottom of the screen, and by fixating a central red circle (0.1� diameter). Two choice targets (4� diameter circles)

then appeared 5� to the left and right of the fixation point (Figure 1 and Methods S1 and S2) followed by a short delay (0.5 s). The

motion stimulus and the clock then appeared simultaneously. In the controlled-duration experiment, the RDM was displayed for a

duration drawn from {0.2, 0.4, 0.6, 0.8 s} with corresponding probabilities of {0.125, 0.0625. 0.0625, 0.75}, followed by a randomdelay

(same distribution as the dot motion but sampled independently) during which the clock continued. We oversampled the longest
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duration of RDM and the delay period because we expected they would permit the largest range of tSD. We also sampled the short

duration to encourage subjects to utilize the stimulus stream from the onset. The intermediate durations (0.4 and 0.6 s) were included

to discourage subjects from using two different strategies for short and long duration trials.

A beep then cued participants to indicate their decision about direction by moving the stylus/cursor to one of the choice targets,

which brightened to signal acceptance as the subject maintained central fixation. Participants then reported their subjective decision

time (tSD). They were instructed to indicate the ‘‘position of the clock hand at the moment you decided—in your mind—whether the

motion is to the left or to the right’’ and to ‘‘move the pen until the clock hand marks the position it was in when you made the motion

decision’’ (seeMethods S1 andS2). To do this theymoved the cursor downward from the choice target to adjust the clock hand until it

matched the remembered clock position at the subjective decision time and pressed the center button, among three vertically ar-

ranged buttons, with the other hand (Figure 1). Instead of reporting their subjective decision time, participants could also indicate

via a button press that they did not remember the position of the clock hand at the time of their decision or they did not make a de-

cision about the motion direction. Based on pilot data, we expected that subjects would utilize the option more often when the stim-

ulus duration was short, but they rarely reported not making a decision or not remembering the position of the clock hand. Subjects

were then informed by one of two different sounds whether the motion direction decision was correct or not, leading to the gain or

loss of a point respectively, and a visual display of the score, which concluded the trial.

Participants were required to maintain central fixation throughout the trial (window ± 3�; although the absolute position varied be-

tween trials, the eye positions were within 1.0� of the average position of each trial in 95% of the trials except for subject 5 in the

controlled-duration experiment, whose eye positions were within 1.7�). Eye position was monitored at 1 kHz using an Eyelink

1000 (SR Research Ltd., Mississauga, Ontario, Canada) to ensure fixation during stimulus viewing.

After data collection was completed on the controlled-duration task, participants moved to the free-response task. This task was

identical to the controlled-duration task, except that the subject could terminate the trial at any time duringmotion viewing, bymoving

the cursor to the choice target. Participants were instructed to report their decision ‘‘as soon as you are ready with an answer.’’ The

RDM stimulus was extinguished once the cursor crossed the boundary of the home position. This event also marked the RT

measured from the onset of RDM. As in the controlled-duration task, participants then indicated their subjective decision time

(tSD) by reporting the position of the clock hand at the time they felt they had made the decision about the motion direction. To do

this they moved the cursor downward from the choice target to adjust the clock hand until it matched the remembered clock position

at the subjective decision time (Figure 1). Instead of reporting their subjective decision time, participants could also indicate via but-

ton presses that they did not remember the position of the clock hand at the time of their decision. Therewas no option to indicate that

they did not make a decision about the motion direction, since the stimulus was on until they made a decision. Subjects received the

same auditory and visual feedback on the accuracy of their choice as in the controlled-duration task.

Each participant performed 870–2030 trials of the controlled-duration task and 1000-2100 trials of the free-response task. Partic-

ipants completed all sessions with the controlled-duration task before they were instructed and tested on the free-response task.

When explaining the free-response task to the subjects, all but one (subject 4) stated that they had not performed this kind of

task before.

