1	Supplementary Material
2	Pyruvate Formate-Lyase Interacts Directly with the FocA Channel to Regulate Formate
3	Translocation
4	Claudia Doberenz, Michael Zorn, Dörte Falke, David Nannemann, Doreen Hunger, Lydia
5	Beyer, Christian H. Ihling, Jens Meiler, Andrea Sinz and R. Gary Sawers*
6	

Table S1. List of identified FocA-binding partners.

ID	Description	MW	Peptides	Peptide	Mascot
		[kDa]		spectral	score
				matches	
P0AC25	Probable formate transporter 1	31.0	5	273	1271
P09373	Formate acetyltransferase 1	85.3	40	117	1680
A7ZSL4	Elongation factor Tu 1	43.3	17	59	800
P0A9B4	Glyceraldehyde-3-phosphate dehydrogenase A	35.5	14	59	417
P0A9Q8	Aldehyde-alcohol dehydrogenase	96.1	28	56	1571
P06050	Dihydrolipoyllysine-residue acetyltransferase	66 1	21	51	647
100757	component of pyruvate dehydrogenase complex	00.1	21		047
A7ZHA4	Chaperone protein DnaK	69.1	27	47	251
Q8FB83	DNA-directed RNA polymerase subunit beta	155.1	33	42	1097
A7ZUK2	DNA-directed RNA polymerase subunit beta	155.1	33	40	1097
A7ZSK6	50S ribosomal protein L2	29.8	11	35	300
P0A911	Outer membrane protein	37.2	9	34	151
P69911	Glutamate decarboxylase beta	52.6	10	32	450
A7ZUK1	DNA-directed RNA polymerase subunit beta	150.5	28	31	913
P69909	Glutamate decarboxylase alpha	52.7	10	30	428
Q46829	6-phospho-beta-glucosidase BglA	55.3	11	28	138
A7ZSI5	30S ribosomal protein S4	23.5	6	28	140
B1IUY2	Alanyl-tRNA synthetase	96.0	18	28	761
P62577	Chloramphenicol acetyltransferase	25.6	4	26	254
P24182	Biotin carboxylase	49.3	9	25	326
A7ZQM2	Enolase	45.6	12	25	322
A1AJ51	60 kDa chaperonin 1	57.3	16	23	115
P0A9P2	Dihydrolipoyl dehydrogenase	50.7	13	23	266
P0A9H4	Lysine decarboxylase, inducible	81.2	14	23	412
P08830	Phosphoenolpyruvate-protein	63 5	13	22	471
1 08859	phosphotransferase	05.5	1.5		
P00393	NADH dehydrogenase	47.3	8	21	465
A7ZR64	S-adenosylmethionine synthase	41.9	12	21	449
A7ZSJ4	50S ribosomal protein L6	18.9	6	21	195
A7ZTR3	Tryptophanase	52.7	10	21	220
P28629	Biodegradative arginine decarboxylase	84.4	14	20	467
P0A797	6-phosphofructokinase isozyme 1	34.8	7	20	203
A7ZSI4	DNA-directed RNA polymerase subunit alpha	36.5	7	18	87
B7UIL4	30S ribosomal protein S2	26.7	6	18	177
A7ZSI3	50S ribosomal protein L17	14.4	4	17	62

