Supporting Methods

Calculations and Statistics. Analysis of the time course of substrate accumulation was based on a one-compartment model described in ref. 1. Analysis of saturation curves and calculations of K_i values are reported in ref. 2. Fitted parameters such as K_m and K_i are given as geometric mean with a 95% confidence interval. Arithmetic means are given with SEMs.

The efflux of ET (Fig. 5) was described with a simple exponential: $rc = 100\% * (e^{-k^*t})$. The efflux of stachydrine had to be modeled with two coupled differential equations: $dA/dt = B * k_{21} - A * k_{12}$ and $dB/dt = A * k_{12} + C * k_{32} - B * (k_{21} + k_{23})$, where A and B represent two distinct intracellular states of stachydrine and C represents extracellular stachydrine. Velocity of uptake of ET as a function of Na⁺ concentration (Fig. 6) could be described with a modified Hill function: $v = V_0 + V_{\text{lim}}/(1 + K * c_{\text{Na}^+}^{-h})$, where h is the Hill coefficient and c_{Na^+} is the sodium concentration. For stachydrine, a model of competitive inhibition was used: $v = V_0/(1 + c_{\text{Na}^+}/K_i)$. Velocity of uptake as a function of pH (Fig. 7) could be described with $v = V_{\text{max}} * (10^{-\text{pH}}/(10^{-\text{pH}} + K_a)) * S/(K_m + S)$, where K_a is the acid dissociation constant and K_a is the substrate concentration. This function is based on the assumptions that (K_a) only K_a is affected by pH changes (K_a) and (K_a) only the protonated transporter (TH⁺) is active in transport (K_a) = H⁺ * T/TH⁺; K_a = TH⁺/(TH⁺ + T) = H⁺/(H⁺ + K_a).

Drugs. Radiotracers (all from ARC, St. Louis) were as follows: 3-*O*-acetyl-L-carnitine (³H, 2.96 kBq/pmol; ART-739), L-carnitine (³H, 2.96 kBq/pmol; ART-739), glycine betaine (¹⁴C, 1.85 Bq/pmol, ARC-1432), L-histidine (³H, 1.48 kBq/pmol, ART-234), 4-hydroxy-L-proline (³H, 0.555 kBq/pmol, ART-231), L-proline (³H, 3.33 kBq/pmol, ART-475), and tetraethylammonium (¹⁴C, 2.04 Bq/pmol, ARC-577).

Unlabeled compounds were as follows: betonicine (0605, Extrasynthese, Genay, France), γ-butyryl betaine hydrochloride (403245, Sigma-Aldrich), L-(+)-ergothioneine (F-3455, Bachem), *N*-methyl-L-proline monohydrate (306843, Sigma-Aldrich), stachydrine hydrochloride (0604, Extrasynthese), 1-methyl-4-phenylpyridinium iodide (D-048, Sigma-Aldrich). All other chemicals were at least of analytical grade.

- 1. Russ, H., Gliese, M., Sonna, J. & Schömig, E. (1992) *Naunyn-Schmiedeberg's Arch. Pharmacol.* **346**, 158-165.
- 2. Schömig, E., Babin-Ebell, J. & Russ, H. (1993) *Naunyn-Schmiedeberg's Arch. Pharmacol.* **347**, 379-383.