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Preparation of the FMO protein

The Fenna-Matthews-Olson (FMO) protein complex was prepared from cells of the thermophilic
green sulfur bacterium Chlorobium tepidum. A strain of C. tepidum that had been engineered to
produce a His-tagged version of its reaction center was used in order to simplify the purification
strategy. This strain was a gift of Prof. Oh-Oka (/). The cells were grown anaerobically in
the light in modified Pfennig’s media (2). New cultures were allowed to go fully anaerobic in
the dark overnight, then they were grown at a light intensity of about 30 micromoles photons
m~2s~! at 43° C for 2 to 3 days. When fully grown, the cells were harvested by centrifugation
at 12,000 x g for 20 min. The reaction centres (which bind FMO) were isolated from broken
cells (3). At the stage of the nickel affinity column chromatography a high salt wash at 500 mM
NaCl elutes the FMO complexes. This dilute solution of FMO was then purified by a combina-
tion of ion exchange chromatography on a Whatrman DES52 cellulose resin and size exclusion
chromatography on a Sepharose S-200 column.

Sample condition at room temperature

Before doing the measurement, we have checked the thermal degradation of the sample for dif-
ferent temperatures. The sample was kept under —80° C in the freezer. Before measuring the
circular dichroism (CD) spectrum, we have warmed up the sample by putting it on the table for
about half an hour. Then, we have recorded the CD spectrum in the UV region at the temper-
ature of 23° C, at which we have recorded the 2D spectra. The result of the CD spectrum is
shown in Fig. |S1| (a). We extract the structure information of the FMO protein by measuring
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Figure S1: (a) Circular dichroism (CD) spectrum of the FMO complex in the UV regime at
room temperature (23° C). The magenta solid line marks the wave length of 220 nm at which
we detect the sample condition. (b) CD spectral signal at 220 nm for varying temperature. The
magenta dashed line marks the temperature (32° C) above which thermal degradation of the
FMO protein sets in.

the signal changes at the wave length of 220 nm (4, 5). Usually, the signal at this frequency is
considered as originating from the protein. It shows a relatively strong magnitude with a weak
noisy background. It is marked by the magenta line in the Fig.|S1|(a). Then, we have recorded
the CD spectra at different temperatures starting from 14 to 67° C. The result of the CD spectral
signal at 220 nm for different temperatures is shown in Fig. [ST| (b). We observe that the CD
signal is stable and shows ~ 95 counts below 32° C. Above 32° C, the magnitude of the CD
signal at 220 nm rapidly decays to 60 counts. This indicates that the structure of the protein
experiences thermal damage. We have repeated the detection five times at each temperature and
show the corresponding average in the figure.

Laser excitation spectrum and field strength

The excitation spectrum of the laser used was a broadband spectrum with a FWHM of 100
nm, centered at the wavelength of 770 nm and overlapped the Q, absorption band of the FMO
antenna complex (see Fig. (a)). The excitation energy was kept below 12 nJ per beam to
stay in the weak-field regime of linear excitation. The magnitude of the detected homodyne
photon-echo signal was proportional to the third power of the incoming pulse energy, see Fig.

52 (b).
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Figure S2: (a) Laser excitation spectrum (blue line) and absorption spectrum (red line) of the
FMO complex at room temperature. (b) Dependence of the homodyne photon echo signal on
the excitation energy measured at zero waiting time. To illustrate the deviation from the linear
region, we plot the cubic root of the magnitude of the photon echo signal on the ordinate.

Spectral density

For simplicity, we choose an Ohmic spectral density to characterize the environmental fluctu-
ations. In addition, to account for the weak vibrational progression detected in the absorption
spectrum of the FMO complex (see Fig. 1C in the main paper), we have to add one additional
vibrational mode in the spectral density. We find an optimal fit if we assume this component
to be of the form of an overdamped harmonic mode to phenomenologically cover the experi-
mentally observed vibrational sidebands in the linear spectrum (6). Therefore, the total spectral
density used throughout the work is

wl’
(2 —w?)? + wl2°

2
J(w) = ywe /¥ 4 2503 (S1)
7
Here, v is the Ohmic damping constant and w.,. is a high-frequency cut-off parameter. Moreover,
S is the Huang-Rhys factor, (2 is the vibrational frequency of the overdamped mode and I is
the lifetime broadening. From fitting the linear absorption spectrum, we find v = 0.7, w, = 350

cm !, S =012, Q = 900 cm™! and ' = 700 cm~!. The reorganization energy can be
calculated as A = %'ywc + }rS Q2 = 190 cm™~!. The spectral density is shown in Fig.