Training
All subjects received extensive training prior to the experiment over a number of days. The training was carefully scripted. For each

training session and task, participants viewed instructions in a PowerPoint presentation accompanied with video demonstrations of

the task (see Methods S1 and S2). They then had to correctly answer a set of task-related questions before proceeding to the exper-

iment. They were also allowed to review the instruction as needed. This proceeded as follows:

(1) Controlled-duration randomdotmotion taskwithout a clock or reporting of subjective decision time. This proceeded in several

steps with sets of progressively lower coherences and shorter durations of the motion stimulus: a) 76.8% only, and 800ms

only; b) 76.8% only, and the same duration distribution as in the controlled-duration experiment from here on; c) 51.2%

only; d) 12.8, 25.6, and 51.2%; e) 3.2, 6.4, 12.8, 25.6, and 51.2%; f) 0, 3.2, 6.4, 12.8, 25.6, and 51.2%, as in the controlled-

duration experiment. Participants were required to achieve accuracy > 90%correct on the strongest motion strength and suc-

cessfully follow the instructions in 80% of the trials (90% for step f) before proceeding to the next step.

(2) Clock training and validation. Participants performed controlled-duration trials during which a beep (3 kHz, 20 ms) occurred at

a random time (uniform 0–2.6 s, in steps of 25ms). Participants were required to report the clock hand position at the time they

heard the beep. They received auditory feedback of success if the estimate was within ± 200ms of the true time. The training

proceeded in several stages: a) Indicating the beep timing without themotion stimulus; b) Indicating beep timing while ignoring

the motion stimulus; c) Indicating beep timing while ignoring the motion stimulus and the ‘go’ beep that has a different pitch

(1 kHz, 50ms). Sessions were repeated until subjects reached 80% accuracy in beep timing report and successfully followed

the instructions in 80% of the trials.

Subjects completed data collection on the controlled-duration experiment before they began training on the free-response version

of the task.
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(3) Free-response (reaction time) random dotmotion task with reporting of subjective decision time. After subjects completed the

controlled-duration experiment, they received instruction for the free-response task and went on to perform the task.

In total subjects performed between 12 and 23 sessions of training and experiment, spanning an average of 55 days.

Computational Modeling
We fit the data using two drift-diffusion models. We used both a simple (‘‘parsimonious’’) model with flat bounds as well as a more

elaborate model in which the bounds collapse over time. The simplemodel is adequate to fit themean decision times (hence RTs and

tSD) for correct trials only—that is, trials in which the decision favors the direction supported by the sign of the coherence, taking into

account any bias (as explained below). The fits supply four free parameters, three of which can be used to predict the choice func-

tions (Figure 2). Themore elaborate model explains tSD on error trials and accounts for the tSD distributions, but it must be fit to the tSD
conditioned on correct/incorrect trials. Thus it fits—as opposed to predicts—the choice function. We exploited the prediction of the

parsimonious model as a stringent test of the hypothesis that the measured tSD were indicative of the termination of a bounded

evidence accumulation process.

Evidence Accumulation Model with Flat Bounds
We used a variant of the drift-diffusion model [7, 20] to fit the tSD from the controlled-duration experiment and used the parameters of

these fits to predict the choice frequencies. The model posits that evidence accumulates from zero until it reaches an upper or lower

bound, ±B), which determines the initial choice and decision time. The increments of momentary evidence are idealized as Gaussian

distributed random variables with unit variance per second and mean k(C-C0), where C is signed motion strength (specified as the

proportion of dots moving in the net motion direction: positive for rightward, negative for leftward); k, B and C0 are free parameters.

The expectation of the momentary evidence is also termed the drift rate. Intuitively, B is the square root of the mean decision time

when the drift rate equals zero, and kB controls the sensitivity (i.e., accuracy as a function of C); C0 is a coherence offset, which ex-

plains the bias (if any) for one of the choices. The model predicts the probability of terminating at ± B, hence the proportion of right-

ward choices as function of signed coherence,

PrightðCÞ= ½1+ expð � 2kðC� C0ÞBÞ��1
; (Equation 1)

and the mean decision time, which differs from the reported tSD by an additional fixed latency, termed the non-decision time (tND),

tSDðCÞ= B

kðC� C0Þ tanhðkðC� C0ÞBÞ+ tND: (Equation 2)

The parsimonious model is only capable of explaining the mean decision times when the choice is in the same direction as the drift

rate. Absent bias, these would be rightward choices for positive coherences, leftward choices for negative coherences, and all

choices for 0% coherence. In general these are the directions of themore numerous choices at each coherence, including 0. In prac-

tice, we identified the trials for analysis of the tSD by finding the point of subjective equality from a simple logistic fit to choice and

selecting rightward choice trials when Pright > 0.5 and leftward choice trials for Pright < 0.5. We did not use the logistic to estimate

the parameter, C0.

