Supplementary Information

An Essential Regulatory System Originating from Polygenic Transcriptional Rewiring of PhoP-PhoQ of *Xanthomonas campestris*

Bao-Yu Peng,^{†, ‡,¶} Yue Pan,^{†,‡, ¶} Ru-Jiao Li,^{§, ¶} Jin-Wei Wei,^{†,‡} Fang Liang,[§] Li Wang,[†] Fang-Fang Wang,[†] and Wei Qian^{†,1}

[†] State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China

[‡] School of Biological Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

[§] Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China

[¶]These authors contributed equally to this work.

Figure S1 Genetic polymorphisms in PhoP-PhoQ orthologues. (A) Alignment of PhoP protein sequences. *Xcc: X. campestris* pv. *campestris. Xoo: X. oryzae* pv. *oryzae*. ST: *Salmonella enterica*. PA: *Pseudomonas aeruginosa*. (B) Alignments of PhoQ protein sequences. The secondary structure of the sensor domain from ST-PhoQ is depicated below the sequences, and the corresponding amino acid residue sites between *Xcc*-PhoQ and *Xoo*-PhoQ in each sequence are labelled with a small red triangle above the sequenCCces. Residues that make up the ST-PhoQ acidic patch are shown in red boxes.

Figure S2 *in vitro* phosphorylation assay of PhoP-PhoQ from different bacteria. (A) Full-length PhoQ_{*Xcc*} phosphorylates PhoP_{*Xcc*} and PhoP_{*Xcc*} and PhoP_{*Xcc*} (B) Full-length PhoQ_{*Xcc*} phosphorylates PhoP_{*Xcc*} and PhoP_{*Xcc*} and PhoP_{*Xcc*} phosphorylates PhoP_{*Xcc*} and PhoP_{*Acc*}, respectively. (C) Full-length PhoQ_{*Xcc*} phosphorylates PhoP_{*Xcc*} and PhoP_{*Pae*}, respectively. (D) Full-length PhoQ_{*Pac*} phosphorylates PhoP_{*Pae*} and PhoP_{*Xcc*}, respectively. In (A-D), inverted membrane vesicles (IMVs) of PhoQ (10 µg) were co-incubated with [γ -3²P]ATP for 20 min, and 10 µM PhoP was then added to the reaction mixtures. Aliquots were taken at the indicated times. The reactions were stopped by adding 5 µl of 5 × SDS PAGE loading buffer. The experiments were repeated three times and a representative is shown.

Figure S3 Genetic verification of $phoP_{xcc}$ and $phoQ_{xcc}$ mutants. (A) Verification of the $phoQ_{xcc}$ mutant by PCR. (B) Verification of the $phoQ_{xcc}$ mutant by Southern blotting. (C) Verification of the $phoP_{xcc}$ mutant by PCR. (D) Verification of the $phoP_{xcc}$ mutant by Southern blotting. WT: *X. campestris* pv. *campestris* 8004. AphoQ-pphoQ: the putative $phoQ_{xcc}$ in-frame deletion mutant. AphoP-pphoP-61 and AphoP-pphoP-70: putative $phoP_{xcc}$ in-frame deletion mutants. WT-pHM2: the wild-type strain containing an empty pHM2 vector. WT-pphoP: the wild-type strain containing a plasmid copy of $phoP_{xcc}$. Single-crossover-4, -7, -1 and -10 are recombinant constructs obtained by the first round of homologous cross-over of $phoP_{xcc}$ and $phoQ_{xcc}$. Note that the candidate for AphoP-pphoP-70 was a false positive construct, which was verified by Southern blotting in (D). The primer sequences in (A) and (C) are listed in Table S2. In (B) and (D), bacterial DNA was digested with *KpnI*. The $phoP_{xcc}$ and $phoQ_{xcc}$ PCR products were labelled with $[\alpha^{-32}P]dCTP$ and used as probes. A 1-kb DNA marker was used to indicate the band size in both the PCR and Southern blotting assays.

Figure S4. Bacterial growth in the MMX medium with L-arabinose. (A) Growth curve of the $phoP_{xcc}$ mutant of *X. campestris* pv. *campestris* in MMX with 0.05% L-arabinose. (B) Growth curve of the $phoP_{xcc}$ mutant in MMX with 0.05% L-arabinose. WT-pHM2: the wild-type strain containing an empty pHM2 vector. WT-pphoP and WT-pphoQ: the wild-type strains containing plasmid copies of $phoP_{xcc}$ and $phoQ_{xcc'}$ respectively. Δ phoP-pphoP and Δ phoQ-pphoQ are in-frame deletion mutants of $phoP_{xcc}$ and $phoQ_{xcc'}$ respectively. All bacterial strains were grown at 28°C. Error bars indicate the standard deviation (n = 4). (C) Morphology of bacterial strains grown on rich NYG agar. (D) Morphology of bacterial strains grown on minimal MMX agar. In (C and D) 1 μ l of bacterial culture was inoculated on the agar plates and grown for 36-48 hours. (E) Growth curves of bacterial strains in rich NYG medium. (F) Growth curves of bacterial strains in minimal MMX medium. In (E and F), each data point is the average of 3 repeated experiments, and the vertical bars indicate standard deviation.

Figure S5. Verification of the *phoP* and *phoQ* in-frame deletion mutants of various bacteria. (A and B) Verification of the *phoP* and *phoQ* mutants of *P. aeruginosa* PAO1. (C and D) Verification of the *phoP* and *phoQ* mutants of *X. oryzae* pv. *oryzae* PXO99. An additional vector-borne copy of either *phoP* or *phoQ* was transformed into the wild-type strain before the deletion of the choromosal copy. (E and F) *phoP* and *phoQ* of *P. aeruginosa* PAO1 are genetically equivalent to their orthologues in *X. campestris* pv. *campestris*. An additional vector-borne copy of either *phoP* or *phoQ* of *P. aeruginosa* PAO1 was transformed into wild-type strain of *X. campestris* pv. *campestris* pv. *campestris* pv. *campestris* pv. *campestris* before deletion of the choromosal copy. (G) *phoQ* of *X. oryzae* pv. *oryzae* is genetically equivalent to its orthologues in *X. campestris*. An additional vector-borne copy of *phoQ* of *X. oryzae* pv. *oryzae* pv. *oryzae* was transformed into the wild-type strain of *X. campestris*. An additional vector-borne copy of *phoQ* of *X. oryzae* pv. *oryzae* was transformed into the wild-type strain of *X. campestris*. An additional vector-borne copy of *phoQ* of *X. oryzae* pv. *oryzae* was transformed into the wild-type strain of *X. campestris* pv. *campestris* before the deletion of the choromosal copy. In (A-G), 1, 2, and 3 indicate the recombinant strains obtained. PCR amplification of the *phoP* or *phoQ* gene of various bacterial strains was conducted to determine the correction of gene deletion. M1: 1 kb ladder. M2: 100 bp ladder.

MMX + L-arabinose

MMX + IPTG

Figure S6. Two-dimension electrophoresis (2-DE) identified differently expressed proteins modulated by $PhoP_{Xcc}$. 2-DE analysis of total proteins of the $\Delta phoP$ -pphoP strain grown under the induced (A) and repressed (B) conditions. Total proteins were extracted from the $\Delta phoP$ -pphoP strain that was grown in MMX minimal medium with either 0.05% L-arabinose (A) or 2 mM IPTG (B) for 60 min, respectively. Coomassie brilliant blue was used to stain the proteins. The red triangles indicate protein spots identified by MALDI-TOF-MS/MS. Spot IDs are the same as those in Table S3. Each 2-DE analysis was repeated independently three times, with two technical replicates.