Time non-local quantum master equation

For the numerical simulations, we have applied the established method of the time non-local
quantum master equation (7, 8). Time evolution of the total density matrix p which includes
system and bath is governed by the Liouville-von Neumann equation with the Liouville super-
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Figure S3: Spectral density used in this work for modeling the dissipative exciton dynamics.
The overdamped mode yields the accurate vibrational progression in the absorption spectrum

of the FMO complex shown in Fig. 1C in the main paper.

operator L (I = 1), according to

ptot = —i[Htot; ptot] = £,0tot . (S2)

The total Hamiltonian H,, = H, + Hy, + AHg, + A\?H,, includes the system, the bath, and
interaction and renormalization terms. For the sake of concreteness, let us assume here a system
with a single degree of freedom z. The bath consists of an ensemble of harmonic oscillators
with the Hamiltonian Hy, = 2;11 [p3/(2m;) + m;wix?/2]. The coupling between them is
assumed in form Hy, = f(z) Zjvzl c;jx; with some real function f(-).

The projection scheme of Nakajima and Zwanzig (9) allows us to separate the dynamics of
system and bath. The thermal state of the bath is represented by the canonical density operator
nd = exp(—BHy)/Z, with a given temperature T = (kpf)~! and Z;, being the partition
function of the bath. Applying a projector P = p;'try, with trppp’ = 1 and @ = (1 — P) yields
an exact formal quantum master equation for the time evolution of the reduced system density
operator pg (7) in the form

t

() = £0(0) + [ AR Op0) +T(0),
0
»C:H = Es + )\trbﬁsbple)q + >‘2£ren’

K(t,t) = ALy, (Teftt/ QEdtN) Q(Ly + A\La) o,

(1) = AtryLap (Tefé Qﬁdt”) Qpron(0).

(83)

Here, pot(0) is the total density operator of system and bath at initial time. The Liouville super-
operators Lg, Ly, and L., are associated with corresponding Hamiltonian operators. Moreover,
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L‘Sﬁ = —i[Hs+ Hyen, -] and T is the time-ordering operator (/0). Next, we expand the correlated
thermal equilibrium state to the first order in the overall coupling strength A\ and obtain

B
e L4 pramy L1 age B)(HetHy) f (1) =6 (Hyt Hy) (S4)

A Zb Z. 7, sb

with the respective partition functions Zi,, = trexp(—_5Ho), Zp, = try, exp(—FHy,) and Zg =
trg exp(— Hy). Next, we take the trace over the system degrees of freedom on both sides of
Eq. and get

N
1 _ AX / _(a_nal o
eq _ ¢~ BHb 1 ,—(B—B")Hy B'Hy
= + = df’e cx; e ) (S5)
Py Zb A ] (;Zl )
Here, x = (1/Z)tr, | f(x)e ?#]. The well-known bath correlation function

c(t) = / Z Z—:J(m cos(wt) coth (%") i / Zd—“’J( )sin(wt) = a(t) — ib(t)  (S6)

is given in terms of the standard bath spectral density J(w) and has the real part a(t) and
imaginary part b(t). After inserting Egs. and into Eq. (S3), we can express the last
three terms of Eq. by a(t) and b(t) and obtain

‘C:H - ﬁs + )\Q/L‘Cren,s + )\ZXM[’_a
K(t,t) = AL~ (a(t — )T e £ £ bt — )T el Esdt”ﬁ) ,

(S7)
0
D(t) = \2L™ / dt’ [a(t — ) Tehr &4 = pea 4 p(t — /)T el Esdt”ﬁpgﬂ ,
with £~ = —i[Hg, | and LT = [Hg,, -]+ — 2x. In terms of the spectral density, the potential

renormalization is given by pn = [*7 % J(w) /w.