To fit Equation 2 to the mean tSD, we maximized the log likelihood, assuming Gaussian noise with standard deviation given by the

standard errors of the means in the data (error bars, Figure 2, top). We optimized using MATLAB’s fmincon using analytic gradients.

We derived analytic Hessians to obtain standard errors on parameters (Table 1).

We then asked whether the fitted parameters (k, B & C0) could predict the choice proportions for each of the five subjects (Equa-

tion 1; blue dashed curves, Figure 2, lower). To examine the significance of the prediction, we generated 400 datasets with tSD shuf-

fled across coherences, fitted parameters to each dataset and computed the log likelihood of the prediction of the choice. We

computed the p value as the proportion of log likelihoods of the datasets (shuffled and original, total 401 datasets; see [57, 58] for

rationale) that are not lower than that of the original dataset.

We also used the simple drift-diffusion model to fit the RT data in the free-response task. Here we allowed different tND for left and

right decisions to account for potentially different motor latencies. We fit the RT and choice functions jointly by maximizing the contri-

bution to the likelihood from the mean RTs (Gaussian error) and the choices (binomial error, see [20]). We used the same approach to

render the gray curves in Figure 2 (subject 5).

Model with Collapsing Bounds
For the model with collapsing bounds, instead of stationary bounds, we implemented two time-dependent absorbing boundaries ±

A(t). The bounds collapse toward zero with dynamics parameterized using the regularized incomplete beta function (I):

AðtÞ=A0ð1� It0 ðb1; b2ÞÞ; (Equation 3)

where t0 is normalized time (i.e., t/2.7) so that the collapse is complete by the maximum time allowed from the random dot stimulus

onset until leaving the home position (2.7 s). We used the incomplete beta distribution for simplicity and flexibility; a variety of alter-

natives suffice as well [59, 60]. Rather than representing the collapsing bound by the beta distribution parameters directly we
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represented the shape of the collapsing bound by two constructed parameters: Blog = log10(b1b2) which correlates with the slope of

the collapse and tb = b1/(b1+b2) which is around the time of the steepest descent in the normalized time (1 corresponds to 2.7 s).

As we wished to evaluate the likelihood of individual tSD wemodeled the non-decision time with a gamma distribution (parameter-

ized bymean m and standard deviation s) which ensures that non-decision timewas always positive. We optimized the parameters of

the model (k, C0, A0, Blog, tb, m, s) to maximize the likelihood of the observed tSD and the choices using MATLAB’s fmincon function.

We fit three sets of measurements for each subject: the tSD from the controlled-duration, tSD from the free-response, and also the RTs

from the free-response (in which we allowed separate tND distributions for left and right decisions to account for potentially different

motor latencies).

To estimate the standard error we sampled from the posterior distribution of the parameters using Metropolis sampling. We initial-

ized 12 chains in the neighborhood of the mode found from the gradient descent procedure and sampled 5000 times after burn-in of

5000 samples. We used the multivariate normal distribution as the proposal distribution, and adapted its covariance every 100 trials

using up to 1000 previous samples’ covariance during burn-in [61, 62]. Every parameter converged, as determined by the ratio of

within- and between-chain variance ð bR < 1:1Þ as previously described [63]. The standard error was taken as the standard deviation

of the Monte Carlo samples.

To examine whether tSD differed for correct and incorrect decisions, we used simple linear regression using only motion coher-

ences with at least one error (Figure S3):

tSD = k1 + k2jC� C0j + k3I; (Equation 4)

where I is an indicator variable (0 for correct and 1 for incorrect). We tested the null hypothesis that k3 = 0.