Figure S7 Vein diagram of PhoP-regulated genes of *X. campestris* pv. *campestris* identified by various approaches. (A) Genes with putative PhoP-binding motif in their promoter region. The listed genes encode differently expressed proteins that were identified by comparative proteomic anlysis (Table S3). (B) Genes with putative PhoP-binding motif in their promoter region. The listed genes were identified by ChIP-seq analysis (Table S4). In both (A) and (B), results of proteomic and ChIP-seq analyses were compared to the predicted genes with PhoP-binding motif in their promoter region (Table S5).

Figure S8. PhoP of *X. campestris* pv. *campestris* and *P. aeruginosa* differently control the transcriptions of downstream non-essential genes differently. (A–D) PhoP-promoter binding assay. EMSA analysis revealed that both PhoP_{*Xcc*} and PhoP_{*Pae*} bind directly to the promoter regions of four essential genes (*XC0785, XC1969, XC2108, and XC2562*) of *X. campestris* pv. *campestris*, but PhoP_{*Pae*} did not bind the promoter regions of their orthologues in *P. aeruginosa* (*PA4001, PA5490, PA4232,* and *PA0918*). The DNA probes were labelled with [γ -³²P]ATP. Increasing amounts of unlabelled probes were used as competitors. The experiments were repeated three times, and a representative is shown.

ATGCGCTCGCCATCGCTGCCGGCAGCGGCGCTGACGCG

Figure S9 Genetic polymorphism of the promoter regions of PhoP-regulated genes in Xanthomonas spp. and close-relatives. Sequences were aligned by Clustal X. The PhoP-binding motif is indicated by red frame. Xcc, Xanthomonas campestris pv. campestris 8004. Pao, Pseudomonas aeruginosa PAO1. Xfu, Xanthomonas fuscans subsp. aurantifolii FDC 1609. Xcr, Xanthomonas campestris raphani 756C. Xoc, Xanthomonas oryzae oryzicola BLS256. Xac, Xanthomonas axonopodis pv. citrumelo F1. Xcv, Xanthomonas campestris vesicatoria 85-10. Xpe, Xanthomonas perforans 91-118. Xci, Xanthomonas citri subsp. citri LH201. Xga, Xanthomonas gardneri strain JS749-3. Xoo, Xanthomonas oryzae pv. oryzae PAO99A. Sma, Stenotrophomonas maltophilia K279a. Xfa, Xylella fastidiosa M12

Figure S10. PhoQ_{*Xcc*} of *X. campestris* pv. *campestris* did not bind to metal ions. Microscale thermophoresis was used to measure the binding affinity between metal ions and PhoQ_{*Xcc*}. (A-C) Truncated, soluble PhoQ_{*Xcc*} did not bind to Ca²⁺, Mn²⁺ or Mg²⁺. Truncated PhoQ_{*Xcc*} containing the cytoplasmic region was used in the analysis. (D-E) Full-length PhoQ_{*Xcc*} embedded in the inverted membrane vesicle did not bind to Ca²⁺, Mn²⁺ or Mg²⁺. (G) Full-length histidine kinase VgrS_{*Xcc*} embedded in the inverted membrane vesicle binds to Fe³⁺, which is used as a positive control. The concentrations of metal ions were gradually increased from 0.01 µM to 1.0 mM. *K*_d = dissociation constant. The assay was repeated independently three times.

Figure S11 Transcription levels of PhoP regulated genes under various metal stimulation. (A-C) mRNA levels of *XC0691*; (D-F) mRNA levels of *XC1967*. qRT-PCR was used to quantify the amount of mRNA in the *phoP* mutant of *X. campestris* pv. *campestris*. L-arabinose and IPTG were used to activate or repress the transcription of *phoP* gene. Different concentrations of Mg^{2+} ($MgSO_4$), Mn^{2+} ($MnCl_2$) and Ca^{2+} ($CaCl_2$) were used to treat bacteria before extraction of total RNA. Amplification of the cDNA of tmRNA was used as internal control. The experiment was repeated biologically for three times, and the result of a representative one was shown. * indicates significant difference compared with the samples treated by 10 mM metal.

Strain or plasmid	Genotype or description ^a	Reference or	
Strains		source	
<i>X. campestris</i> pv. <i>campestris</i> 8004	Wild-type strain (WT), Rif ^r	Laboratory collection	
Pseudomonas aeruginosa PAO1	Wild-type strain, Cb ^r	Laboratory collection	
<i>X. oryzae</i> pv. <i>oryzae</i> PXO99 ^A	Wild-type strain	Laboratory collection	
E. coli DH5α	Bacterial host for gene cloning	Laboratory collection	
E. coli BL21(DE3)	Bacterial host for protein expression	Novagen	
M0050	WT-pHM2, wild-type of <i>X. campestris</i> pv. <i>campesris</i> 8004 containing a blank pHM2 plasmid, Rif ^r , Sp ^r	This study	
M0051	WT-pphoP, wild-type of <i>X. campestris</i> pv. <i>campesris</i> 8004 containing a pBAD- <i>araC-phoP_{Xcc}</i> insert supplemented by pHM2 vector, Rif ^r , Sp ^r	This study	
M0052	WT-pphoQ, wild-type of <i>X. campestris</i> pv. <i>campesris</i> 8004 containing a pBAD- <i>araC-phoQ_{Xcc}</i> insert supplemented by pHM2 vector, Rif ^r , Sp ^r	This study	
M0053	Δ phoP-pphoP, chromosomal <i>phoP_{Xcc}</i> in-frame deletion mutant of <i>X</i> . <i>campestris</i> pv. <i>campesris</i> 8004, containing a vector-borne pBAD- <i>araC</i> - <i>phoP_{Xcc}</i> Rif ^r Sp ^r	This study	
M0054	Δ phoQ-pphoQ, chromosomal <i>phoQ_{Xcc}</i> in-frame deletion mutant of <i>X. campestris</i> pv. <i>campesris</i> 8004, containing a vector-borne pBAD- <i>araC-phoQ_{Xcc}</i> Rif ^r Sp ^r	This study	
M0055	Δ phoP*-GFP, Δ phoP* strain of <i>X. campestris</i> pv. <i>campesris</i> 8004 containing a chromosomal P <i>nptII</i> -GFP fusion that was inserted into the genomic region between <i>XC</i> 1972 and <i>XC</i> 1973. Rif ^r . Sp ^r . Kan ^r	This study	
M0056	Δ phoQ*-GFP, Δ phoP* strain of <i>X. campestris</i> pv. <i>campesris</i> 8004 containing a chromosomal P <i>nptII</i> -GFP fusion that was inserted into the genomic region between <i>XC</i> 1972 and <i>XC</i> 1973 Rif ^r Sp ^r Kan ^r	This study	
M0057	$\Delta phoQ^*-phoP-his_6, \Delta phoQ^* strain of X. campestris pv. campestris8004 containing a His_6 coding sequence-tagged phoPXcc, Rifr, Spr.For chromatin-immunoprecipitation$	This study	
M0058	$\Delta phoP_{Pae}$, Markerless deletion mutant of <i>phoP_{Pae}</i> of <i>P. aeruginosa</i> , Cb ^r	This study	
M0060	Δ phoP _{Pae} -phoP _{Pae} , genetic complementary strain of M0058	This study	
M0061	$\Delta phoQ_{Pae}$, Markerless deletion mutant of $phoQ_{Pae}$ of <i>P. aeruginosa</i> , Cb ^r	This study	
M0062	$\Delta phoQ_{Pae}$ -pho Q_{Pae} , genetic complementary strain of M0061	This study	
M0063	Δ phoP*-phoP _{Pae} , chromosomal <i>phoP_{Xcc}</i> in-frame deletion mutant, containing a vector-borne pHM1- <i>phoP</i> _{Pae} of <i>P. aeruginosa</i> , Rif [*] , Sp ^r	This study	

Table S1. Bacterial strains and plasmids used in this study.