In order to obtain an analytic form of the bath correlation function, any given spectral density
(in our particular case, we use the standard Ohmic form) can be approximated by a sum of
Lorentzian-like spectral terms (/1/, 12) in the form

n
s DPrWw

22 o 0P Tl T

J(w) = (S8)

where the spectral amplitude py, the frequency €2, and the width I';, follows from the expansion
of the original function in terms of Lorentzian functions. Inserting the expanded form of .J(w)
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in Eq. (S6) results in

LI s i 3 o
a’(t) = Z Srik Coth |: (Qk + ZF A2t — Fkt:| —+ Z SQka Coth |:§ (Qk _ Zl—‘k) e Qpt—Tgt
k=

9
+ 2 J(ivg)e ",
f =
- 1Pk iQut—Tyt —iQut Tyt
b(t) = pt=Lkt _ k k
( ) k=1 8rik (e ‘ ) ’

with the Matsubara frequencies v, = 27k /[3. _

Next, we rewrite the correlation functions as a(t) = > .7, ase’ and b(t) = > .7, afe!
with n; = 2n, n, = 2n + n/, where n’ is the number of Matsubara frequencies used. Then
we define new auxiliary “density matrices” which incorporate both memory effects and initial
correlations according to

t
Pe(t) = A (Tefo dt/ﬁse”ﬂ;t/ dt' e~ et L7 pea —i—/ dt' e =) el dt”LSﬁ_ps(t/)) )
0 0 (S10)

. . t . ’ 7
pz<t>:A(Tefédt'ﬁs€vzt / 't M £ e 4 / g )T oS L%*ps(t’)).

0 0

The time-retarded Eq. (S3) (first term) can the be deconvoluted into a set of coupled first-order
equations in the form

ps(t) = L () ps(t) + A

Zakc )+Ea2c—pz<t>]7
B0 = 1£4(8) 4 A0 L AL Ptk =1
5L0) = [£a(6) + AL + AL () k=1,

This set of time non-local quantum master equations was used for the calculations of the quan-
tum system dynamics.

(S11)

Calculation of the absorption and the circular dichroism (CD) spectrum

We have used the first-order transition dipole moment correlation function to calculate the ab-
sorption and the circular dichroism spectra using the expressions

Hw)ow [ e (),
o (S12)

—+00

CD(w) ocw/ dte™ (Romp oy X (1)) 4-

—00

S6
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Here, p is the transition dipole moment, the subscript ¢ means performing the trace in the
correlation function over a thermally equilibrated bath, and, R,,,, is the position vector be-
tween monomers m and n. The correlation function can be calculated as (p(t)p(0)), =

tre{ ptry e pup e (R - o X 0, (8))g = tre{ R o, X trple™ ', p, et}

Calculation of 2D electronic spectra

For the calculation of the 2D spectra we have applied the equation of motion-phase matching
approach (EOM-PMA) proposed by Gelin et al. (/3). In the EOM-PMA, the induced polariza-
tion in the photon-echo direction is calculated by simultaneous propagation of three auxiliary
density matrices (p1, p2, p3), €ach of which obeys a modified equation of motion of the form

pi(t) = —i[Hs = Vi(t,t1) = V] (t,t2) = VI (t, 1), 1 (£)] = R(1)pa (8),
pQ(t) = _i[Hs - ‘/l(tvtl) - ‘/QT(tv t2>’ 2( )] %(t)/h(t)
(t)

Dol (S13)
ps(t) = —i[H, — Vi(t,tr) — V3 (t. t3), p3(t)] — R(t)ps(t)

- )
- )
where V,(t,to) = X Ae~(t71)*/2T% it " X' T are the transition dipole operator and pulse dura-
tion, respectively, and R is a relaxation superoperator. All three above master equations were
calculated by the time non-local quantum master equation Eq. (STI)) with the respective differ-
ent time-dependent Hamiltonians. Then, the third-order induced polarization can be synthesized
as

Ppp(ty, by, ta, 1) = T (X (pa(t) — palt) — ps(t))) + c.c., (S14)

where the brackets (. . .) indicate the evaluation of the trace.