A7ZSK3	30S ribosomal protein S3	26.0	7	16	80
P00350	6-phosphogluconate dehydrogenase,	51.4	7	14	87
100550	decarboxylating	51.4	/	14	07
B1XBE0	Chaperone protein DnaJ	41.1	8	14	118
A7ZSL5	Elongation factor G	77.5	11	14	337
P0A954	3-oxoacyl-[acyl-carrier-protein] synthase 1	42.6	5	14	206
P0A9M8	Phosphate acetyltransferase	77.1	8	13	239
A7ZV47	Adenylosuccinate synthetase	47.3	7	13	256
A7ZQM3	CTP synthase	60.3	8	13	227
A7ZUJ8	50S ribosomal protein L10	17.7	4	12	81
A7ZV73	30S ribosomal protein S18	9.0	3	12	83
P0AE10	Alkyl hydroperoxide reductase subunit C	20.7	3	11	84
P0AES4	DNA gyrase subunit A	96.9	4	11	103
A7ZR34	Phosphoglycerate kinase	41.1	5	11	190
P00562	Bifunctional aspartokinase/homoserine dehydrogenase 2	88.8	7	10	392
P0A9H8	Cyclopropane-fatty-acyl-phospholipid synthase	43.9	6	10	116
P0ACG0	DNA-binding protein H-NS	15.5	4	10	102
P07003	Pyruvate dehydrogenase [ubiquinone]	62.0	7	10	172
A7ZSK8	50S ribosomal protein L4	22.1	5	10	52
A7ZSJ7	50S ribosomal protein L5	20.3	3	10	134
P0A6A5	Acetate kinase	43.3	4	9	125
A7ZHC0	Dihydrodipicolinate reductase	28.7	3	9	106
P21599	Pyruvate kinase II	51.3	8	9	44
A7ZUK0	50S ribosomal protein L7/L12	12.3	3	9	40
A7ZSI6	30S ribosomal protein S11	13.8	3	9	139
A7ZNR4	D-tagatose-1,6-bisphosphate aldolase subunit gatZ	47.1	4	8	112
Q8X8V9	D-methionine-binding lipoprotein metQ	29.4	6	8	44
P0A7T1	30S ribosomal protein S13	13.1	4	8	76
P07395	Phenylalanyl-tRNA synthetase beta chain	87.3	6	8	197
B7L7S9	Arginyl-tRNA synthetase	64.7	6	8	138
P00954	Tryptophanyl-tRNA synthetase	37.4	4	8	74
P0AB72	Fructose-bisphosphate aldolase class 2	39.1	4	7	38
A7ZUH4	Phosphoenolpyruvate carboxylase	99.0	7	7	223
A1AJV0	Phosphopentomutase	44.4	4	7	136
A7ZVS7	Purine nucleoside phosphorylase deoD-type	25.9	5	7	116
P14407	Fumarate hydratase class I, anaerobic	60.1	6	7	51
P0ACD8	Hydrogenase-1 large chain	66.2	6	7	222
A7ZK14	Chromosome partition protein mukB	170.1	5	7	116
P0A9N6	Pyruvate formate-lyase 1-activating enzyme	28.2	4	7	101
A7ZHI9	Protein translocase subunit SecA	102.0	7	7	211
A7ZTA5	Glycyl-tRNA synthetase beta subunit	76.7	6	7	224

14 linked amino acids are shown in bold and underlined.

Measured	Theoretical	Charge	Mass	AA sequences of FocA and site	AA sequences of PflB and site of
m/z	mass	state	deviation	of cross-linking	cross-linking
			[ppm]		
1318.342	3953.016	+3	+0.9	³ ADNPFDLLLPAAMA <u>K</u> VAE ²⁰	³⁰² AQEMVDHLVm <u>K</u> LRMVR ³¹⁷
1021.527	3062.576	+3	-2.8	²² AGVY <u>K</u> ATK ²⁹	¹⁹² YLmKD <u>K</u> LAQFTSLQADLE ²⁰⁹
883.116	2647.332	+3	+0.1	³ ADNPFDLLLPAAmA <u>K</u> VAE ²⁰	28 DFIQ K 32
838.437	2513.296	+3	+0.6	³ ADNPFDLLLPAAmA <u>K</u> VAE ²⁰	437 ANLA <u>K</u> 441
830.753	2490.240	+3	+1.5	¹⁰⁵ ITWGQLA <u>K</u> ¹¹²	⁴⁶³ <u>S</u> EPIKGDVLNYDE ⁴⁷⁵
795.067	2383.182	+3	+1.5	⁹ LLLPAAmA <u>K</u> ¹⁷	¹¹⁸ mIEGSBKA <u>Y</u> NR ¹²⁸
750.040	2248.101	+3	+2.1	¹⁸⁷ SLMD <u>K</u> ¹⁹¹	²⁹¹ DLKAGKI <u>T</u> EQEAQE ³⁰⁴
744.708	2232.114	+3	-1.4	⁹ LLLPAAmA <u>K</u> VAEE ²¹	³³⁸ SIGGmGLD ³⁴⁵
712.704	2136.097	+3	+0.5	⁹ LLLPAAMA <u>K</u> VAEE ²¹	$^{192}\underline{\mathbf{Y}}\mathrm{LmKD}^{196}$
1036.523	2072.037	+2	+0.7	³ ADNPFDLLLPAAMA <u>K</u> ¹⁷	641 DQ \underline{K}^{643}
675.336	2023.997	+3	-0.9	$^{187}\underline{S}LMD^{190}$	¹²⁹ ELDPMIK <u>K</u> IFTE ¹⁴⁰
642.367	1925.086	+3	+0.3	²² AGVYKA <u>T</u> KHPLK ³³	⁹³ QLE <u>K</u> ⁹⁶
508.280	1522.826	+3	-0.4	²² AGVY <u>K</u> ²⁶	$^{726}\underline{\mathbf{Y}}$ PQLTIR 732
621.298	1241.590	+2	0	$^{27}\text{AT}\underline{\mathbf{K}}^{29}$	³⁹⁵ <u>T</u> SSLQYE ⁴⁰¹