M0064	Δ phoQ*-phoP _{Pae} , chromosomal <i>phoQ_{Xcc}</i> in-frame deletion mutant,	This study
	containing a vector-borne pHM1-phoQ _{Pae} of P. aeruginosa, Rif ^r ,	
	Sp ^r	
M0065	$\Delta phoO^*$ -phoO _{xoo} , chromosomal <i>phoO_{xcc}</i> in-frame deletion mutant.	This study
	containing a vector-borne pBAD- <i>araC-phoO</i> _{x_{oo}} of X orvzae py	5
	orvzae $PXO99^{A}$ Rif ^r Sn ^r	
M0066	Anha $P*$ chromosomal <i>nhaP</i> in-frame deletion mutant	This study
WI0000	containing a vector horne $nBAD$ araC $nhoP_{rec}$. Pif ^r Sn ^r	This study
M0067	$\Delta phaO^*$ abromosomal $phaO$ in frame delation mutant V	This study
M0067	$\Delta pnoQ^+_{Xoo}$, chromosomal $pnoQ_{Xoo}$ in-frame deletion mutant X.	This study
	<i>oryzae</i> pv. <i>oryzae</i> PXO99, containing a vector-borne	
	$pBAD$ -araC-pho Q_{Xoo} , Rif', Sp	
M0068	$\Delta XC0691^*$, in-frame deletion mutant of essential gene XC0691,	This study
	which contains a pHM1::XC0691 as a prerequisite to delete the	
	chromosomal copy. Rif ^r , Sp ^r	
M0069	$\Delta XC1867^*$, in-frame deletion mutant of essential gene XC1867,	This study
	which contains a pHM1::XC1867 as a prerequisite to delete the	
	chromosomal copy. Rif ^r , Sp ^r	
M0070	$\Delta XC2815^*$, in-frame deletion mutant of essential gene XC2815,	This study
	which contains a pHM1::XC2815 as a prerequisite to delete the	
	chromosomal copy. Rif ^r , Sp ^r	
M0071	$\Delta XC3633^*$, in-frame deletion mutant of essential gene XC3633,	This study
	which contains a pHM1::XC3633 as a prerequisite to delete the	
	chromosomal copy. Rif ^r , Sp ^r	
M0072	$\Delta XC0758$, insertional mutant of non-essential gene XC0758, Kan ^r ,	This study
	Sp ^r	2
M0073	$\Delta XC1969$, insertional mutant of non-essential gene XC1969. Kan ^r .	This study
	Sp ^r	
M0074	$\sim_{\rm P}$ AXC2108 insertional mutant of non-essential gene XC2108 Kan ^r	This study
	Sn ^r	This study
M0075	$\Delta XC2562$ insertional mutant of non-essential gene $VC2562$ Kan ^r	This study
110075	Sn ^r	This study
Dlagmida	Sp	
n CEM T Easy	Claning vector for DCP products Amp ^r	Dromaga
pGEMI-1 Easy	Protoin avaragion votor with a T7 promotor. Van ^r	Novagon
	Protein expression vector with a 17 promoter, Kan	Novagen
pK18mobsacB	sacB marker containing mobilizable suicide vector, Kan'. For	Schäfer et al.
	gene in-frame deletion.	(1994)
pEX18Gm	sacB marker-containing mobilizable suicide vector, Gm ¹ . For	Hoang et al.,
	in-frame deletion of genes in <i>P. aeruginosa</i> PAO1.	(1998)
nUM1	last promotor driving broad best range plasmid Spl East and	Laboratory
hum	accomplementation	collection
~UM2	Dremeterless breed best serves alreaded C	Laborate
рнм2	Promoteriess broad-nost-range plasmid, Sp.	
		collection
pphoP _{Xcc}	pHM2::pBAD-araC-phoP _{Xcc} , Sp ⁻ .	This study
pphoQ _{Xcc}	pHM2::pBAD-araC-phoQ _{Xcc} , Sp ⁺ .	This study

pK-phoP _{Xcc}	pK18mobsacB derivate which contains part of $phoP_{Xcc}$ gene. For	This study
	constructing in-frame deletion mutant of <i>phoP_{Xcc}</i> gene, Kan ^r	
pK-phoQ _{Xcc}	pK18mobsacB derivate which contains part of $phoQ_{Xcc}$ gene. For	This study
	constructing in-frame deletion mutant of $phoQ_{Xcc}$ gene, Kan ^r	
pK-phoP _{Xoo}	pK18mobsacB derivate which contains part of $phoP_{Xoo}$ gene. For	This study
	constructing in-frame deletion mutant of <i>phoP_{Xoo}</i> gene, Kan ^r	
pK-phoQ _{Xoo}	pK18mobsacB derivate which contains part of $phoQ_{Xoo}$ gene. For	This study
	constructing in-frame deletion mutant of $phoQ_{Xoo}$ gene, Kan ^r	
Gm-phoP _{Pae}	pEX18Gm derivate which contains part of phoP _{Pae} gene. For	This study
	constructing in-frame deletion mutant of phoP _{Pae} gene, Gm ^r	
Gm-phoQ _{Pae}	pEX18Gm derivate which contains part of phoQ _{Pae} gene. For	This study
	constructing in-frame deletion mutant of <i>phoQ_{Pae}</i> gene, Gm ^r	
pK-XC0691	pK18mobsacB derivate which contains part of XC0691 gene. For	This study
	constructing in-frame deletion mutant of XC0691, Kan ^r	
pK-XC1867	pK18mobsacB derivate which contains part of XC1867 gene. For	This study
	constructing in-frame deletion mutant of XC1867, Kan ^r	
pK-XC2815	pK18mobsacB derivate which contains part of XC2815 gene. For	This study
	constructing in-frame deletion mutant of XC2815, Kan ^r	
pK-XC3633	pK18mobsacB derivate which contains part of XC3633 gene. For	This study
	constructing in-frame deletion mutant of XC3633, Kan ^r	
ii-XC0758	pK18mobsacB derivate which contains part of XC0758 gene. For	This study
	constructing insert inactivation mutant of XC0758 gene, Kan ^r	
ii-XC1969	pk18mobsacB derivate which contains part of XC1969 gene. For	This study
	constructing insert inactivation mutant of XC1969, Kan ^r	
ii-XC2108	pK18mobsacB derivate which contains part of XC2108 gene. For	This study
	constructing insert inactivation mutant of XC2108, Kan ^r	
ii-XC2562	pK18mobsacB derivate which contains part of XC2562 gene. For	This study
	constructing insert inactivation mutant of XC2562, Kan ^r	
pET-phoP _{Xcc}	pET30a:: <i>phoP_{Xcc}</i> , for expression of full-length PhoP _{Xcc} , Kan ^r	This study
pET-phoQ _{Xcc}	pET30a:: <i>phoQ_{Xcc}</i> , for expression of full-length PhoQ _{Xcc} , Kan ^r	This study
pET-phoP _{Xoo}	pET30a:: <i>PXO_02836</i> , for expression of full-length PhoP _{Xoo} . Kan ^r	This study
pET-phoQ _{Xoo}	pET30a:: <i>PXO_02837</i> , for expression of full-length PhoP _{Xoo} . Kan ^r	This study
pET-phoP _{Pae}	pET30a::PA1179, for expression of full-length PhoP _{Pae} , Kan ^r	This study
pET-phoQ _{Pae}	pET30a::PA1180, for expression of full-length PhoQ _{Pae} , Kan ^r	This study
pHM-XC0691	pHM1:: <i>XC0691</i> ,Sp ^r .	This study
pHM-XC1867	pHM1:: <i>XC1867</i> ,Sp ^r .	This study
pHM-XC2815	pHM1:: <i>XC2815</i> ,Sp ^r .	This study
pHM-XC3633	pHM1:: <i>XC3633</i> ,Sp ^r .	This study

^a Antibiotic resistance: Rif^r, Kan^r, Amp^r, Gm^r, Cb^r and Sp^r, represent resistant to rifampicin, kanamycin, ampicillin, gentamicin, carbenicillin and spectinomycin, respectively.

