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Table S1. Nomenclature of Human Calprotectin Variants 
Protein S100A8 Mutation(s) S100A9 Mutation(s) 
CP N/A N/A 
CP-Ser C42S C3S 
CP-Ser ΔHis3Asp C42S, H83A, H87A C3S, H20A, D30A 
CP-Ser ΔHis4 C42S, H17A, H27A C3S, H91A, H95A 
CP-Ser ΔΔ C42S, H17A, H27A, H83A, H87A C3S, H20A, D30A, H91A, H95A 
CP-Ser-AAA C42S C3S, H103A, H104A, H105A 
 
 
 
Table S2. Metal Analysis of Bacterial Growth Media a 

 Concentration (µM) 
Element TSB b BHI c LB d 

Mg 684 ± 67 157 ± 49 1190 ± 90 
Ca 332 ± 15 231 ± 12 337 ± 12 
Mn 0.566 ± 0.040 0.818 ± 0.61 0.893 ± 0.043 
Fe 13.8 ± 1.0 11.7 ± 1.6 14.5 ± 0.8 
Co 0.175 ± 0.016 0.366 ± 0.087 0.923 ± 0.051 
Ni 0.843 ± 0.121 0.227 ± 0.144 0.442 ± 0.401 
Cu 0.366 ± 0.028 0.419 ± 0.131 1.14 ± 0.08 
Zn 19.2 ± 1.0 24.0 ± 2.4 41.4 ± 1.5 

a Four independent media preparations were analyzed (mean ± SDM, n = 4). b Tryptic soy broth. 
c Blood heart infusion medium. d Luria-Bertani medium.  
 
 
 
Table S3. Fe Dissociation Constant and Reduction Potential Values of Small-Molecule 
Chelators a 
Chelator Kd,Fe(III) (M) Kd,Fe(II) (M) Eº (V vs. SHE) References 

Ent 10–49 10–22 –0.75 1, 2, 3 
DFO 10–31 10–9 –0.48 4, 5 
EDTA 10–26 10–15 +0.12 6 
DP — 10–18 +0.82 7, 8, 9, 10 
Phen — 10–25 +0.82 7, 8, 10 
a Ent, DFO, and EDTA form 1:1 Fe(II):ligand complexes. DP and Phen form 1:3 Fe(II):ligand 
complexes. The Kd and Eº values listed here are representative of the trends discussed in the 
main text and were obtained under various experimental conditions as detailed in the original 
references.  
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Fig. S1. Metal depletion by CP-Ser under aerobic conditions. Tris:TSB was treated with 10.5 µM 
(250 µg/mL) CP-Ser in the absence (black) or presence (red) of ≈3 mM BME at 30 ºC, 150 rpm. 
The  Mn (A), Fe (B, reproduced from Fig. 2B of the main text), Co (C), Ni (D), Cu (E), and Zn (F) 
in the CP-treated medium was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h (mean ± 
SDM, n = 3).  
 

 
Fig. S2. Metal depletion by ΔHis3Asp under aerobic conditions. Tris:TSB was treated with 10.5 
µM (250 µg/mL) CP-Ser in the absence (black) or presence (red) of ≈3 mM BME at 30 ºC, 150 
rpm. The  Mn (A), Fe (B reproduced from Fig. 2C of the main text), Co (C), Ni (D), Cu (E), and 
Zn (F) in the CP-treated medium was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h 
(mean ± SDM, n = 3).  
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Fig. S3. Metal depletion by ΔHis4 under aerobic conditions. Tris:TSB was treated with 10.5 µM 
(250 µg/mL) CP-Ser in the absence (black) or presence (red) of ≈3 mM BME at 30 ºC, 150 rpm. 
The  Mn (A), Fe (B, reproduced from Fig. 2D of the main text), Co (C), Ni (D), Cu (E), and Zn (F) 
in the CP-treated medium was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 24, and 48 h (mean ± 
SDM, n = 3).  
 
 
 
 
 
 

 
 

Fig. S4. Iron depletion of bacterial growth media by CP-Ser. (A) Tris:BHI and (B) Tris:LB were 
treated with 10.5 µM (250 µg/mL) CP-Ser in the absence (black) or presence (red) of ≈3 mM 
BME at 30 ºC, 150 rpm. The metal content of Fe was analyzed by ICP-MS at t = 0, 1, 2, 4, 8, 
24, and 48 h (mean ± SDM, n = 3). 
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Fig. S5. Schematic cartoon of the ferrozine assay quantifying Fe(II) and Fe(III). A solution of 10 
µM Fe(III) citrate in 75 mM HEPES, 100 mM NaCl, 2 mM CaCl2, pH 7.0 was incubated with 10.5 
µM CP. At each time point, aliquots of the mixture were transferred to microcentrifuge tubes and 
treated with ferrozine in the absence (Fe(II), blue) and presence (total Fe, red) of ascorbic acid. 
The optical absorption spectrum of each sample was collected, and Fe concentration was 
quantified using a calibration curve.  

 
 
 
 

 

Fig. S6. Optical absorption spectroscopy of 2’,2’-dipyridyl (DP) incubated in bacterial growth 
medium and buffer solutions. Representative optical absorbance difference spectra of (A) TSB, 
(B) BHI, (C) LB, and (D) 10 µM Fe(III) citrate in 75 mM HEPES, 100 mM NaCl, 2 mM CaCl2, pH 
7.0 incubated with 1.0 mM DP at 30 ºC, 150 rpm. The spectrum collected at t = 0 h was 
subtracted from those of other time points (t = 2, 4, 8, 24, 48 h).  
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Fig. S7. Chemical structures of the siderophores employed in this study.  
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