We measured the similarity of the fitted and the observed tSD distributions (Figure 4) using the Jensen-Shannon divergence (JSD).

The JSD is roughly the expectation of the log likelihood of observing one density function at the values of another. It is a symmetrized

version of the Kullback-Leibler divergence. The comparisons were made after matching the proportion of errors of the fitted distri-

bution to that of the observed distributions (results were nearly identical when we did not match the proportions). To obtain confi-

dence intervals (error bars, Figure S4) we performed a bootstrap analysis. We resampled the data with replacement, fitted the model

to the resampled data and obtained a JSD (200 repetitions). We also evaluated the null hypothesis that the observed goodness of fit

(JSD) would be explained solely by the variation in mean tSD as a function of motion strength. For each subject, we produced shuffled

predicted distributions by permuting fitted distributions associated with each motion strength and choice type (left and right). To

isolate the divergence arising from the shape of the distribution, we matched the summed probability within each combination of

coherence and choice to the observed proportion in the data and shifted the predicted distribution in time to match the mean tSD.

We report a one-tailed test, p = (N0 + 1) / (N + 1), where N = 200, and N0 is the number of JSDs produced by this method that are

less than or equal to the original JSD [57, 58].

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Processing and Analysis
For each trial, we recorded the choice (left or right) and the subjective decision time (calculated from the clock position indicated by

the participant). In the free-response experiment, we also recorded the reaction time—frommotion stimulus onset to when the cursor

left the home position.

Trials were discarded if the subject left the home location before the ‘go’ beep (controlled-duration task, 0.2%–1.4% of trials) or

entered the target location after the clock made one full revolution (2.7 s from the motion stimulus onset, 0%–0.4% of trials in either

task in every subject except for subject 5 in the controlled-duration task, 2.3%), resulting in one lost point.

We also excluded trials in which subjects reported that they did not make a decision (5% of trials in subject 4, no trials in all other

subjects) or did not remember the position of the clock hand at the time they made their decision (< 0.1% of trials in all subjects and

paradigms except 1.4% and 0.3% of trials in subject 4 in the free-response and controlled-duration tasks, respectively). The first 200

trials of each task were designated as practice trials and were not included in the data analysis.

To characterize the main effect of motion strength (jCj) on subjective decision time, we used a generalized linear mixed model

(GLM), similar to repeated-measures, 2-way ANCOVA. We tested the main effect of jCj on tSD, treating subjects (n = 5) as random

effects. Visual inspection of residual plots did not reveal obvious deviations fromhomoscedasticity or normality.We report the p value

from the saturated model using likelihood ratio test. The unsaturated model (no interaction between subject and jCj) was inferior to

the saturated model (BIC) but also showed a significant main effect of jCj in the combined dataset. Statistical analyses were per-

formed in MATLAB (MathWorks). The outcome of the statistical analyses is reported in the Results section.

Sensitivity analysis of choice predictions
Our central claim that tSD reflects termination of an accumulation of noisy evidence to a bound relies on the capacity to fit these times

with a parsimonious bounded drift-diffusion model and to use the fit to establish predictions for the choice proportions. These pre-

dictions were surprisingly good for four of the five subjects. We wished to assess how sensitive our ability to predict choice is to var-

iations in the parameters of the drift diffusion model and in the values of tSD. We used four complementary strategies to achieve this.

First, we generated 400 datasets with tSD shuffled across coherences, fitted parameters to each dataset and computed the log

likelihood of the prediction of the choice. We computed the p value as the proportion of log likelihoods of the datasets (shuffled
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and original, total 401 datasets) that are not lower than that of the original dataset. We report these p values in Results for each of the

five subjects.