Table S3. Strains used in this study.

Strain or plasmid	Relevant genotype or characteristic(s)	Reference of source
Strains		
BL21 (DE3)	F^{-} ompT hsdS($r_B^{-}m_B^{-}$) gal dcm lacYl	Novagen
	(DE3)	
MC4100	F^{-} araD139 $\Delta(argF-lac)U169 \ ptsF25$	1
	deoC1 relA1 flbB5301 rspL150 ⁻	
RM201	Like MC4100 but $\Delta pfl-25$	2
	$\Omega(nfl::cat pACYC184) (\Lambda focAnflB)$	
	\mathbf{r}	
D) (220		2
RM220	Like MC4100 but $\Delta pflB-pflA$	3
PEK701	Like MC4100 but $foc 4$ (foc 4 codons	Λ
KLK/01	114 and 115 changed to UAG and	7
	IIA respectively)	
REK702	Like MC(100 but GUG codon of fac)	Λ
KEK/02	converted to AUG	4
PM223	MC4100 but $nflR$ $nflA$ $tdcE$	3
ICIVI225		5
PM08	MC4100 <i>pfl4</i> Tn5	C Pinske
1 1100	Nie 1100, pj21110	C. I IIISKC
234M1	MC4100 but $pflA$, Cm ^R	5
	10 /	
BL21 $\Delta pflA$	BL21 but <i>pflA</i> , Cm ^R , Tet ^R	This study
DHM1	F-, cya-854, recA1, endA1, gyrA96	6
	(Nal r), thil, hsdR17, spoT1, rfbD1,	
	glnV44(AS).	
Plasmids		
pKNT25	Kan ^R , expression vector	Euromedex
1	2 I	
	P .	
pKT25	Kan [*] , expression vector	Euromedex
pUT18	$\operatorname{Amp}_{p}^{\kappa}$, expression vector	Euromedex
pUT18C	$\operatorname{Amp}_{p}^{\kappa}$, expression vector	Euromedex
pASK-IBA5focA	Amp^{κ} , expression vector with the gene	7
	focA, encoding N-terminally Strep-	
	tagged FocA	

pASK-IBA3focA	Amp ^R , expression vector with the gene	7
	focA, encoding C-terminally Strep-	
	tagged FocA	
pCA24NpflB	Cm ^R , <i>pflB</i> encoding His-tagged PflB	National BioResources
	in pCA24N	Project (NIG, Japan); 8
pJW0886	Cm ^R , ASKA plasmid with <i>pflB</i>	National BioResources
		Project (NIG, Japan): E.
		coli
pKT25-zip	Control vector, BACTH-system	Euromedex
pUT18-zip	Control vector, BACTH-system	Euromedex
pKT25-focA	Kan ^R , pKT25 with the gene <i>focA</i>	This study
pKNT25-focA	Kan ^R , pKNT25 with the gene <i>focA</i>	This study
pUT18-pflB 1-	Amp^{R} , pUT18 with portion of the <i>pflB</i>	This study
424	gene encoding aa 1-424	
pUT18C-pflB	Amp ^R , pUT18C with portion of the	This study
414-603	<i>pflB</i> gene encoding aa 414-603	
pUT18C-pflB	Amp ^R , pUT18C with portion of the	This study
603-752	<i>pflB</i> gene encoding aa 603-752	
p29	Cm ^R , <i>focA-pflB-act</i> in pACYC184	9

