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I. DETAILS OF THE METHODOLOGY

The described methodology is strictly consistent in the way
that the training, testing, and validation of the techniques
are performed: (1) To avoid a biased selection of only trials
with good results, all the models should be tested on all the
provided test trials and their predictions (both good and bad)
should get included in the validation results, (2) At each cross-
validation fold, a set of particular training trials is provided
for training the models. The models can be trained using
any arbitrary subset of the training set. For example, it is
accepted if a technology decides not to train a model for
gesture G9. This will have the drawback for them that they can
not correctly classify G9 at test time, (3) If a model requires
a validation set (for hyper-parameter learning) then part of the
training set should be used, and (4) No test trials should be
used during the training or validation phase.

When reporting the results for a specific model, the “best”
configuration of parameters was defined as the one that
achieves the highest overall performance across different
cross-validation settings (LOSO and LOUO) and for different
tasks (suturing, needle-passing, and knot-tying).

II. RESULTS

Tables I and II summarize the validation results of the
reported algorithms in this paper when trained and tested
with the same input features. The input features to all these
algorithms are kinematics variables from both master and
slave robot arms (all 76 dimensions). Note that the video-
based techniques have already been trained and tested against
identical input video sequences, generating their own model-
specific intermediate features.

Tables III and IV summarize state-of-the-art results for skill
assessment using the JIGSAWS dataset. Table III shows micro-
average results of three techniques (KSVD-SHMM, MFA-
HMM [1] and discrete-HMM [2]) for a 3-way skill classi-
fication problem. The skill classes are expert, intermediate,
and expert, as defined in the JIGSAWS dataset.
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Table IV reports results for the skill regression problem for
two techniques: GMM-HMM and DCC [3]. Each technique
produces a score for a given trial which is used to regress
against the OSATS score provided for each trial in the JIG-
SAWS dataset. A leave-one-trial-out cross validation was used
to compute the results. Note that the performances of these al-
gorithms are not directly comparable as they were not assessed
using the uniform validation methodology described in this
paper, but they can provide a perspective on the accuracy of
skill classification. In addition, other newer techniques [4]–[6]
(using other larger and complex surgical datasets) have shown
when gesture sequence and boundaries are known, they are
able to predict the surgeon’s skill level with up to 90% and
75% accuracy, under leave-one-trail-out and leave-one-user-
out accuracy, respectively.

III. COMPUTATIONAL COMPLEXITY

The complexity of the training phase is reported in Table
V for training C classes using all m samples. The complexity
of the decoding phase is reported for decoding one single test
sample.

In this table, T is the number of frames in a given trial,
t number of frames in a segment, C the number of gesture
classes, m number of training samples, n number of iterations,
D dimension of the features, d dimension of the hidden state,
K the sparsity level, x number of dense features extracted
from one frame, L number of the atoms in the dictionary, v
the number of SVM support vectors, and S the total number
of hidden states.

IV. SURGICAL GESTURE CLASSIFICATION

A. Bag of Spatio-Temporal Features: BoF

Classification: The three different types of kernels used in
section V-A for classification are defined as bellow:

KI(hi, hj) = min(hi, hj) (1)

KX (hi, hj) =
∑
k

2
hi(k)hj(k)

hi(k) + hj(k)
(2)

KRBF(hi, hj) = exp(−γ
Q∑
q=1

1

µq
d(hqi , h

q
j)) (3)

where γ ∈ R+ is a parameter. When we have Q different
types of features extracted from the data (e.g. in BoF we have
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TABLE I: Performance of gestures joint segmentation and
classification techniques validated on the JIGSAWS using the
same input features (76 dimensions of kinematics). GMM-
HMM (S = 3, M = 1, d = 1, f1), KSVD-S-HMM (K = 3,
300-word dictionary), MsM-CRF (kinematic m2), and SC-
CRF (δ = 30).