Primer name	Sequence (forward/reverse)	Length & description
P1	CGGCATGATTCTGTCGGTGG	487 bp;
P2	TTGCAGTTGCTGCGGTGTCG	For operon verification
P3	GAGCAAGCCGACCCTGGAAT	525 bp;
P4	GGCGTTGGCGTAGTTCTTCAGC	For operon verification
P5	TTTGGCGATAGCCGGCTGAC	321 bp;
P6	AACAGCAAAGCCTTCGCGCT	For operon verification
P7	GGTTGGGAGCTGGTGGAACA	413 bp;
P8	AGACGACGGGACGTGTGGAA	For operon verification
Р9	TGTTGTTCGCCCTTCGGACG	401 bp;
P10	ATTTCCGTGTACAGCCGCGC	For operon verification
phoQ-F	GGACGTTCCAAGTGGTATCG	224 bp;
phoQ-R	CCGAGATACAGCGAGCCATC	as positive control For operon
		verification
4031-up-F	TCTAGATGTTCCGTTTGGCGATAGC	353 bp;
4031-up-R	GAATTCTTCTTCGCCGTCCTGTGC	For $\Delta phoP_{Xcc}$ * construction
4031-down-F	GAATTCGTGCTGGAAGTGTTCATCGG	444 bp;
4031-down-R	CTGCAGCGTCAGGTCGCACCACTTC	For $\Delta phoP_{Xcc}$ * construction
4030-up-F	GAATTCGTGCTGGAAGTGTTCATCGG	444 bp;
4030-up-R	GGATCCGTCAGGTCGCACCACTTC	For $\Delta phoQ_{Xcc}^*$ construction
4030-down-F	GATCCGCCGGCATGATTCTGTCGGTGG	444 bp;
4030-down-R	GTCGACTTGCAGTTGCTGCGGTGTCG	For $\Delta phoQ_{Xcc}$ * construction
His-PhoP-Xcc-F	CATATGCGTATCCTTTTGGTCGA	681 bp;
His-PhoP-Xcc-R	CTCGAGGCCTTCCGTACGCGGGA	For PhoP _{<i>Xcc</i>} protein expression
His-PhoQ-Xcc-F	CATATGGTGTCGGGACGTTCCAAGTGG	1413 bp;
His-PhoQ-Xcc-R	CTCGAGCAAGCCTGGCGGCAGGGTGA	For PhoQ _{<i>Xcc</i>} protein expression
phoP-F	GTCGACCATATGCGTATCCTTTTGGTCGA	684 bp;
phoP-R	GGTACCCTCGAGGCCTTCCGTACGCGGGA	For pphoP _{<i>Xcc</i>} plasmid construction
phoQ-F	GCGTCGACATGTCGGGACGTTCCAAGTGG	1416 bp;
phoQ-R	CGGGGTACCTTACAAGCCTGGCGGCAGGGT	For pphoQ _{<i>Xcc</i>} plasmid construction
	GA	
XC4030-F	GGATCCGGCGAGATCCCGTACACCATT	801 bp;
XC4030-R	AAGCTTACGCACACCGCGCTGCAGGA	For $phoQ_{Xcc}$ insertion inactive
		mutant construction
XC4031-F	AGGTCTCTACATGGGCCGTGAA	524 bp;
XC4031-R	TCGGCTTCAACTCACCATCCGGGTCAAG	For $phoP_{Xcc}$ insertion inactive
		mutant construction
pBAD-F	GAATTCACTCCAGAAAGGCCACCAAC	1371 bp;
pBAD-R	GTCGACCCCAAAAAAACGGGTATGGA	For pBAD-araC promoter fragment
		PCR
p-F	ATTGGTGTGACACGGTGCCG	1577 bp;
p-R	ATGCGGCCATGCGGAATGCT	For $\Delta phoP_{Xcc}$ mutant PCR
		verification

Table S2. Primers used in this study.

q-F	GAGCAAGCCGACCCTGGAAT	2135 bp;
q-R	GGCAACGCTGCATCGTCGCT	For $\Delta phoQ_{Xcc}$ mutant PCR
		verification
c-F	AACGCGGCCGCGTGCATATC	200 bp; For EMSA probe
c-R	GCACTCTCCCTACTTACGTT	
q-phoP-F	GCCAATGTGGATCTGACCAG	120 bp; For qRT-PCR
q-phoP-R	GCGGTCGAAATCCTGCTGAT	
q-phoQ-F	GGCATGTCGATCGTGCAGGA	100 bp; For qRT-PCR
q-phoQ-R	GCAGGGTGACTTCGAAGCGT	
tmRNA-F	GGGGGTGCACTGGTTTCG	113 bp; For qRT-PCR internal reference
tmRNA-R	CCGTAGTTGTCGTCGTTGGC	
4031-up -F	TCTAGATGTTCCGTTTGGCGATAGC	931 bp;
P2-6his-R	TCAGTGGTGGTGGTGGTGGTGGCCTTCCGTA	For $phoP_{Xcc}$ -His ₆ epitope
	CGCGGGAT	construction
P3-6his-F	CACCACCACCACCACCACTGAGTCAGCACA	344 bp;
	GCGGCG	For <i>phoP_{Xcc}</i> -His ₆ epitope
4031-down-R	CTGCAGCGTCAGGTCGCACCACTTC	construction
ftsA-F	AAATTTTCGAGATGGTGCAG	314 bp;
ftsA-R	GCGATACCAGTTCTTCAATT	For <i>ftsA_{Xcc}</i> qRT-PCR assay
ftsA-Xccp-F	GGAATTCACAACGTCCGATCGCGCGCG	200 bp;
ftsA-Xccp-R	CGCGGATCCAGCCGGGAATAGCGAATGGG	For <i>Xcc-ftsA</i> promoter fragment PCR
ftsA-Xoop-F	GAATTCCAGCTGGCCGATCCGCAGCG	200 bp:
ftsA-Xoop-R	GGATCCTTAAAGCCGGGAGTCGGGAG	For <i>Xoo-ftsA</i> promoter fragment
1		PCR
PftsA-F	GGATCCTGCGCGCGCACGCCTGCAGC	300 bp;
PftsA -R	AAGCTTCAGTCCAACGATGAGGGA	For $ftsA_{Xcc}$ footprinting assay
PphoP -F	GGATCCTTTGGCGATAGCCGGCTGACGC	280 bp;
PphoP -R	AAGCTTCGCGCAGCGGAGCTTCGT	For $phoP_{Xcc}$ footprinting assay
Poar -F	CACACAGCATTTGCTCGAACGA	202 bp;
Poar -R	ACGGACACTGCAGACGTGGGAC	For <i>oar_{Xcc}</i> footprinting assay
A28nt-F	CGCACGCGCTGGTCCTTAATTCTCTGCG	28 bp; as <i>ftsA</i> -Wt
A28nt-R	CGCAGAGAATTAAGGACCAGCGCGTGCG	For motif EMSA and MST test
P28nt-F	ACTTCTGCGTTCAGTGACATAAATCCCC	28 bp; as $phoP_{Xcc}$ -Wt
P28nt-R	GGGGATTTATGTCACTGAACGCAGAAGT	For motif MST test
Oar25nt-F:	CCGTTCAGGTTGTTCAGGCGATCCC	25 bp; as <i>Oar_{Xcc}</i> -Wt2
Oar25nt-R:	GGGATCGCCTGAACAACCTGAACGG	For motif MST test
7273-up-F	GAGCTCGGTACCCGGGGAT	319 bp; For $ftsZ_{Xcc}$ -eGFP
	CCACCAAAGACGGCTGACG	construction
7773_un_P	CTGAGCTGTTACAGCCTGACCCGTCCTGACT	
/2/3-up-K	GTCCTCAAGAT	
Nnt-rbs-F	GTCAGGCTGTAACAGCTCAGA	386 hp: For fts7=CFD
Npt-rbs-R	AGTTCAAAATGTGCCATATGTTTTTCCTCCTT	construction
1.00 100 11		- CII.Sti MetiVII