Primer name	Sequence
pKNT25-focA PstI for	5' – TAC TGC TGC AGG AAA GCT GAC AAC CCT TTT GAT-3'
pKNT25- <i>focA</i> EcoRI rev	5'- AGA TGG AAT TCC ATG GTG GTC GTT TTC ACG
pKT25- <i>focA</i> PstI for	5'- ACT TCT GCA GGA AAA GCT GAC AAC CCT TTT GAT-3'
pKT25- <i>focA</i> EcoRI rev	5'- ACG GAA TTC TTA ATG GTG GTC GTT TTC ACG CAG-3'
pUT18- <i>pflB</i> 2-424 PstI for	5'- AAC TGC AGG TCC GAG CTT AAT GAA AAG TTA GCC ACA-3'
pUT18- <i>pflB</i> 2-424 EcoRI rev	5'- ATC GAA TTC TTA TTT ACC AAC GAT CAT CGG GCT-3'
pUT18C- <i>pflB</i> 414-603 PstI for	5'- ATC TGC AGG AGC CCG ATG ATC GTT GGT AAA-3'
pUT18C- <i>pflB</i> 414-603 EcoRI rev	5'- ACG AAT TCA TTA AGA AGT GAT GGT CAG AAC AGA-3'
pUT18C- <i>pflB</i> 603-752 PstI for	5'- AAC TGC AGG TCT GTT CTG ACC ATC ACT TCT- 3'
pUT18C- <i>pflB</i> 603-752 EcoRI rev	5'- ATC GAA TTC TTA CAT AGA TTG AGT GAA GGT ACG AGT AAT-3'

20 Table S4. Oligonucleotide primers used in this study.

24 Figure S1. FocA-dependent association of PflB with the cytoplasmic membrane. A. Crude extracts derived from the strains indicated were separated into soluble (S) and membrane (M) 25 26 fractions in a buffer containing 150 mM NaCl as indicated in the Experimental procedures. 27 The membrane fraction was resuspended in the same buffer and centrifuged again at 105 000 28 g for 45 min. Aliquots (5 µg of protein) of the sub-cellular fractions were separated by 10% (w/v) SDS-PAGE and after transfer to nitrocellulose membranes were challenged with either 29 30 anti-PflB (upper panel) or anti-AcnA (lower panel) antibodies. The locations of PflB and 31 aconitase A (AcnA) are indicated by the arrow on the right of the panels. The locations of the 32 molecular mass size markers (Fermentas) are indicated on the left of the panels in kDa. The 33 asterisk indicates an unidentified cross-reacting polypeptide. B. Sub-cellular fractions from 34 strains MC4100 (upper panel) and the focA mutant REK701 (lower panel) were prepared in 35 buffer that including the indicated concentrations of NaCl. The membranes were washed (W) 36 a second time in the same buffer with the indicated NaCl concentration. Aliquots (10 µg of protein in upper panel and 5 ug in lower panel) of the indicated sub-cellular fractions were 37 38 separated by SDS-PAGE as above. The migration position of PfIB is indicated. The asterisk 39 denotes the unknown 57 kDa cross-reacting polypeptide

7

42	Figure S2. MS analysis of PflB peptide TmAcGIAGLSVAADSLSAIK. (A) Chromatogram
43	of the total ion current (TIC), (B) mass spectrum recorded at 74.08 minutes, (C) Fragment ion
44	mass spectrum (MS/MS) of the doubly charged precursor ion at m/z 976.495. m: oxidized
45	methionine, c: carbamidomethylated cysteine.
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	
64	
65	
66	
67	
	9

Figure S3. MS analysis of PflA peptide IELLPYHELGK. (A) Chromatogram of the total ion
current (TIC), (B) mass spectrum recorded at 58.12 minutes, and (C) fragment ion mass
spectrum (MS/MS) of the doubly charged precursor ion at *m/z* 656.368.