Second, for the four subjects for whomwe could predict choice based on their subjective decision times, we compared the quality

of these predictions using parameters obtained from the parsimonious model fits to the data from the other three subjects. Naturally,

any combination of the three parameters instantiates a drift diffusion model and therefore describes a bell-shaped function of tSD
versusmotion strength.We performed a group level analysis in whichwe examined all possible combinations of the three parameters

(k, B, C0) from three of the subjects (33 = 27 combinations) and used these to predict a fourth subject’s choice. We combined the log

likelihoods of choice across the four subjects in all possible ways (274 = 531,441 combinations). These bootstrap samples were

compared to the log-likelihood prediction from each subject’s own parameter fits, summed across the subjects. This allowed us

to assess the probability that we could predict the subject’s choices better with parameters fit to tSD from the other subjects’ param-

eters than from parameters fit to the subject’s own tSD. We also performed this analysis on subjects 1-4 including the parameters

from the fit to subject 5 (the gray curves in Figure 2). Only 3 of 105 (of the possible 109) combinations we tried were better than

the combined likelihoods from subjects 1-4.

Third, we assessed a range of transformations of the mean tSD values consistent with a monotonic increase in tSD as a function of

motion strength. The analysis has two purposes: (i) to determine whether any systematic setting of the clock as a function of motion

strength is capable of predicting choice, and (ii) to assess the amount of perturbation required to achieve the choice predictions that

would be reliably worse than those based on the data. To do this we fit reflected cumulative beta distributions to tSD for each subject.

We minimized the sum of squared errors between the mean tSD for each signed coherence,

tSD = k1 + k2 � cbetaðjC� k3 j =0:512;a;2� aÞ; (Equation 5)

where cbeta(x,a,b) is the integral from 0 to x of the beta distribution with parameters a and b. We fit k1 and k2 which allow us

to offset and scale the function and k3 which allows the maximum to be centered at nonzero coherence (analogous to C0 in

Equation 2). We varied the parameter of the distributions, a, from 0.01 to 1.95 in 31 steps. Each value of a yields a shape, which

we scaled and centered to best match the original data by fitting Equation 5 (least-squares). The R2 value from this fit charac-

terizes the degree of distortion imposed by Equation 5. (Figure 3, top row) shows a selection of fits for seven a parameters

equally spaced in the range. For each fit, we generated surrogate clock times (tsurr) from the fitted function and then fit these

using the parsimonious bounded drift-diffusion model (Equation 2). We compared the likelihood of observing the choices based

on tsurr and tSD which we display as a log likelihood ratio in Figure 3 (bottom). This analysis was performed for subjects 1-4,

whose tSD predicted choice.

Fourth, we examined our ability to predict choice when the tSD are jittered while preserving their order of tSD across coherence from

the original data (Figure S2). To do this, for each subject we ranked the mean tSD and calculated the difference between consecutive

tSDs. We randomly permuted the order of these differences and regenerated surrogate data (tsurr) by accumulating these difference

from the shortest tSD. This method ensures that the shortest and longest tsurr are identical to the shortest and longest tSD as is the rank

order with respect to signedmotion strength. We repeated this procedure 1000 times for each subject. We fit each set of tsurrwith the

parsimonious diffusion model (Equation 2) and generated predicted choice functions. We calculated the log-likelihood ratio between

these predictions and the fit to the actual data. We also calculated for each jitter, the average absolute difference in times of tsurr
compared to the original data: Dhmeanð��tSD;i � tsurr;i

�� Þ, where i represents signed coherence. We tested the null hypothesis that

jittering the data would not affect our ability to predict choices. To do this we examined the correlation between log-likelihood ratio

and the D. As a measure of sensitivity we used linear regression to determine the value of D at which the average log-likelihood ratio

fell to �10.

Note that the distortions introduced using the latter two strategies (Figures 3 and S2) can lead to the same fitted function as the

measured tSD, but unlike unbiased jitter in the tSD observations, that is not the expectation. They are thus designed to sample order

preserving distortionsmore efficiently. Similarly a constant offset to the observed decision timeswould only affect tNDwhich does not

affect the choice predictions.