	CTGCAGAT	
ftsZ-F	ATGGCACATTTTGAACTGATCGA	1128bp; For ftsZ _{Xcc} -eGFP
ftsZ-R	TCGCCCTTGCTCACCATGTCGGCCTGGCGGC	construction
	GCAGGAA	
Egfp-F	ATGGTGAGCAAGGGCGAGGAGCT	720 bp; For $ftsZ_{Xcc}$ -eGFP
Egfp-R	CTGCCGTCTTCCCTAACGATCATTACTTGTAC	construction
	AGCTCGTCCATGCCGA	
7273-down-F	TGATCGTTAGGGAAGACGGCAGGGC	427 bp; For $ftsZ_{Xcc}$ -eGFP
7273-down-R	GCATGCCTGCAGGTCGACTCTAGAGGCCGGT	construction
	TGGCTGACGAAAGTTGA	
PAOP-up-F	gaattcACAAGCTGGGCTCCCTGGACCT	300 bp
PAOP-up-R	ggatccGTCGATCACCGCCAGGTCGTGGT	For $phoP_{Pae}$ mutant construction
PAOP-down-F	ggatccGACGAGGAGCGCGACGCCAAC	301 bp
PAOP-down-R	aagcttCCCTTCTCCACCCGCGCCGCCGA	For $phoP_{Pae}$ mutant construction
PAOQ-up-F	gaattcGCGCAAGCTGGAGGCCTGCGGCGGCT	261 bp
PAOQ-up-R	ggatccGCCCTTCTCCACCCGCGCCGCCGA	For <i>phoQ_{Pae}</i> mutant construction
PAOQ-down-F	ggatccGGGCCGGGTTACTCGGAGCTGTGGGT	360 bp
PAOQ-down-R	aagcttAGCCCCTGTCGTCGGTTTTGCCACT	For $phoQ_{Pae}$ mutant construction
CPAO1-P-F:	GTCGACatgaaactgctggtagtggaaga	678 bp
CPAO1-P-R:	GGTACCtcaccggcagcgctcggtga	For pHM1-phoP _{Pae} construction
CPAO1-Q-F:	GTCGAC gtgatccgttccctgcgcatccgt	1347 bp
CPAO1-Q-R:	GGTACCtcagactgtagcgaaacgtatg	For pHM1-phoQ _{Pae} construction
PAO1-P-His6-F:	CATATGatgaaactgctggtagtggaaga	678 bp
PAO1-P-His6-R:	CTCGAGccggcagcgctcggtgaacaggta	For PhoP _{Pae} protein expression
PAO1-Q-his6-F:	CATATGGtgatccgttccctgcgcatccgtct	1347 bp
PAO1-Q-his6-R:	CTCGAGgactgtagcgaaacgtatgcggaag	For PhoQ _{Pae} protein expression
P-XC0691-F	AAAGGTTAACGGCTGCGGCC	200 bp
P-XC0691-R	CGAGGGAGTCGTTCCTGAAG	For EMSA probe
P-XC1867-F	CAATGCCTGCCAGGCCAGCA	200 bp
P-XC1867-R	CTTGGCGAGGGTAACTGCGC	For EMSA probe
P-XC2815-F	AACCTTGATTGCGCTGTGCT	200 bp
P-XC2815-R	GAGGTCTCTCCAGGGATTCA	For EMSA probe
P-XC3633-F	GACCCGGAATATGCGCGAGCCATT	200 bp
P-XC3633-R	CGTTGCTACCTCTGAAATAGTCA	For EMSA probe
P-XC0758-F	CCTTTCTCTCCCAGAAGGATTTC	200 bp
P-XC0758-R	GTGCGCCTGTCACGCGCTGCATAGG	For EMSA probe
P-XC1969-F	ACGAAACCATGCGCCCGCAGCCG	200 bp
P-XC1969-R	GCCGTGGCAGCCCTGGCAGGTG	For EMSA probe
P-XC2108-F	GGTGGACTCAACACCGAATCC	200 bp
P-XC2108-R	AGTTGGACTACCTTCCAGGCGAAT	For EMSA probe
P-XC2562-F	GCACATATCCGTGCACGTTCAC	200 bp
P-XC2562-R	GCCCGGCGCGGTGGTCGCCGACGG	For EMSA probe
P-PA4418-F	GGCGCCATGCGTTATATAAG	200 bp
P-PA4418-R	GGGAAAGAAACCCTAGGCGA	For EMSA probe
P-PA1795-F	ACATCAACGCCGACTCCCT	200 bp

P-PA1795-R	TTTCCTCAGCCCTGTCCCCA	For EMSA probe
P-PA0973-F	GCCCAATGGCACCATGCTAATCT	200 bp
P-PA0973-R	CATGTAACTCCTAATGAACCCCA	For EMSA probe
P-PA5451-F	CAAGGCATGGCCAGGGTC	200 bp
P-PA5451-R	CAGACCACCCTGCCGTAC	For EMSA probe
P-PA4001-F	GCCGGTGGCATCACCATGACG	200 bp
P-PA4001-R	TCTTGGTCTCAAACCTGGGCGATC	For EMSA probe
P-PA5490-F	ACCATGCCGCCTGGGAGCCGCGG	200 bp
P-PA5490-R	CAGCTAATCCAATTACGGCTAAG	For EMSA probe
P-PA4232-F	CCTGCCGCTCGCGCCGCGCGCGC	200 bp
P-PA4232-R	GACGTTCTCCTAAGGTTCAGCATC	For EMSA probe
P-PA0918-F	CCAGGCCATCCGCGACCGCGAG	200 bp
P-PA0918-R	CACGGTTCCTTCTCTTCGGCTCTCG	For EMSA probe
q-XC0691-F	TTCAAGAAACTCCGCGGCATGT	89 bp
q-XC0691-R	ATGCCTTGTCCGCGCACGTA	For qRT-PCR
q-XC1867-F	ATGAGCCTGCGCCTGCACAA	119 bp
q-XC1867-R	CCGATATGCGCATAGTTGTAGACCG	For qRT-PCR
q-XC2815-F	GTCACCCGCATCGATGAGGTTG	137 bp
q-XC2815-R	ACGTTCTTGTTGCCCTTGCTGC	For qRT-PCR
q-XC3633-F	GACATGATTCGGTCCGTATGGGC	104 bp
q-XC3633-R	ATCCACAAGGCGCCGAGCTT	For qRT-PCR
q-XC0758-F	GCCGCGCCACATTCACTCAA	87 bp
q-XC0758-R	GGCGAAAACAGCGGCGAAAC	For qRT-PCR
q-XC1969-F	ACGGCGTGACCGGCTACAAGAA	99 bp
q-XC1969-R	GGTATTCGGTCAGTGCCTGGGTCA	For qRT-PCR
q-XC2108-F	TGAAAGTGCAGATCATGAGTTCCGC	129 bp
q-XC2108-R	TGAACGGCAGTGGGAAATCGC	For qRT-PCR
q-XC2562-F	ATGCGTGTCCTGCACTGGCTGA	108 bp
q-XC2562-R	TTCCAGCAACCACTGCCGCA	For qRT-PCR
q-tmRNA-F	AGGGGGCAGCTTTCCTCGTTAAT	90 bp
q-tmRNA-R	AATTAAGCGGCGATAGCGAAGTCC	For qRT-PCR
q-PA4481-F	ATTGCGTGGCATGTTTTCCAGC	112 bp
q-PA4481-R	AATGGCGACCACGGACGGTT	For qRT-PCR
q-PA1795-F	GTGCTGCAGATCTACAACACGCTGA	92 bp
q-PA1795-R	GTCATGCCGCACACGTACATGC	For qRT-PCR
q-PA0973-F	GGCAAATTTGCTGCGCTGGCT	89 bp
q-PA0973-R	CCATTGGCACCTTCACCGGAAG	For qRT-PCR
q-PA5451-F	ATGCTTCTTGGCTTGTCTCGTTCCT	138 bp
q-PA5451-R	GATCATCGACAGCGGATTGAGCA	For qRT-PCR
q-PA4001-F	AATGCAAGTACTGCGTACATGGGCG	132 bp
q-PA4001-R	TCGCTGACGAACTCGGCCACTT	For qRT-PCR
q-PA5490-F	CTTCTCGTGAGTCTGCTGTTGACCC	146 bp
q-PA5490-R	AGTTTCGGGAAGTTCGGCGC	For qRT-PCR
q-PA4232-F	ATGGCCCGTGGGGTTAACAAAG	106 bp
q-PA4232-R	TGGCGAGGGTGATGTTGGTCAC	For qRT-PCR