The total 2D Fourier-transformed spectrum is then given by the double Fourier transform of
the photon-echo polarization signal with respect to 7 (which is the time delay between ¢; and
ty)and ¢, i.e.,

Spe(wr, Tywy) ~ /dT/dt e~ Tt Ppp (7, T, t), (S15)

where w; is the “coherence” frequency, w; is the detection frequency, and 7' is “waiting” time
(delay between t, and t3).

For the calculation of the 2D spectra of the FMO complex, a multi-processing interface has
been used to reduce simulation time. The coherent time period [—300, 300] fs has been split up
into steps of size dT = 10 fs and each specified time was sent to one CPU for the calculation.
500 realizations were calculated to account for the random rotation of the molecular transition
dipole moment and for static disorder. Therefore, 61 CPUs were used for the calculation of
one spectrum. For each CPU, the maximally available memory space of 3.5 GByte was used to
speed up the calculation.

S7



(b) site 3 —
site 4 — |
site 5
site 6 ——
site3 @
site4 B 7
site 5
site6 B

(a) site 1 ——
site 2 — |
site 3

site 4 —
site1 @
site2 @ 7
site 3
site4 B
EoEOoO0O00g

1000

Figure S4: Time-dependent populations of the FMO sites 1 — 4 (a) and 3 — 6 (b) obtained for
the initial preparation in site 1 (a) or in site 6 (b). The solid lines mark the results obtained from
a time-nonlocal quantum master equation used in this work together with the spectral density
Eq. (SI). The symbols show the results of an exact path-integral calculations (/5) on the basis
of an independently obtained and parametrized experimental spectral density (/4).

Dynamics of the population of the FMO sites

The spectral density given in Eq. is the result of a simultaneous fitting to the experimental
photon absorption and circular dichroism spectra. A further test of its reliability can be obtained
by comparing the resulting dynamics of the FMO site populations obtained with the spectral
density of Eq. (SI)) and that one obtained previously from numerically exact path integral cal-
culations with an independently obtained and parametrized experimental spectral density (/4).
To be specific, we use the numerically exact results of Ref. 15 as a reference and consider the
two cases in which either site 1 or 6 is chosen as the initial state. The system Hamiltonian
used in Ref. 15 is exactly the same as used here. The spectral density of Ref. 14 used in Ref.
15 is different from that of Eq. (SI). The low-frequency part of Eq. (SI)) is Ohmic while that
one of Ref. 14 is super-Ohmic. The high-frequency parts are also different, but we note that
the interesting long-time dynamics is governed by the low-frequency parts of the bath spectral
density. The comparison is shown in Fig. [S4] for a temperature of 300 K. We find a good agree-
ment especially at long times while the deviations at short times are due to the differences in
the high-frequency sections of the two different spectral densities.

Low-temperature calculations

In order to check the performance of the modeling and the reliability of the approach in terms
of a quantum dissipative dynamics, we consider in this section the impact of changing the
temperature, but keeping all other parameters unchanged. For this, we have calculated the linear
absorption and CD spectra at 77 K. The calculated results are shown in Fig. [S5](red solid lines)
together with the experimentally measured data taken from Ref. 16. We find a good agreement
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Figure S5: (a) Linear absorption spectrum and (b) circular dichroism spectrum of the FMO
complex at 77 K. The solid red lines show the theoretical results obtained with the same pa-
rameter set used throughout this work, but with the only modified parameter being temperature.
The square symbols mark the experimental results taken from Ref. 16. The blue bars in (a)
mark the stick spectrum of the FMO complex.

given the fact that we the only changing parameter is temperature.

In addition, we have calculated the 2D electronic spectra of the FMO complex at 77 K
as well with the same set of parameters. The results for different waiting times are shown in
Fig. The spectra are in good agreement with the experimental results (/7, 18). The energy
transfer dynamics and pathways can be clearly observed by the kinetics of the off-diagonal
peaks.

