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1. Definitions and models  
 
 The risk ratio, also known as the relative risk (𝑅𝑅𝑅𝑅), is defined as the ratio of the risk, 
probability, or prevalence of a health outcome of interest in the exposed/treated/intervention 
group (𝑟𝑟1), divided by the same in the unexposed or control group (𝑟𝑟0). The risk difference (𝑅𝑅𝑅𝑅) 
subtracts the health outcome risk in the control group from the health outcome risk in the 
intervention group. That is, 

𝑅𝑅𝑅𝑅 = 𝑟𝑟1/𝑟𝑟0 and 𝑅𝑅𝑅𝑅 = 𝑟𝑟1 − 𝑟𝑟0. 
 

As a relative measure of effect, the relative risk is most directly estimated by the multiplicative 
model, when it fits the data. The risk difference is an absolute measure of effect, most directly 
estimated by the additive model, when it fits the data. Although much of what is discussed here 
will also apply to prevalence ratios and differences, the prevalence as the measure of disease 
frequency is susceptible to reverse-causation bias, although the occurrence of this may be less 
common than often taught in standard epidemiology texts. Cumulative incidences, risks and 
proportions are synonyms, although the cumulative incidence is typically estimated using 
survival data analysis methods to allow for censoring, staggered enrollment and/or competing 
risks. Similarly, rates, e.g. mortality rates or disease incidence rates, are used as outcome 
measures when censoring, staggered enrollment and/or competing risks are in play. Their 
primary disadvantage is more difficulty in interpretability, as they require units of person-time, 
e.g. person-years or person-months. These units can be difficult to explain to non-technical 
audiences, the target audiences for the results of public health interventions. However, the use 
of risks as the primary outcome measure does not completely get us out of the woods 
concerning subtlety in interpretation, as the value of a risk depends critically upon the duration 
of follow-up over which it is calculated. The classic, and most extreme example of this 
phenomena, is when the risk is that of mortality. In the limit, regardless of how beneficial or 
harmful an intervention is, the ratio will go to 1, and the difference to 0, since we will all die 
sometime. When other outcomes are eventually possible – that is, in the presence of 
competing risks – this limiting property will likely not occur, but the dependency of risks based 
on different durations of follow-up, and the resulting potential for non-comparability, remains. 
 
In an individually randomized intervention, straightforward methods for a single 2x2 table can 
be used to estimate relative risks and risk differences, since there is no need to adjust for 
confounding. Alternatively, in an individually randomized intervention design, the risk ratio can 
be modeled on the multiplicative scale as  

log[E(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖)] = log[Pr(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖)] = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖, [1] 
where 𝑌𝑌𝑖𝑖 is the binary outcome upon which the intervention is focused, 𝑋𝑋𝑖𝑖 is 1 if the participant 
was randomized to the intervention and 0 otherwise, 𝑒𝑒𝛽𝛽1 is the relative risk, which will be <1 if 
the outcome is undesirable and the intervention is preventive, 𝑒𝑒𝛽𝛽0 is the risk in the control 
group, and as is common in science, 𝑙𝑙𝑙𝑙𝑙𝑙 is used interchangeable with 𝑙𝑙𝑙𝑙 to denote the natural 



logarithm on the base 𝑒𝑒 scale. 𝐸𝐸[∙] denotes the expected value, or mean, function, and for 
binary data is equivalent to the outcome model probability function. Alternatively, if the 
difference measure of is of interest, the risk difference can be modeled on the additive scale as  

E(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖) = Pr (𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖) = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋𝑖𝑖, [2] 
where the risk difference is 𝛼𝛼1. The parameters of models [1] and [2] have a one to one 
correspondence, so by standard statistical theory, the corresponding transformation of the 
maximum likelihood estimates of one model to the parameters of the other will also be 
maximum likelihood.  Thus, from the point of view of validity, in individually randomized studies 
with no loss to follow-up, staggered entry or competing risks, the choice between the ratio or 
difference measure as the parameter of interest, that is, the choice between model [1] and [2] 
doesn’t matter, and 𝛼𝛼�0 = 𝑒𝑒𝛽𝛽�0 and 𝛼𝛼�1= 𝑒𝑒𝛽𝛽�0+𝛽𝛽�1 − 𝑒𝑒𝛽𝛽�0. 
 