Cross
validation

Method
(Data
type) Evaluation Suturing Needle-

passing Knot-tying

LOSO

GMM-
HMM
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

78.76
70.34±26.36
71.30±27.72
79.46±23.59
69.18–88.11

64.28
61.00±12.08
61.81±17.85
64.39±8.724
58.51–70.07

75.03
70.37±13.71
75.52±11.91
74.53±40.12
61.20–85.861

KSVD-
SHMM

(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

83.94
74.27±27.02
84.55±10.52
84.63±0.11
77.38–90.69

70.69
65.29±20.43
65.21±21.16
71.12±0.26
60.64–80.56

77.83
74.57±9.32

83.64±10.95
77.78±0.15
69.58–85.02

MsM-
CRF
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

81.99
72.56±26.70
72.23±27.69
83.04±0.24
72.29–91.57

72.44
67.73±16.93
67.54±18.97
73.24±0.29

62.075–83.09

79.26
79.05±7.62
82.12±7.27
79.19±0.14
71.15–86.22

LOUO

GMM-
HMM
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

65.21
51.62±28.57
54.01±32.33
64.62±72.27
47.20–80.24

45.88
39.19±12.64
49.32±27.13
45.92±73.06
29.50–62.79

64.49
58.71±12.62
64.31±10.90
62.22±1.413
37.82–83.66

KSVD-
SHMM

(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

70.81
51.48±27.08
68.59±19.01
70.63±0.19
61.54–78.97

55.02
41.16±19.92
50.02±23.91
56.52±0.57
41.43–71.02

67.89
64.60±11.29
72.76±13.58
69.44±1.00
48.24–86.99

MsM-
CRF
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

67.84
51.05±28.62
54.27±32.20
68.24±1.34
43.67–88.26

44.68
37.58±12.63
47.43±27.12
46.83±2.14
19.36–75.43

63.28
53.05±26.31
57.95±31.66
64.40±1.13
42.38–83.58

SC-
CRF
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

78.22
59.10±34.72
62.71±32.21
78.32±30.93
66.50–88.15

69.16
59.74±20.10
62.23±17.87
69.49±90.13
49.48–86.22

67.69
60.68±13.94
61.18±17.29
68.50±75.81
50.34–84.12

both HOG and HOF descriptors, i.e. Q = 2), we can either
concatenate them and construct only one histogram, or we
can have Q separate histogram representations (hq for q =
{1, 2, . . . , Q}). In the latter case, each representation can been
considered as a channel, and we can compute a kernel using a
multi-channel approach. In the definition of RBF kernel above,
the function d(hqi , h

q
j) returns the X 2 distance between the two

histograms hqi and hqj from channel q, and µq is the average
empirical distance between all pairs of training histograms for
channel q [7].

B. Linear Dynamical System

Comparing LDSs: To assess the similarity or the distance
between two LDS models, we used three different types of
distance metrics in section V-B that we briefly describe below:

TABLE II: Performance of gesture classification techniques
validated on the JIGSAWS using the same input features (76
dimensions of kinematics). LDS(n = 15, SVM classifier, BC
metric for kinematics), and GMM-HMM (S = 3, M = 1,
d = 1).

Cross
validation

Method
(Data
type) Evaluation Suturing Needle-

passing Knot-tying

LOSO

LDS
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

84.61
63.87±30.82
73.30±28.41
84.77±0.06
79.36–89.49

59.76
46.55±25.81
52.91±17.31
59.78±0.01
57.42–62.12

81.67
74.51±23.73
76.07±18.72
81.67±0.016
79.12–84.09

GMM-
HMM
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

87.76
75.13±28.63
75.13±28.55
87.76±0.01
85.8–89.60

68.14
64.52±16.51
66.14±19.24
68.12±0.01
65.71–70.47

82.48
78.86±14.08
81.85±9.75
82.35±0.34
69.44–92.27

LOUO

LDS
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

73.64
51.75±32.91
53.39±32.01
73.80±0.30
62.31–83.84

47.96
32.59±29.74
32.01±27.76
45.68±1.45
22.92–69.44

71.42
63.99±24.51
65.74±21.54
71.44±0.15
63.31–78.93

GMM-
HMM
(kin)

Micro
Macro±std

Precision±std
β (µ± σ)

β 95%CI

66.58
50.40±30.33
56.89±34.06
66.98±0.68
49.89–82.03

48.64
46.61±13.00
56.70±28.23
48.42±0.90
30.08–66.99

67.65
62.34±17.14
65.62±16.82
67.10±1.17
44.35–86.21

TABLE III: Skill classification results (micro averages) re-
ported in [1] and [2]. Three classes are self-claimed expertise
level: expert, intermediate, and novice.