q-PA0918-F	ATGAGCTGGAAAAACACCGAATCCC	117 bp
q-PA0918-R	GGGGAAATTGCCCTTCAGTTCGATA	For qRT-PCR
q-PAssrA-F	GCCAGCTCTCCGCTATCGGTTCTA	94 bp
q-PAssrA-R	ATACAGCTCGCTCCAAGCACCCTG	For qRT-PCR
XC0691-up-F	gaattcAaaggttaacggctgcggccggc	380 bp
XC0691-up-R	ggatecggeetecgeaecgaeggeageeae	For XC0691 mutant construction
XC0691-down-F	ggatccCtgcgcgacctggaccgcctgat	230 bp
XC0691-down-R	aagettgggagegeategaaaeggegeagg	For XC0691 mutant construction
XC1867-up-F	gaattcGagaccttgggctgaacgcagccc	310 bp
XC1867-up-R	ggatccgatgttgcgtgcgtagcgcagcgc	For XC1867 mutant construction
XC1867-down-F	ggatccGcggcgaaaaaagccaaggatttc	220 bp
XC1867-down-R	aagettgegggtggettegegettaeete	For XC1867 mutant construction
XC2815-up-F	gaattettaageetggagtgateeagttg	250 bp
XC2815-up-R	ggatccgccgcaatccacgcagcggttc	For XC2815 mutant construction
XC2815-down-F	ggatccGgccgcgtgatcatggtcaaccag	490 bp
XC2815-down-R	aagettgatgeggtagategacegateege	For XC2815 mutant construction
XC3633-up-F	gaattcTctggtgcctgttgctggaag	480 bp
XC3633-up-R	ggatecaggeaactttgetgecaggacete	For XC3633 mutant construction
XC3633-down-F	ggatecggggtacttetttacgggegtge	220 bp
XC3633-down-R	aagetttteagaceaaaceagetggeege	For XC3633 mutant construction
PA4481-up-F	GAATTCGatgccgcggtcggcggtcta	224 bp
PA4481-up-R	GGATCCacccaggtcgatcgacagatcgct	For PA4481 mutant construction
PA4481-down-F	GGATCCGcctcggatatcgccgagcgcg	450 bp
PA4481-down-R	AAGCTTatcagctcgctacggctgctgaa	For PA4481 mutant construction
PA1795-up-F	GAATTCCcggctgtcgccgccgagccgtc	230 bp
PA1795-up-R	GGATCCgccgaccagcggcgtgaagac	For PA1795 mutant construction
PA1795-down-F	GGATCCCtgcaggcggcgccgagggca	480 bp
PA1795-down-R	AAGCTTgtggtggtcgctgccggcaa	For PA1795 mutant construction
PA0973-up-F	GAATTCTctacgccacccgccagcaggac	240 bp
PA0973-up-R	GGATCCcacagccacagccatggcca	For PA0973 mutant construction
PA0973-down-F	GGATCCGaaggccacaccgacgaacg	500 bp
PA0973-down-R	AAGCTTttgagctgctggatctggtt	For PA0973 mutant construction
PA5451-up-F	GAATTCCaatggcgatggcgcgcggct	390 bp
PA5451-up-R	GGATCCgtaggccaggccgtcgtcga	For PA5151 mutant construction
PA5451-down-F	GGATCCctcaacccgatgaccgcgct	270 bp
PA5451-down-R	AAGCTTggcgcggggggggggggggggggggggggggggggg	For PA5151 mutant construction
in-XC0691-F	gaattcAACTCCGCGGCATGTTCT	304 bp
in-XC0691-R	aagettAGGAAGCGCGACTTGTGCAC	For insert inactivation mutant construction of <i>XC0691</i>
in-XC1867-F	gaattcATGAGCCTGCGCCTGCACAA	346 bp
in-XC1867-R	aagettTTGCCTCCGGCTCGATATCC	For insert inactivation mutant construction of <i>XC1867</i>
in-XC2815-F	gaattcATGAAGACCCGACTGCTC	347 bp
in-XC2815-R	aagcttTTGTTCTGGATCGCGTTG	For insert inactivation mutant construction of <i>XC2815</i>

in-XC3633-F	gaattcGACATGATTCGGTCCGTA	316 bp
in-XC3633-R	aagettGTGGAAACGCCTGCTTTT	For insert inactivation mutant
	-	construction of <i>XC3633</i>
in-XC0758-F	gaattcGCCGCGCCACATTCACTCAA	311 bp
in-XC0758-R	aagettTACCGCTGCAGAAAGCCCTG	For insert inactivation mutant construction of <i>XC0758</i>
in-XC1969-F	gaattcCGCTTGTCTCGCTCTGGTCGTCTT	311 bp
in-XC1969-R	aagettTTTGCGCCTGTGCCTGCATG	For insert inactivation mutant construction of <i>XC1969</i>
in-XC2108-F	gaattcATGAAAGTGCAGATCATGA	206 bp
in-XC2108-R	aagcttTTGTTCTGCAACGACTTG	For insert inactivation mutant construction of <i>XC2108</i>
in-XC2562-F	gaattcATGCGTGTCCTGCACTGGCT	302 bp
in-XC2562-R	aagettTAAGCGTTGCTCAGCGACC	For insert inactivation mutant construction of <i>XC2562</i>
C-XC0691-F	AAGCTTATGTTCAAGAAACTCCGCGG	1047 bp
C-XC0691-R	GAATTCTCACTCCGGCGCGAAGAACT	For XC0691 complementation
C-XC1867-F	AAGCTTATGCCGATGAGCCTGCGCCT	1374 bp
C-XC1867-R	GAATTCTCATGCGCGCTTCCAGCGCA	For XC1867 complementation
C-XC2815-F	AAGCTTATGAAGACCCGACTGCTCGT	480 bp
C-XC2815-R	GAATTCGCGCAGCACGACCTTGCCGT	For XC2815 complementation
C-XC3633-F	AAGCTTTTGGACATGATTCGGTCCGT	792 bp
C-XC3633-R	GAATTCTCATAGCGCATCCACCATTT	For XC3633 complementation
C-PA4481-F	AAGCTTATGTTCAAAAAATTGCGTGG	1038 bp
C-PA4481-R	GAATTCTTACTCGGTGGAGAGCAGGT	For PA4481 complementation
C-PA1795-F	AAGCTTGTGCTGCAGATCTACAACA	1383 bp
C-PA1795-R	GAATTCTCAGTCGGCCAGGCGCCA	For PA1795 complementation
C-PA0973-F	AAGCTTATGGAAATGCTGAAATTCGG	507 bp
C-PA0973-R	GAATTCTTACTTCTTCAGCTCGACGC	For PA0973 complementation
C-PA5451-F	AAGCTTATGCTTCTTGGCTTGTCT	798 bp
C-PA5451-R	GAATTCTCAGAGTTCATCCACCAT	For PA5451 complementation

Table S3. List of proteins (>1.2-fold) in the Δ phoP* mutant strain that were differentially expressed (>1.2-fold) between the induced and repressed conditions.