Things change when confounding needs to be considered. As discussed in a previous column in 
this series(1), in cluster-randomized studies as would typically be utilized in the evaluation of 
public health interventions when randomization of any kind is possible, unless there are a large 
number of clusters, which is unusual, or outcome rates between clusters are relatively 
constant, as might be more commonplace, residual between-cluster confounding is likely. Then, 
in order to validly estimate the intervention effects, models [1] and [2] need to be expanded: 
 

log�𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖,𝐶𝐶1𝑖𝑖𝑖𝑖, … ,𝐶𝐶𝑝𝑝𝑖𝑖𝑖𝑖)� = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖 + 𝛽𝛽2𝐶𝐶1𝑖𝑖𝑖𝑖 +∙∙∙ +𝛽𝛽𝑝𝑝+1𝐶𝐶𝑝𝑝𝑖𝑖𝑖𝑖 [3] 
 

where  𝐶𝐶1𝑖𝑖𝑖𝑖, … ,𝐶𝐶𝑝𝑝𝑖𝑖𝑖𝑖 are the 𝑝𝑝 covariates measured in the study that are needed to validly 
estimate the intervention effect, the relative risk, 𝑒𝑒𝛽𝛽1, for the 𝑖𝑖𝑡𝑡ℎ participant in cluster 𝑗𝑗. A 
similar model could be fit if the risk difference were the parameter of interest 
 

𝐸𝐸(𝑌𝑌𝑖𝑖𝑖𝑖 = 1|𝑋𝑋𝑖𝑖,𝐶𝐶1𝑖𝑖𝑖𝑖, … ,𝐶𝐶𝑝𝑝𝑖𝑖𝑖𝑖) = 𝛼𝛼0 + 𝛼𝛼1𝑋𝑋𝑖𝑖 + 𝛼𝛼2𝐶𝐶1𝑖𝑖𝑖𝑖 +∙∙∙ +𝛼𝛼𝑝𝑝𝐶𝐶𝑝𝑝+1𝑖𝑖𝑖𝑖 [4]. 
 

2. Logistic regression – rarely, does non-collapsibility matter; ditto for the 
Cox model 

 
Fitting binary and nominal outcome variables to models with log and identity link functions 
have well-known numerical instabilities, meaning that the models often do not converge or 
provide extreme estimates with inflated variances. Solutions to these issues have been 
provided(2-4), yet it is our experience that even with these, numerical issues can prove to be 
insurmountable and the logistic link function is needed to obtain any estimate at all. In addition 
to the above-mentioned lack of intrinsic interest in the odds ratio as an estimate of effect, a 
more recent concern about logistic regression models has been raised – that of non-
collapsibility. Non-collapsibility is the undesirable property that the on the logistic scale, a study 
in which the intervention and control groups are exactly balanced in their distributions of other 
risk factors – the usual condition for a lack of confounding – the crude odds ratio unadjusted for 
these covariates will not equal the fully adjusted one (5). This occurs because covariate balance 
is scale-dependent, and the criteria for achieving collapsibility on the logistic scale does not, for 
mathematical reasons related to the intrinsic non-linear nature of the logistic function, equate 



with covariate balance. Fortunately, it is our experience that this concern about non-
collapsibility is over-rated in practice, and that, unless the outcome under study is quite 
common and/or the intervention effect is strong, non-collapsibility generally does not result in 
substantively important bias, even greater than 10% (6, 7). However, important examples 
where the logistic approximation led us astray have been given (8, 9).  

Nevertheless, we always recommend ‘doing the right thing’ whenever possible, and in this 
case, there is no reason, given modern software capabilities, to fit the model that provides an 
estimate of the parameter of interest, rather than an approximation to it (10). Importantly, 
neither the identity link nor the log link functions have this collapsibility issue, with respect to 
the parameter of interest, the risk difference and ratio, respectively (11). 

 
Hazard ratios estimated from the Cox model for survival data analysis have features similar 

to those described above for logistic regression. Hence, it appears that the non-collapsibility 
issue is again typically not important when survival data analysis methods are needed for 
estimation of the rate ratio or difference measure (12), because there is staggered entry into 
the study, competing risks, or loss to follow-up. Under these circumstances, parameters of the 
survival model, such as baseline rates/hazards, and rate/hazard ratios and differences, can be 
converted into risk ratio and differences for pre-specified durations of follow-up. As long as 
there is no effect modification by the time scale on which the survival model has been fit, rate 
ratios and differences have the useful property of being independent of the duration of follow-
up, unlike risk ratios and differences. 
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