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Fig. S1. Induction of type I IFN in cDCs by Heat-iMVA requires cGAS, STING, IRF3, IRF7 and
IFNARL.

Fig. S2. Induction of type I IFN in cDCs by UV-iMVA requires also requires STING.

Fig. S3. Induction of PD-L1 expression on Heat-iMVA-infected B16-F10 cells.

Fig. S4. Induction of type I IFN, proinflammatory cytokines and chemokines, and PD-L1
expression in human melanoma cell line infected with Heat-iMVA.

Fig. S5. Intratumoral injection of Heat-iIMVA results in the generation of Granzyme B™ and
Ki67* CD8" and CD4" T cells in the TNDLSs.

Fig. S6. Initial B16-F10 tumor volumes at the time of the first injection.

Fig. S7. Intratumoral injection of Heat-iMVA leads to the generation of anti-tumor specific
CD8" T cells in the TDLNSs in a Batf3-dependent manner.

Fig. S8. Intraperitoneal delivery of anti-CTLA-4, anti-PD1, or anti-PD-L1 antibody has
minimum survival benefit in a unilateral B16-F10 melanoma implantation model.

Fig. S9. The combination of intratumoral injection of Heat-MVA with systemic delivery of anti-
CTLA-4 or anti-PD-L1 antibodies significantly increases the overall response and cure rates in a
MC38 bilateral tumor implantation model.

Fig. S10. Intratumoral injection of Heat-iMVA is more effective than poly (I:C) in treating large
established tumors.

Fig. S11. The combination of intratumoral injection of Heat-MVA with systemic delivery of
immune checkpoint antibodies has synergistic effect in curing large established B16-F10

melanomas.

Table S1. Primer sequences for quantitative real-time PCR for the expression of type I IFN,

proinflammatory cytokine and chemokine genes.
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Fig. S1. Induction of type I IFN in murine cDCs by Heat-iMVA requires cGAS, STING,
IRF3, IRF7 and IFNARI. (A) Western blot showing protein levels of p-IRF3 and vaccinia E3
in Heat-iMVA or MV A-infected cDCs. The ratios of p-IRF3/B-actin were shown. (B) The effect
of heating temperature on the abilities of heat-iMVA to induce IFN-o and IFN-f secretion in
infected cDCs. (C, D) Heat-iMVA infection of ¢cDCs induces phosphorylation of IRF3 that is
dependent on cGAS (C) and STING (D). Western blot showing protein levels of p-IRF3 and j-
actin in Heat-iIMV A-infected cDCs from ¢cGAS"" and ¢cGAS™ mice (C) and from STING™" and
STING““' mice (D). “hpi”, hours post infection. “M”, mock infection control. (E) [fna4 and Ifnb
relative mRNA expression compared with no virus control in cDCs generated from WT, IRF3™",

IRF7”, or IRF5” mice and infected with Heat-iMVA. Data are means = SEM (n=3). (F)
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Concentrations of secreted IFN-a and IFN-f in the medium of cDCs generated from WT, IRF3™",
IRF7™", or IRF5"" mice and infected with Heat-IMVA. Data are means = SEM (n=3). (G) Ifna4
and Ifnb relative mRNA expression compared with no virus control in ¢cDCs generated from
IFNAR1™" and IFNAR1" mice and infected with Heat-iIMVA. Data are means = SEM (n=3).
(F) Concentrations of secreted IFN-a and IFN-f in the medium of cDCs generated from
IFNAR1"" and IFNAR1"" mice and infected with Heat-IMVA. Data are means + SEM (n=3).
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Fig. S2. Induction of type I IFN in ¢cDCs by UV-iMVA requires also requires STING. (A, B)
The concentrations of secreted IFN-a (A) and IFN- (B) in the medium over time following
MVA, Heat-iMVA, or UV-iIMVA infection of cDCs. Data are means + SEM (n=3). (C, D)
Concentrations of secreted IFN-a (C) and IFN-f (D) in the medium of ¢cDCs generated from WT
and STING“Y“' mice and infected with UV-IMVA. (n=3; ***P < 0.001; ¢ test). (E) Western Blot
showing protein levels of p-IRF-3, IRF3, STING, and B-actin. “hpi”, hours post infection. “NT”,