Spot No.	Protein code ^a	Protein name	Length (aa)	Protein annotation or description	Theoretical MW (kDa)	p <i>I</i>	Score ^b	Sequence coverage	Ratio ^c (ara ^d /IPTG)
Amino	acid biosyntl	hesis and me	tabolism						
33	XC0194		469	Glutamine synthetase	52.0	5.20	201	39%	2.20
12	XC1255		460	L-serine dehydratase	50.2	5.93	210	52%	-2.13
24	XC1367	PyrB	315	Aspartate carbamoyltransferase	34.0	5.94	137	52%	-2.54
11	XC1733		498	L-lysine 6-aminotransferase	53.9	5.89	163	40%	-2.07
45	XC2351		410	Valine-pyruvate aminotransferase	44.6	5.82	97	40%	1.96
10	XC2653	Hut1	401	Imidazolonepropionase	46.1	5.77	135	28%	-3.15
48	XC2809		387	Glutaryl-CoA dehydrogenase	41.9	5.94	156	36%	1.58
13	XC3313		478	Family II 2-keto-3-deoxy-D-arabino-heptulosonate	53.6	5.90	301	59%	-2.37
				7-phosphate synthase					
23	XC3655		367	Cysteine synthase	40.2	5.96	124	47%	-2.12
Carbon	hydrate met	abolism							
49	XC0944		429	Citrate synthase	47.9	5.88	104	40%	1.46
46	XC0972		333	Glyceraldehyde-3-phosphate dehydrogenase	36.2	6.04	124	42%	1.39
6	XC1952	PpsA	792	Phosphoenolpyruvate synthase	86.5	5.12	76	10%	2.73
29	XC2369	MtnB	217	Sugar aldolase	24.4	5.92	217	34%	-2.02
9	XC2733		448	UDP-glucose dehydrogenase	49.0	5.79	94	21%	2.62
5	XC3613		351	dTDP-glucose-4,6-dehydratase	38.7	5.47	145	54%	-∞
14	XC3674	GlmU	454	UDP-N-acetylglucosamine pyrophosphorylase	48.2	6.23	177	44%	-2.39
58	XC3769		398	UDP-galactopyranose mutase	45.9	5.94	159	58%	-1.3
36	XC3854		743	Isocitrate dehydrogenase	80.2	5.50	138	40%	1.74
16	XC4065		521	Beta-xylosidase	58.5	6.28	62	16%	2.82
Energy	metabolism	and detoxifi	cation						

26	XC0333		295	Oxidoreductase	30.0	5.73	52	24%	-2.43
3	XC0796		279	Glutaredoxin-like protein	29.9	4.59	198	51%	∞
42	XC1595		744	NADH-ubiquinone oxidoreductase NQO3 subunit	79.9	6.15	158	44%	1.53
0	XC3073		366	Xenobiotic flavin oxidoreductase A	39.6	6.06	50	20%	1.52
7	XC3397		529	Aalkyl hydroperoxide reductase subunit F	57.2	5.28	182	41%	2.96
15	XC3689		213	Dihydrolipoamide dehydrogenase	21.5	5.35	78	44%	-2.11
2	XC3754		299	Mn-containing catalase	32.4	4.70	301	49%	1.34
Fatty a	cid metabolis	sm							
1	XC1017		594	Outer membrane lipase/esterase	61.9	4.76	114	18%	1.75
53	XC1516		291	Geranyltranstransferase; farnesyl-diphosphate	30.3	5.65	88	36%	1.62
				synthase					
47	XC2980		393	Acyl-CoA dehydrogenase	42.6	5.96	202	62%	1.34
Nucleic	e acid and pro	otein metabol	ism						
41	XC0004	GyrB	814	DNA gyrase subunit B	89.5	5.70	130	25%	1.51
21	XC1324	PurM	341	Phosphoribosylformylglycinamide cyclo-ligase	36.0	4.73	63	25%	2.43
39	XC1429	GltX	467	Glutamyl-tRNA synthetase	52.1	5.39	225	54%	1.56
37	XC1628		673	Excinuclease ABC subunit B	75.8	5.43	77	15%	1.84
44	XC2534	PyrG	554	CTP synthetase	62.8	5.95	60	20%	1.33
52	XC3619		309	Acetyl transferase/isomerase	33.5	5.80	73	52%	1.91
22	XC3943		419	DNA/pantothenate metabolism flavoprotein	43.7	6.01	139	56%	-2.02
40	XC4328	TrmE	446	Thiophene and furan oxidation protein	47.7	5.39	113	45%	1.92
Riboso	me, protein b	oiosynthesis a	nd refoldin	g					
55	XC0535	GroEL	546	60 kDa chaperonin	57.1	5.01	322	65%	-1.31
28	XC1492		301	Peptidyl-prolyl cis-trans isomerase	33.1	6.24	107	39%	2.06
56	XC3342	Tuf1	396	Elongation factor Tu	43.4	5.45	255	56%	_∞
Signal (transduction								
34	XC1691	FixL	540	Sensor histidine kinase	59.1	5.24	105	42%	1.39
4	XC4031	PhoP	227	two-component system regulatory protein	25.4	5.19	441	66%	2.19

Cell divi	sion								
25	XC3506	FtsA	411	Cell division protein	44.4	5.78	183	41%	-3.15
Transpo	ortation								
32	XC0017		446	Outer membrane protein	47.1	5.18	575	62%	1.65
35	XC1091		626	Outer membrane receptor for transport of vitamin B	68.2	5.22	259	52%	1.55
54	XC4327	Oar	1006	Oar protein	10.6	4.68	263	45%	1.48
Function	n unknown p	protein							
17 ^e	XC0215		198	Conserved hypothetical protein	21.8	4.60	76	47%	-2.38
51	XC1374		451	Conserved hypothetical protein	49.9	6.15	157	45%	1.33
43	XC2373		554	Conserved hypothetical protein	60.3	5.97	54	24%	1.56
18	XC3095		134	Conserved hypothetical protein	14.9	6.28	134	51%	-2.15
27	XC3393		265	Conserved hypothetical protein	28.9	6.55	59	30%	-2.01
20	XC3882		165	Conserved hypothetical protein	16.7	4.82	89	43%	2.11
30	XC4228		222	Conserved hypothetical protein	24.1	6.08	98	46%	2.08

^a Names and codes of identified proteins are according to genomic annotation of *X. campestris* pv. *campestris* 8004.

^b Scores are based of Mascot search. Scores greater than 49 are significant (p < 0.05).

^c The ratio is the relative expression level of a protein under arabinose stimulation vs. IPTG stimulation. Fragments of these proteins were identified from different sites of the gels.

^d ara represent L-arabinose treated condition.