Cross
validation

Method
(Data type) Suturing Needle-Passing Knot-Tying

LOSO

KSVD-
SHMM
(kin) [1] 97.4 96.2 94.4

LOSO

MFA-
HMM

(kin) [1] 92.3 76.9 86.1

LOSO

discrete-
HMM

(kin) [2] 72
Not

available
Not

available

LOUO

KSVD-
SHMM
(kin) [1] 59.0 26.9 58.3

LOUO

MFA-
HMM

(kin) [1] 38.5 46.2 44.4

(1) Subspace angles: Metrics based on subspace angles (
[8], [9]) measure the dissimilarity of two LDS models (of order
n represented by M1 = (A1, C1) and M2 = (A2, C2)) using
the subspace angles (θ1, . . . θ2n) between the range spaces of
their infinite observability matrices of the dynamical models.
The LDS model’s infinite observability matrix is defined as
follows:

Oi = [CTi , (CiAi)
T , (CiA

2
i )
T , . . .], i = 1, 2 (4)

The subspace angles are invariant with respect to a change
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TABLE IV: Skill regression results (similarity, OSATS mean
and standard deviation of error, Area Under the Curve, and
95% confidence interval) using the techniques reported in [3].
A leave-one-trial-out LOTO cross validation was performed.

.
Cross

validation
Method

(Data type)) Evaluation Suturing

LOTO

GMM-
HMM

(kin) [3]

Sim
Error µ, σ

AUC
95% CI

82.68
17.3±15.10

0.97
0.92–1.0

LOTO
DCC

(kin) [3]

Sim
Error µ, σ

AUC
95% CI

85.79
0.14±0.15

0.98
0.93–1.0

TABLE V: Computational complexity.

Technique
Training Phase
m samples

Decoding Phase
1 sample

HMM
O(mTD2): LDA

O(mTS2): Baum Welch O(TS2)

S-HMM O(mT (K2 +D)L) O(TC2)

MsM-CRF
O(mt): feature extraction

O(mtnTC2): parameter learning O(mtnTC2)

SC-CRF

O(mTC2): inference
O(nmTC2): optimization

(Block Coordinate Frank Wolfe) O(TC2)

BoF

O(mt): feature extraction
O(mtxn): dictionary learning
O(mtx): histogram generation
O(Lm2): kernel generation

O(m2C): SVM kernel learning O(tmx+ v2LC)

LDS

O(mdD2): PCA
O(m2d3): LDS kernel

O(m2d3): Sylvester eq. for all pairs
O(m2C): SVM kernel O(dD2 + v2d3C)

of basis in the state spaces and thus one can define different
metric distances based on the subspace angles [8]. For a stable
system (‖Ai‖ < 1), the subspace angle is defined as θi =
cos−1(

√
λi) where λi is the ith eigenvalue of P−111 P12P

−1
22 P21

and Pij is the solution to the Sylvester equation with constant
ρ = 1:

Pij = ρATi PijAj + CTi Cj (5)

After measuring the subspace angles, we then can compute the
dissimilarity between the two given models using the Martin
distance metric:

d2M (M1,M2) = − log

2n∏
i=1

cos2(θi) (6)

or the Frobenius distance metric:

d2F (M1,M2) = 2

2n∑
i=1

sin2(θi) (7)

(2) Binet-Cauchy (BC) kernels: The distance metrics based
on BC-kernels [10] depends not only on the parameters (A,C),
but also on the initial condition x0. For our particular appli-
cation of classification, we use a special case of BC kernel,
called the normalized determinant kernel that is independent of
the initial conditions and is invariant to basis transformation.
The normalized determinant kernel is defined as follows:

kD(M1,M2) =
det(P12)2

det(P11)det(P22)
(8)

where Pij is the solution to the Sylvester equation with
0 < ρ < 1 being a parameter (not a constant as for subspace
angles). We then compute the distance between the two given
models as:

d2D(M1,M2) = kD(M1,M1) +kD(M2,M2)−2kD(M1,M2)
(9)