Moreover, we calculate the time evolution of the off-diagonal signal at the spectral position
(wr = 12350 cm™ !, w; = 12200 cm™*!) considered in Ref. 19 and marked by “X” in Fig. 1A
in the main paper, but now also for 77 K. Apart from changing temperature, we use the same
parameters as before and the spectral density of Eq. (SI). The results for the real and imaginary
parts are shown in Fig. We find only weak electronic coherence which vanishes within the
dephasing time of less than 200 fs. As a consistence check, we also measure the homogeneous
linewidth provided by the antidiagonal in Fig. [S6| for zero waiting time. We find a FWHM of
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Figure S6: Real part of the 2D photon echo spectra calculated for a temperature of 77 K for
selected waiting times as indicated. Notice that the two axes for w, and w, are swapped as
compared to Ref. (/7).

Apom = 90 cm™!. This corresponds to an electronic dephasing time of 7,0, = 120 fs at 77 K, in
agreement with the previous results. Hence, we cannot confirm long-lived electronic coherence
at a temperature of 77K reported up to times beyond 1 ps.

Simulating long-lived electronic coherence

We did not observe long-lived electronic coherence in the present experimental and theoretical
results of the FMO complex. However, we can consider the question how a long-lived electronic
coherence would show up in an optical 2D spectrum at low temperature and, consistently, in
the time-dependent off-diagonal signal. To answer this question, we have used the simplest
possible model of a pure Ohmic spectral density, i.e., only the first term of Eq. (SIJ) and mimic
long-lived electronic coherence by a very weak system-bath interaction. We set v = 0.35 and
w, = 100 cm™!, and set the temperature again to 77 K. In Fig. [S§| (a), we show the result of
the 2D spectrum of the FMO under these weak-coupling conditions. The weak system-bath
coupling induces a very narrow central peak with a small homogeneous broadening visible in
the antidiagonal band width. We extract a FWHM of Ay, = 25 cm™!. This corresponds to an
electronic dephasing time of 7., = 420 fs.

Correspondingly, we show in Fig.[S§](b) the time-dependent off-diagonal signal at the spec-
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Figure S7: Calculated time-dependent off-diagonal signal (red: real part, blue: imaginary part)
at the spectral position (w, = 12350 cm~!, w, = 12200 cm~!) considered in Ref. 19 and marked
by “X” in Fig. 1A in the main paper, but now for 77 K.

tral position (w, = 12350 cm™!, w, = 12200 cm™!) considered in Ref. 19 and marked by “X”
in Fig. 1A in the main paper. We find (artificially created) long-lived electronic coherence up to
times beyond 450 fs, in agreement with the findings from the homogeneous line width. How-
ever, the measured 2D spectra of the real FMO complex do not show these sharp ridges with a
very narrow diagonal peaks at zero waiting times.

Three-dimensional spectrum of residuals in 2D data

After obtaining the residuals by removing the kinetics from the experimental data, we have
applied a numerical Fourier transform to the real part with equally separated time steps (10
fs) up to 2 ps. This yields a three-dimensional spectrum of the residuals with the dimensions
wy, wy and the vibrational frequency in the waiting time domain, wy. A few representative
two-dimensional vibrational maps with relatively large magnitudes and obtained from the ex-
perimental data are shown for different vibrational frequencies wy in Figs.[S9/and[ST0] In order
to prove the reproducibility of the observed vibrational oscillations, we present four data sets
labeled by (1), (2), (3) and (4) of repeated measurements. In sets (1) and (2), the data were
taken with a low power excitation pulse (with ~ 8 nJ), while in sets (3) and (4), we have cho-
sen excitation pulse with ~ 12 nJ. It shows that the presented vibrational oscillations and the
underlying frequencies are fully reproducible in four independent measurements although the
excitation power was different.
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Figure S8: (a) Calculated 2D spectrum of the FMO under artificially assumed weak system-bath
conditions with an Ohmic spectral density with v = 0.35 and w, = 100 cm™!, and temperature
of 77 K. Notice that the two axes for w, and w; are swapped as compared to Ref. (/7). (b)
Extracted time-dependent off-diagonal signal at the spectral position (w, = 12350 cm™!, w; =

12200 cm™!) considered in Ref. 19 and marked by “X” in Fig. 1A in the main paper.