Analysis of motion energy
We performed a reverse correlation analysis aimed at characterizing the stochastic motion information in each trial that might have

affected the direction choice on that trial. We used the three weakest motion strengths for this analysis (jCj% 0.064) using the 800ms

duration trials from the controlled duration task (combining data from subjects 1-4; 2766 trials). The sequence of random dots shown

on each trial was represented as a 3-dimensional binary array (x, y, t). We applied a 3-dimensional FFT to the first and second half

of the movie (frames 1-30 and 31-60) and integrated the amplitude (complex modulus) in appropriate octants (passband 2-8 Hz,

0.5-6 cyc/deg) that represent rightward and leftward motions, which were compared (subtraction) to yield a difference in motion en-

ergy in favor of rightward, ER-L. We verified that this quantity depends linearly on signed motion strength, C.

According to our hypothesis, the subject may not use all the information in the display to reach a decision. Information from this

display should bear on the choice before the accumulation reaches a bound. We estimated the time of this threshold crossing (tq) by

subtracting the non-decision time, obtained from the fits in Figure 2, from tSD (i.e., the clock setting) on that trial: tq = tSD-tND. For the

analyses depicted in Figure 5, we always divided the trial into two equal halves, which we refer to as ‘‘pre’’ and ‘‘post.’’ Strictly

speaking, these designations refer to tq = 400 ms, but we included a range of tq = 400 ± D, in steps of 13.3 ms (i.e., video frames).

We adopted this approach because it simplifies the integration in the frequency domain, which invites complications when the
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comparison is between stimulus epochs of different lengths. Importantly, the only difference in the calculation of the points in

Figure 5A are which trials are included. For each value of D, we applied a logistic regression (GLM) to obtain estimates of the leverage

of motion energy before and after 400 ms on choice:

Pright =
�
1+ exp

�� �
b0 + b1E

pre
R�L + b2E

post
R�L + b3C

����1
; (Equation 6)

wherePright is the probability of a rightward choice, the bi are fitted coefficients, andC is signedmotion strength. The points in Figure 5

are the coefficients b1 and b2 with standard errors.

The bootstrap analysis (Figure 5B) was performed usingD = 133ms, a value chosen to be large enough to permit inclusion of many

trials but small enough to observe a clear difference in leverage (873 trials; arrows, Figure 5A). We evaluate the probability of

observing a difference, b1�b2, from random sets of 873 trials, sampled with replacement from trials with jtq�400j > 133 ms.

We chose to to compute motion energy in the frequency domain [64–66] instead of the convolution based approach using motion

filters defined as functions of space and time. This is partly because themethod captures a broad range of possible directional noise,

which is not restricted to the passband occupied by the signal dots and, more importantly, because it allowed us to test cutoff times

designated by windowing the stimulus with the precision of video frame rate rather than inferring a time point from the filtered motion

energy based on a rise and decay of the filter (e.g., [16]). A potential drawback is the need to focus on a restricted range of tq, which

limits our ability to draw conclusions about the precision of the tq estimates and therefore tSD and tND.

DATA AND SOFTWARE AVAILABILITY

Data and code are available at https://github.com/yulkang/SubjDecTime.git.
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Figure S1. Accuracy of the clock timing report of a tone. Related to Figure 1. 
Previous work suggests that timing reports using a clock can be unreliable [S1]. To test the validity 
of the clock reports, we used a separate training task where subjects used the clock to indicate the 
timing of a brief tone, presented at a random time during motion viewing. The solid gray line is the 
identity line and the dashed lines indicate ±200 ms from the actual beep time. Subjects received 
auditory feedback that indicated whether their report was within this range of accuracy. The time of 
the beep accounted for 83 to 98% of the variance in the reported beep times (p < 10-20 in all 
subjects). The regression slope was close to 1 (range: 0.93–0.99) and offset close to zero (0.00–
0.16). The responses closely followed the actual beep onset (standard deviation of the timing 
error: 0.11–0.34 s).  
 