(3) Action-induced distances: This approach aims to find
the “closest” representation between two LDS models through
a basis transformation [11]. The non-singular matrix transfor-
mation Q is restricted to be from the orthogonal group O(n)
for a more tractable computation. A Frobenius norm is used
to measure the squared Align metric between the two model
parameters as follows:

d2A(M1,M2) = min
Q∈O(n)

{λA‖QTA1Q−A2‖2+ (10)

λc‖C1Q− C2‖2 + λB‖QTB1 −B2‖}

with weight parameters λA ≥ 0, λB ≥ 0 and λC ≥ 0.

V. SURGICAL GESTURE SEGMENTATION AND
CLASSIFICATION

A. Sparse Hidden Markov Model: S-HMM

Inference: As discussed in section IV-B, when modeling the
surgical gestures with S-HMM, we can infer the sequence of
gesture labels {zt}Tt=1 using a dynamic programming method
similar to the Viterbi algorithm [12].

However, in our model, the marginal probability p(ot|zt)
cannot be computed in closed form because xt has a Laplace
distribution. Thus instead of marginalizing over xt and com-
puting p(s1:T , o1:T ), we choose the best x∗t for each zt and
only maximize over zt with fixed corresponding xt. More
specifically, we can write the following recursion

αt(z,x) ,p(ot|xt = x, zt = z) · p(xt = x|zt = z)

·max
z′,x′
{qz′,z · αt−1(z′,x′)} (11)

From the last equality, one can see that the value of xt only
affects the first two probabilities and has no influence on the
last term. Now, since the number of states Z is finite, for
each z we can find the x̂z that maximizes p(ot|x, z)p(x|z).
That is, x̂z = arg minx λz‖x‖1 + 1

2σ2
z
‖ot −Dzx‖2, which

can be found using Basis Pursuit [13] or Orthogonal Matching
Pursuit (OMP) [14]. Since the learning algorithm uses K-SVD
method which uses OMP for sparse coding, we also use OMP
here.
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B. Semantic Image Model and Skip-Chain Conditional Ran-
dom Field

Semantic Image Models and Features:
In section IV-D, we developed a deformable part model [15]

to detect and localize the positions of the objects in the video.
As the first step in training the semantic model, we manually

label the position of the objects in the first (non-occluded)
frame of each video file. Having multiple samples of the
location of each object qi, we can model the distance between
the pairs (qi, qj) using a Gaussian function with mean and
standard deviation (µij ,Σij).

The next step is to localize the objects in each image. We
use a template matching algorithm to find these objects. To
reduce the false positive rate of the template matching, we
learn the incorrect patches by training a classifier (SVM) and
using its output when deciding whether to accept or reject a
candidate object.

Finally, our goal is to find a most likely configuration for
all objects Q = {q1, . . . , qn} in a given image I by optimizing
P (Q|I) ∝ exp(−EV (I,Q)), where EV is the following
energy function:

EV (I,Q) =
∑

i∈nodes

wvuφV (I, qi) +
∑

i∈edges

wveψV (I, qi, qj)

(12)
where φV is the unary function which returns the score from
the template-matching step. The pairwise term ψV returns a
dissimilarity score for the edge length between two nodes
using the Gaussian model learned for that particular edge:

ψV (qi, qj) = (qi − qj − µij)TΣ−1ij (qi − qj − µij) (13)

For inference, we use a computationally efficient variation of
belief propagation proposed by [15].

After determining the object locations in the image, we
compute two new semantic-driven features. To do so, we
first project the tool Cartesian position (pK known from
the kinematics) into the current image frame (pI ). Then we
measures the distance between pI and the closest object in the
image:

fd(pI , Q) = min
i
‖pI − qi‖2. (14)

The second feature measures the relative position between the
projection of the tool and the closest object:

fo(pI , Q) = pI − qi∗ (15)

where i∗ = arg mini ‖pI − qi‖2.
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