- 73
- 74 A.

Figure S4. Identification of FocA-peptides cross-linked to PfIB. A. Fragment ion mass spectrum (MS/MS) of a triply charged cross-linked product at m/z 830.753. The cross-linked product was unambiguously assigned to amino acids 105-112 (ITWGQLAK) of FocA

connected to amino acids 463-475 (SEPIKGDVLNYDE) of PflB. The fragment ions point to
Lys112 (FocA) cross-linked with Ser463 (PflB). B. Fragment ion mass spectrum (MS/MS) of
a triply charged cross-linked product at *m/z* 838.437. The cross-linked product was
unambiguously assigned to amino acids 3-20 (ADNPFDLLLPAAmAKVAE) of FocA
connected to amino acids 437-441 (ANLAK) of PflB. The fragment ions point to Lys17
(FocA) cross-linked with Lys441 (PflB); m indicates an oxidized Met.

Figure S5. Histogram of C α -C α cross-link distances for each residue pair across the model

91 population. Evaluated cutoff distances are represented by vertical dashed lines.

Figure S6. A. Number of models fulfilling cross-links at each cutoff distance. B. Average C α - C α distance for each cross-link residue pair in each cluster set. Cluster A and Cluster B correspond to Conformation A and B discussed in the main text. Error bars show the maximum and minimum C α - C α distance.

93

99

101 **References**

- Casadaban, M. J. (1976). Transposition and fusion of the *lac* genes to selected promoters in
 Escherichia coli using bacteriophage lambda and Mu. J. Mol. Biol. 104, 541–555.
- 104 2. Sawers, G. & Böck, A. (1989). Novel transcriptional control of the pyruvate formate-lyase
- 105 gene: upstream regulatory sequences and multiple promoters regulate anaerobic expression. J.
- 106 Bacteriol. 171, 2485-2498.
- 3. Hesslinger, C., Fairhurst, S.A. & Sawers, G. (1998). Novel keto acid formate-lyase and
 propionate kinase enzymes are components of an anaerobic pathway in *Escherichia coli* that
 degrades L-threonine to propionate. Mol. Microbiol. 27, 477–492.
- 110 4. Suppmann, B. & Sawers, G. (1994). Isolation and characterisation of hypophosphite-
- 111 resistant mutants of *Escherichia coli*: identification of the FocA protein, encoded by the *pfl*
- 112 operon, as a putative formate transporter. Mol. Microbiol. 11, 965-982.
- 5. Sauter, M. & Sawers, R.G. (1990). Transcriptional analysis of the gene encoding pyruvate
 formate-lyase-activating enzyme of *Escherichia coli*. Mol. Microbiol. 4, 355-363.
- 115 6. Karimova, G., Pidoux, J., Ullmann, A. & Ladant, D. (1998). A bacterial two-hybrid system
- based on a reconstituted signal transduction pathway. Proc. Natl. Acad. Sci. U.S.A. 95, 5752-5756.
- 7. Falke, D., Schulz, K., Doberenz, C., Beyer, L., Lilie, H., Thiemer, B. & Sawers, R. G.
 (2010). Unexpected oligomeric structure of the FocA formate channel of *Escherichia coli*: a
 paradigm for the formate-nitrite transporter family of integral membrane proteins. FEMS
- 121 Microbiol. Lett. 303, 69-75.
- 122 8. Kitagawa, M., Ara, T., Arifuzzaman, M., Ioka-Nakamichi, T., Inamoto, E., Toyonaga, H. &
- 123 Mori, H. (2005). Complete set of ORF clones of Escherichia coli ASKA library (a complete
- set of *E. coli* K-12 ORF archive): unique resources for biological research. DNA Res. 12,
 291-299.
- 126 9. Christiansen, L. & Pedersen, S. (1981). Cloning, restriction endonuclease mapping and

- 127 post-transcriptional regulation of *rpsA*, the structural gene for ribosomal protein S1. Mol.
- 128 Gen. Genet. 181, 548-551.