 
 
  



 

 

 
Figure S2. Order preserving perturbations to subjective decision times impair choice 
prediction. Related to Figure 3. 
Log likelihood ratio (logLR) of the choice predictions established from surrogate times (tsurr) 
relative to choice predictions from the observed tSD. The logLR is plotted as a function of the 
average absolute difference between tsurr and tSD. Jittered data (tsurr) were generated by permuting 
the intervals between mean tSD while preserving the minimum, maximum and order of the original 
tSD (see STAR Methods). Each permutation can be characterized by the mean absolute deviation 
of the surrogate tSD (abscissa) and the correlation between the fits of Equation 2 to perturbed and 
unperturbed data (color of the marker). The regression (blue lines) furnishes a test of the null 
hypothesis that only the order of the tSD matters for predicting the choices (p < 10-60 for subjects 1–
4). The regression provides an estimate of the degree of perturbation to the tSD required to 
produce reliably poorer predictions of the choice data. For example, perturbations of tSD by 19 to 
31 ms (across subjects) yield predicted choice functions that are 10 units of log likelihood ratio 
worse, on average, than the predictions from the observed tSD (i.e., odds ratio < 0.0001; horizontal 
black dashed lines). The correlation between fits to tSD and tsurr (color) furnishes the useful insight 
that larger perturbations of the tSD yield choice predictions that are as good (or better) than the 
original data only when they fail to yield a different fit (i.e., high R2) by bounded drift-diffusion 
(Equation 2).  
 
 
 
 
  



 

 

 
Figure S3. Fits of the elaborated drift-diffusion model with time-dependent collapsing bounds 
to subjective decision times on the controlled-duration experiment. Related to Figure 4. 
Black points are identical to those in Figure 2 of the main text. Grey symbols show the tSD 
associated with errors (mean ± SEM). Solid lines are model fits. Subjective decision times for 
errors are only plotted for motion strengths that have at least 3 trials. Note that tSD on error trials 
are longer on average (subjects 1–4: 59–121 ms, p < 0.03; subject 5: 11 ms, p = 0.8; see STAR 
Methods). This feature is also explained by collapsing termination bounds [S2,3], although the 
pattern is only weakly captured by the fits (gray curves). 
 
  



 

 

 
 

 
Figure S4. Goodness of fit to observed tSD distributions in the controlled-duration experiment 
using a drift-diffusion model with time-dependent, collapsing bounds. Related to Figure 4. 
The bars show the median of the bootstrapped Jensen-Shannon divergence for each of the five 
subjects (subjects 1–5). Error bars show the 95% CI (see STAR Methods).  
  



 

 

 
 

Figure S5. Sensitivity to motion is similar whether derived from subjective decision times 
(tSD) or reaction times. Related to Figure 6. 
Scatter plot compares signal-to-noise scaling parameter (𝜅) derived from the choice-RT data of the 
free-response and tSD of the controlled-duration task. The 𝜅 for the ordinate for subjects 1–4 
comes from the fit to the tSD ignoring choices; for subject 5 it comes from the joint fit to the tSD and 
choices (gray dot). The dotted line is the identity line. In addition to statistics described in the main 
text, we performed a bootstrap test, using the sum of the squared difference between fitted 𝜅 
values: 

𝐷 = 𝜅$%&
' − 𝜅)*'

+
,

'-.

 

 
where 𝑠 is the index for each subject. To assess the distribution of D under the null hypothesis, we 
computed the value of D for all 𝑛! possible permutations across subjects and computed the 
proportion of D that are not larger than the original D, to obtain p-values [S4,5]. The p-value is 
0.017 with all five subjects, and 0.042 with subject 5 excluded. The analysis supports the 
hypothesis that the 𝜅 parameters from the tSD (controlled-duration task) and the RT (free-response 
task) are significantly closer to each other than by chance. 
  



 

 

 
Figure S6. tSD and performance as a function of motion viewing duration. Related to Figure 
4. 
We compared performance on trials using 200 ms versus 800 ms viewing durations. Not 
surprisingly, sensitivity to random dot motion was better on the longer duration trials. This was 
supported by logistic regression:  
 

𝑃3456$ = [1 + exp(−(𝑘. + 𝑘+𝐶	 + 𝑘A𝐼 + 𝑘C𝐼 ⋅ 𝐶)]G.                                           
 
where I is an indicator variable (0 for 800 ms and 1 for 200 ms display). This improvement was 
statistically reliable for all subjects except subject 2 who showed the same trend (H0: k4=0; p < 0.002; 
for subject 2, p = 0.32; t-test). Unsurprisingly, the tSD were shorter on the trials with 200 ms versus 
800 ms viewing durations (ANOVA with categorical factors of absolute coherence, random dot 
duration and their interaction; p < 10-6 for all subjects). We also confirmed these conclusions were 
robust to analyzing only a subset of trials matched for the sum of motion and delay durations (i.e., 
200 ms motion plus 800 ms delay and vice versa).  
 