no treatment control.
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Fig. S3. Induction of PD-L1 expression on Heat-iMVA-infected B16-F10 cells. (A)
Representative flow cytometry plot of B16-F10 cells infected with either MVA at a MOI of 10 or
with an equivalent amount of Heat-iMVA. No virus infection and isotype control were also
included. (B) The mean fluorescence intensity (MFI) of PD-L1 expression on B16-F10 cells

infected with either MV A, Heat-iIMVA, or mock infection control is shown.
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Fig. S4. Induction of type I IFN, proinflammatory cytokines and chemokines, and PD-L1
expression in human melanoma cell line infected with Heat-iMVA. (A-F) Human melanoma
cell line SK-MEL-146 cells were infected with MVA at a MOI of 10 or with an equivalent
amount of Heat-iMVA. Cells were collected at 6 h post infection and RNAs were extracted.
Quantitative real-time PCR was performed. The relative mRNA expression of Ifnb, Cxcl9,
Cxcll0, Tnf, 116, Ccl4, and Ccl5 in B16-F10 cells infected with either MVA or Heat-iMVA.
(n=3; ***P < 0.001; ****P < (0.0001; ¢ test). (G, H) Expression of PD-L1 on SK-MEL-146 cells
infected with either MV A, Heat-iMV A or mock infection control. Representative flow cytometry
plot is shown in (G), repeated once. (H) The mean fluorescence intensity (MFI) of PD-LI
expression on SK-MEL-146 cells infected with either MVA, Heat-iMVA, or mock infection

control is shown.
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Fig. S5. Intratumoral injection of Heat-iMVA results in the generation of Granzyme B" and
Ki67" CD8" and CD4" T cells in the TNDLs. 5 x 10° B16-F10 melanoma cells were implanted
intradermally to the right flank of the mice. Seven days post implantation, either Heat-iIMVA (an
equivalent of 2x 107 pfu of MVA) or PBS were injected into the tumors on the right flank. The
injections were repeated three days later. TDLNs were harvested 3 days post last injection and
cell suspensions were generated. Immune cells were stained with various markers and analyzed
by FACS. (A-D) Representative flow cytometry plot of CD8" cells expressing Granzyme B” (A)
or Ki-67 (C), CD4" cells expressing Granzyme B (B), or Ki-67 (D). (E-H) Percentages of
CD8 Granzyme B' (E), CD8'Ki-67" (F), CD4 Granzyme B" (G), and CD4'Ki67" (H) cells
within TNLNs of mice treated with PBS (n=5) or Heat-iIMVA (n=5; ***P < 0.001; ****P <
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0.0001; t test). A representative experiment is shown, repeated once.
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Fig. S6. Initial B16-F10 tumor volumes at the time of the first injection. (A) Unilateral tumor
implantation model. B16-F10 melanoma cells (1 x 10’ cells) were intradermally implanted into
the right flank of WT C57B/6, STING®Y“", or Batf3” mice. At 11 days post-implantation, the
tumors were injected with either Heat-iIMVA (equivalent of 2 x 10" pfu) or PBS twice weekly.
The initial tumor volumes at the time of first injection are shown (n=5; **P < 0.01; ¢ test). (B)
Bilateral tumor implantation model. B16-F10 melanoma cells were implanted intradermally to
the left and right flanks of C57B/6 mice (5 x 10’ to the right flank and 1 x 10’ to the left flank). 8
days after tumor implantation, Heat-iIMVA or PBS was injected to the larger tumors on the right
flank. The initial tumor volumes at the time of first injection are shown (n=5, 6; **P < 0.01; ¢

test).
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Fig. S7. Intratumoral injection of Heat-iMVA leads to the generation of anti-tumor specific
CDS8" T cells in the TDLNs in a Batf3-dependent manner. (A) Representative flow cytometry
plots of TRP-2 tetramer positive CD8" T cells in TDLNSs in a B16-F10 melanoma model treated
with either PBS or Heat-inactivated MVA. (B) Percentages of TRP-2 tetramer positive CD8" T
cells in WT and Batf3”" mice with B16-F10 melanomas treated with either PBS or Heat-MVA.