Correlation analysis of the 2D vibrational maps

In order to quantify the correlation in the presented 2D vibrational maps, we perform a 2D
correlation analysis of the different sets of measurements which are labeled as (1) to (4) in Fig.
and The correlation parameters are shown in Table

Items 596

628

725

741

838

1015

1112

1144

1289

1595

12 | 0.9218

0.8892

0.8571

0.7863

0.7531

0.7808

0.5801

0.8878

0.9202

0.7287

13 | 0.6289

0.7929

0.7568

0.8485

0.6650

0.8688

0.5220

0.7912

0.7773

0.7065

1<+4 | 0.6591

0.7278

0.5807

0.6281

0.6190

0.8742

0.5826

0.7748

0.4268

0.6262

233 | 0.7945

0.6009

0.7844

0.9047

0.4902

0.6668

0.8353

0.7655

0.8232

0.8208

24 | 0.7600

0.5453

0.5885

0.6458

0.5040

0.6523

0.7551

0.7516

0.4439

0.7965

3<+4 | 0.8686

0.9498

0.7682

0.7624

0.9178

0.9514

0.4668

0.9739

0.6836

0.9409

Table 1: The 2D correlation analysis of the 2D vibrational maps. The vibrational frequencies
are given in units of cm™!.

Time-dependent off-diagonal signal at the X position

In Fig. 3C of the main paper, we show the time-dependent off-diagonal signal at the spectral
position (w, = 12350, w; = 12200cm-1) considered in Ref. 19 and marked by “X” in Fig. 1A
in the main paper for waiting times up to 600 fs. In Fig. we provide the results for the time
window between 600 fs and 2 ps in order to illustrate that no long-time electronic coherence is
present up to this time. The data are the averages of four independently measured spectra with
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Figure S9: Two-dimensional vibrational map (w;, w,) for different values of the frequency wp
from 596 cm ™! to 838 cm~!. Shown are four independent measurements with different values
of the pulse excitation power. In sets (1) and (2), we have chosen ~ 8 nJ and in sets (3) and (4),
the excitation power was set to ~ 12 nJ. All show good agreement and reproducibility.
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Figure S10: Same as in Fig. but for the frequencies wy from 1015 cm™! to 1595 cm™*.

the resulting standard deviation shown as error bars.
Finally, we have calculated the Fourier spectrum of this average, which is shown in Fig.
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Figure S11:  Time-dependent off-diagonal signal at the spectral position (w, = 12350,
w; = 12200cm-1) considered in Ref. 19 and marked by “X” in Fig. 1A in the main paper
for waiting times between 600 fs and 2 ps. The error bars mark the standard deviation obtained
after averaging four available experimental spectra.

[ST2] We do not find any pronounced frequency component.

Relation between the anti-diagonal bandwidth and the homogeneous line width

In order to demonstrate that the exciton dynamics in the FMO complex operates in the fast mod-
ulation limit, we have investigated the time dependence of the frequency correlation function
M(T') (20, 21). For a given waiting time 7', it can be extracted from the 2D electronic spectra
in the form of the ellipse eccentricity of the central peak according to the ratio

(a* = 0%
(a? 4+ b2)’

where a is the major and b the minor axis of the ellipse, see Fig. When this function
decays exponentially with increasing 7°, the dynamics occurs in the fast modulation (or ho-
mogeneous) limit. Put differently, the time scales of the homogeneous and inhomogeneous
broadening are well separated and an effective Markovian dynamics occurs. Then, the antidiag-
onal band width coincides with the electronic dephasing time (20, 27). Here, we have measured
the time-evolved diagonal (a) and anti-diagonal () bandwidth from the 2D spectra for different
waiting times 7". The frequency correlation function M (T') is plotted in Fig. and shows a
clear exponential decay at short to intermediate times (< 500 fs). Due to the admixture from
the vibrational progression and the energy transfer (excited state absorption), it deviates from a

M(T) = (S16)
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Figure S12: Fourier spectrum of the full time trace shown in Fig. 3C in the main paper and in

Fig. [STT]

clean single-exponential function at asymptotic times. Hence, we can safely conclude that we
are in the Markovian (fast modulation) regime which confirms earlier findings (22) on the basis
of numerically exact path-integral calculations of the non-Markovianity measure of the exciton
dynamics of the FMO complex.
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