 
 
 
 
 
 
  



 

 

 
 
 
 

 B 𝜅 C0 tND,left tND,right 
Subject 1 0.95 ± 0.01 28.2 ± 1.1 -0.014 ± 0.001 0.543 ± 0.007 0.538 ± 0.008 

Subject 2 0.93 ± 0.01 8.5 ± 0.4 -0.037 ± 0.004 0.575 ± 0.020 0.581 ± 0.019 

Subject 3 1.07 ± 0.01 17.6 ± 0.6 0.010 ± 0.002 0.478 ± 0.010 0.464 ± 0.010 

Subject 4 1.13 ± 0.01 23.6 ± 0.9 0.009 ± 0.001 0.405 ± 0.005 0.385 ± 0.008 

Subject 5 0.84 ± 0.01 20.2 ± 1.2 -0.003 ± 0.003 0.597 ± 0.011 0.572 ± 0.009 

 
Table S1. Parameters of the drift-diffusion model fit jointly to the RT and choice data in the 
free-response task. Related to Figure 6. 
Parameters are shown ±SE.  
 

 
 B 𝜅 C0 tND,left tND,right 

Subject 1 0.97 ± 0.01 40.4 -0.013 ± 0.001 0.579 ± 0.006 0.579 ± 0.007 

Subject 2 0.99 ± 0.01 5.7 -0.045 ± 0.005 0.414 ± 0.013 0.436 ± 0.013 

Subject 3 1.07 ± 0.01 19.2 0.010 ± 0.002 0.492 ± 0.008 0.480 ± 0.008 

Subject 4 1.13 ± 0.01 24.3 0.008 ± 0.001 0.408 ± 0.004 0.389 ± 0.006 

Subject 5 0.84 ± 0.01 24.6 -0.003 ± 0.003 0.621 ± 0.008 0.590 ± 0.007 

 
Table S2. Parameters of the drift-diffusion model fit jointly to the RT and choice data in the 
free-response task with 𝜅 fixed from the fits to the tSD of the controlled-duration task. Related 
to Figure 6. 
Parameters are shown ±SE. Grey cells indicate parameters that are fixed (from Table 1). 
 
 
 

 B0 Blog t𝛃 𝜅 C0  μ σ 

Subject 1 0.58 ± 0.02 2.53 ± 0.43 0.26 ± 0.02 33.9 ± 1.9 0.008 ± 0.002 0.130 ± 0.007 0.103 ± 0.006 

Subject 2 1.68 ± 0.23 1.31 ± 0.19 0.26 ± 0.02 4.1 ± 0.4 -0.079 ± 0.011 0.245 ± 0.071 0.163 ± 0.018 

Subject 3 1.05 ± 0.05 4.17 ± 0.92 0.27 ± 0.00 14.2 ± 0.9 0.002 ± 0.003 0.667 ± 0.027 0.268 ± 0.009 

Subject 4 0.67 ± 0.02 3.02 ± 1.06 0.80 ± 0.08 27.5 ± 2.0 0.014 ± 0.003 0.236 ± 0.012 0.151 ± 0.009 

Subject 5 0.21 ± 0.08 3.01 ± 1.06 0.49 ± 0.24 33.3 ± 10.2 -0.050 ± 0.008 1.497 ± 0.039 0.408 ± 0.017 

 
Table S3. Parameters of the drift-diffusion model with collapsing bounds fit jointly to the tSD 
and choice data of the controlled-duration task. Related to Figure 4. 
Parameters are shown ±SE.  
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