Each sample was from lymph nodes pooled from 2-3 mice treated with the same condition (n=3;

*P < 0.05; ¢ test).
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Fig. S8. Intraperitoneal delivery of anti-CTLA-4, anti-PD1, or anti-PD-L1 antibody has
minimum survival benefit in a unilateral B16-F10 melanoma implantation model. B16-F10
melanoma (1x 10° cells) were implanted intradermally into the shaved skin on the right flank of
WT C57BL/6J mice. 8 days post implantation, mice were treated with intraperitoneal delivery of
anti-CTLA-4 (100 pg), anti-PD1 (250 pg), anti-PD-L1 (250 pg), or isotype control twice a week
(every 3-4 days). Kaplan-Meier survival curve is shown for isotype control (n=5), anti-CTLA-4-

treated mice (n=6), anti-PD1-treated mice (n=6), and anti-PD-L1-treated mice (n=6).
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Fig. S9. The combination of intratumoral injection of Heat-MVA with systemic delivery of
anti-CTLA-4 or anti-PD-L1 antibodies significantly increases the overall response and cure
rates in a MC38 bilateral tumor implantation model. (A-L) Volumes of injected (A) and non-
injected (B) tumor volume over days after PBS injection, after intratumoral injection of PBS and
intraperitoneal delivery of anti-CTLA-4 antibody (C, D), after intratumoral injection of PBS and
intraperitoneal delivery of anti-anti-PD-L1 antibody (E, F), after intratumoral injection of Heat-
MVA and intraperitoneal delivery of isotype antibody control (G, H), after intratumoral injection
of Heat-MVA and intraperitoneal delivery of anti-CTLA-4 antibody (I, J), after intratumoral
injection of Heat-M VA and intraperitoneal delivery of anti-PD-L1 antibody (K, L). (M) Kaplan-
Meier survival curve of tumor-bearing mice treated with PBS (n=6), anti-CTLA4 antibody
(n=7), or anti-PD-L1 antibody (n=7; ***P< 0.001, Mantel-Cox test). (N) Kaplan-Meier survival
curve of tumor-bearing mice treated with PBS (n=6), Heat-M VA + isotype control (n=10), Heat-
MVA + anti-CTLA4 antibody (n=10), or Heat-MVA + anti-PD-L1 antibody (n=10; *P < 0.05;

**4P < 0.01; ****P < (0.0001; Mantel-Cox test). A representative experiment is shown, repeated

once.
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Fig. S10. Intratumoral injection of Heat-iMVA is more effective than poly (I:C) in treating
large established tumors. (A) Schematic diagram of a unilateral tumor implantation model with
large established B16-OVA model. B16-OVA melanoma cells (5 x 10° cells) were implanted
intradermally to the right flanks of C57B/6 mice. 8-9 days after tumor implantation, mice were
intratumorally injected with Heat-iMVA, poly (I:C), or PBS mock control twice weekly. Tumor
sizes were measured and the survival of mice was monitored. (B) Volumes of injected tumors
over days after injections with PBS, Heat-iMVA, or poly (I:C). (C) Initial tumor volumes on the
day of first injection. (D) Kaplan-Meier survival curve of tumor-bearing mice treated with PBS,

Heat-MVA, or poly (I:C) intratumorally (n=10; **P < 0.01; ****P <(0.0001; Mantel-Cox test).
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Fig. S11. The combination of intratumoral injection of Heat-MVA with systemic delivery of
immune checkpoint antibodies has synergistic effect in curing large established B16-F10
melanomas. (A) Schematic diagram of a unilateral tumor implantation model with large
established B16-F10 melanoma model. B16-F10 melanoma cells (5 x 10° cells) were implanted
intradermally to the right flanks of C57B/6 mice. 8-9 days after tumor implantation, mice were
intratumorally injected with 2 x 10" pfu of Heat-MVA twice weekly in the presence or absence
of intraperitoneal delivery of anti-CTLA-4, anti-PD-1, or anti-PD-L1 antibodies. Tumor sizes
were measured and the survival of mice was monitored. (B) Volumes of injected tumors over
days after injections with PBS, or with Heat-iIMVA in the presence of isotype control, or anti-
CTLA-4, or anti-PD-1, or anti-PD-L1. (C) Initial tumor volumes prior to first treatment (n= 10;
*P < 0.05; ¢ test). (D) Kaplan-Meier survival curve of tumor-bearing mice treated with PBS, or
Heat-IMVA in the presence of isotype control, or anti-CTLA-4, or anti-PD-1, or anti-PD-L1
antibodies (n=10; *P < 0.05, **P < 0.01, ****P < (0.0001; Mantel-Cox test).
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mIFNA4 forward

5’-CCTGTGTGATGCAGGAACC-3’

mIFNAA4 reverse

5’-TCACCTCCCAGGCACAGA-3’

mIFNB forward

5’-TGGAGATGACGGAGAAGATG-3’

mIFNB reverse

5’-TTGGATGGCAAAGGCAGT-3’

mlIL6 forward

5’-AGGCATAACGCACTAGGTTT-3

mlL6 reverse

5’-AGCTGGAGTCACAGAAGGAG-3’

mCCL4 forward

5’-GCCCTCTCTCTCCTCTTGCT-3’

mCCL4 reverse

5’-CTGGTCTCATAGTAATCCATC-3’

mCCL5 forward

5’-GCCCACGTCAAGGAGTATTTCTA-3’

mCCLS5 reverse

5’-ACACACTTGGCGGTTCCTTC-3’

mCXCL10 forward

5’-GTCAGGTTGCCTCTGTCTCA-3’

mCXCL10 reverse 5’-TCAGGGAAGAGTCTGGAAAG-3’
mGAPDH forward 5’-ATCAAGAAGGTGGTGAAGCA-3’
mGAPDH reverse 5’-AGACAACCTGGTCCTCAGTGT-3’
hIFNB forward 5’-GCACTGGCTGGAATGAGACT-3’
hIFNB reverse 5’-CCTTGGCCTTCAGGTAATG-3’
hTNF forward 5’-AATAGGCTGTTCCCATGTAGC-3’
hTNF reverse 5’-AGAGGCTCAGCAATGAGTGA-¥

hI1L6 forward

5’-AATTCGGTACATCCTCGACGG-3’

hIL6 reverse

5’-TTGGAAGGTTCAGGTTGTTTTCT-3’

hCCL4 forward 5’- AAAACCTCTTTGCCACCAATACC-3°
hCCLA4 reverse 5’- GAGAGCAGAAGGCAGCTACTAG-3’
hCXCL9 forward 5’- AAACCCAGATTCAGCAGATG-3’
hCXCL9 reverse 5’- TCTTTTGACGAGAACGTTGAGA-3’
hCXCL10 forward 5S-ATTTGCTGCCTTATCTTTCTG-3’
hCXCLI10 reverse 5-TCTCACCCTTCTTTTTCATTGTAG-3’
hGAPDH forward 5’-ATCAAGAAGGTGGTGAAGCA-3’
hGAPDH reverse 5’-GTCGCTGTTGAAGTCAGAGGA-3’

Table S1. Primer sequences for quantitative real-time PCR for the expression of type I IFN,

proinflammatory cytokine and chemokine genes.