^e XC0215 was identified in another point, with a relative expression level of -2.01 (Mascot search score = 316)

No	Growth condition	Gene	Annotation ^a	Strand	Peak	Peak	Peak position	Classification
				b	Z-score	start:end		
1 ^c	L-arabinose	XC0017	Outer membrane protein	-	5.69	20741:	20982	Transportation
						21207		
2	L-arabinose	XC0018	Conserved hypothetical protein	+	5.69	20741:	20982	Function unknown protein
						21207		
3	L-arabinose	XC0136	RhsD protein	+	2.00	165044:	166891	Stress response
						167218		
4	L-arabinose	XC0215	Conserved hypothetical protein	-	4.77	263259:	263464	Function unknown protein
						263668		
5	L-arabinose	XC0220	Conserved hypothetical protein	-	8.82	266928:	267123	Function unknown protein
						267479		
6	L-arabinose	XC0627	D-serine/D-alanine/glycine transporter	+	1.71	746367:	746682	Transportation
						746782		
7	L-arabinose	XC0758	Soluble lytic murein transglycosylase	-	6.12	910043:	910266	Cell division
						910498		
8	L-arabinose	XC0759	TonB-dependent receptor	+	6.12	910043:	910266	Transportation
						910498		
9	L-arabinose	XC0849	TonB-dependent receptor	+	1.71	1025496:	1025611	Transportation
						1025737		
10	L-arabinose	XC0860	Conserved hypothetical protein	-	2.23	1039352:	1039611	Function unknown protein
						1040196		
11	L-arabinose	XC0866	Conserved hypothetical protein	-	1.97	1045215:	1045367	Function unknown protein
						1045653		
12	L-arabinose	XC1022	Regulatory protein bphR	-	2.38	1235858:	1236550	Signal transduction
						1236983		

Table S4. ChIP-seq analysis identified genes with promoter regions bound by PhoP in X. campestris. pv. campestris

13	L-arabinose	XC1030	Conserved hypothetical protein	+	1.73	1245629: 1245874	1245675	Function unknown protein
14	L-arabinose	XC1079	Ferric enterobactin receptor	-	2.43	1303499: 1303819	1303627	Transportation
15	L-arabinose	XC1110	Cation:proton antiporter	-	2.48	1341738: 1342118	1341930	Transportation
16	L-arabinose	XC1113	Ferric enterobactin receptor	-	2.91	1349297: 1349693	1349515	Transportation
17	L-arabinose	XC1235	beta-lactamase	-	6.84	1511442: 1511866	1511670	Stress response
18	L-arabinose	XC1236	Conserved hypothetical protein	+	6.84	1511442: 1511866	1511670	Function unknown protein
19	L-arabinose	XC1305	Conserved hypothetical protein	-	8.31	1597236: 1597678	1597441	Function unknown protein
20	L-arabinose	XC1306	Phosphotransferase system HPr enzyme	-	8.31	1597236: 1597678	1597441	Carbohydrate metabolism
21	L-arabinose	XC1415	Conserved hypothetical protein	-	7.72	1707914: 1708353	1708175	Function unknown protein
22	L-arabinose	XC1422	Cysteine protease	-	2.25	1718240: 1718512	1718358	Proteolysis
23	L-arabinose	XC1474	RNA polymerase ECF-type sigma factor	-	5.28	1773368: 1773850	1773613	Signal transduction
24	L-arabinose	XC1475	ATP-dependent RNA helicase	+	5.28	1773368: 1773850	1773613	Macromolecule metabolism
25	L-arabinose	XC1546	TonB-dependent receptor	-	4.36	1863561: 1863967	1863767	Transportation
26	L-arabinose	XC1635	VirB11 protein	+	2.06	1961161: 1961920	1961334	Secretion system

27	L-arabinose	XC1638	VirB3 protein	+	2.25	1963675: 1964396	1963906	Secretion system
28	L-arabinose	XC1800	3-methyladenine DNA glycosylase	-	5.16	2189141: 2189544	2189333	Macromolecule metabolism
29	L-arabinose	XC1801	Chemotaxis protein	+	5.16	2189141: 2189544	2189333	Stress response
30	L-arabinose	XC1867	Cysteinyl-tRNA synthetase	-	11.92	2261976: 2262432	2262219	Macromolecule metabolism
31	L-arabinose	XC1868	Conserved hypothetical protein	+	11.92	2261976: 2262432	2262219	Function unknown protein
32	L-arabinose	XC1969	Cytochrome C4	-	3.03	2375920: 2376285	2376097	Energy metabolism
33	L-arabinose	XC1970	Cation efflux system protein	+	3.03	2375920: 2376285	2376097	Transportation
34	L-arabinose	XC2167	Conserved hypothetical protein	-	2.95	2612885: 2613234	2613059	Function unknown protein
35	L-arabinose	XC2319	Conserved hypothetical protein	+	2.75	2801540: 2801857	2801667	Function unknown protein
36	L-arabinose	XC2428	Ankyrin repeat protein	-	1.69	2942759: 2943042	2942913	Signal transduction
37	L-arabinose	XC2506	Carbon storage regulator,CsrA	-	2.64	3035495: 3035905	3035778	Trnstransduction
38	L-arabinose	XC2535	Conserved hypothetical protein	-	3.25	3066045: 3066478	3066270	Function unknown protein
39	L-arabinose	XC2536	Topoisomerase IV subunit B	+	3.25	3066045: 3066478	3066270	Macromolecule metabolism
40	L-arabinose	XC2607	Conserved hypothetical protein	-	2.23	3148508: 3148818	3148667	Function unknown protein

41	L-arabinose	XC2705	Hypothetical protein	-	2.71	3250675: 3250990	3250850	Function unknown protein
42	L-arabinose	XC2810	Conserved hypothetical protein	-	3.67	3383766: 3384176	3383999	Function unknown protein
43	L-arabinose	XC2811	Conserved hypothetical protein	+	3.67	3383766: 3384176	3383999	Function unknown protein
44	L-arabinose	XC2828	Conserved hypothetical protein	-	2.06	3401130: 3401410	3401273	Function unknown protein
45	L-arabinose	XC2899	TonB-dependent receptor	+	3.62	3481926: 3482320	3482121	Transportation
46	L-arabinose	XC2921	Conserved hypothetical protein	-	2.96	3507165: 3507504	3507345	Function unknown protein
47	L-arabinose	XC2991	beta-glucosidase	-	1.67	3586406: 3586945	3586548	Virulence
48	L-arabinose	XC2994	Conserved hypothetical protein	-	2.12	3590975: 3591543	3591158	Function unknown protein
49	L-arabinose	XC3004	HrpB8 protein	-	1.51	3600612: 3600880	3600721	Secretion system
50	L-arabinose	XC3022	HpaB protein	+	2.08	3613348: 3613680	3613530	Secretion system
51	L-arabinose	XC3029	Alcohol dehydrogenase	-	1.53	3624113: 3624554	3624214	Carbohydrate metabolism
52	L-arabinose	XC3032	Tryptophan 2,3-dioxygenase	-	1.97	3627455: 3627937	3627568	Macromolecule metabolism
53	L-arabinose	XC3127	Conserved hypothetical protein	+	5.00	3731556: 3734825	3733079	Function unknown protein
54	L-arabinose	XC3240	Outer membrane protein Slp	+	9.46	3885409: 3885854	3885631	Stress response

55	L-arabinose	XC3300	Outer membrane protein	-	2.98	3952097: 3952633	3952309	Transportation
56	L-arabinose	XC3301	Oxidoreductase	+	2.98	3952097: 3952633	3952309	Energy metabolism
57	L-arabinose	XC3326	30S ribosomal protein S8	-	1.83	3978308: 3978515	3978408	Macromolecule metabolism
58	L-arabinose	XC3379	Extracellular protease	-	3.72	4030111: 4030541	4030310	Virulence
59	L-arabinose	XC3452	PgrR	-	10.43	4099239: 4101139	4100778	Signal transduction
60	L-arabinose	XC3518	Conserved hypothetical protein	-	2.97	4180281: 4180614	4180449	Function unknown protein
61	L-arabinose	XC3519	Conserved hypothetical protein	+	2.97	4180281: 4180614	4180449	Function unknown protein
62	L-arabinose	XC3545	conserved hypothetical protein	-	4.40	4208346: 4208795	4208590	Function unknown protein
63	L-arabinose	XC3546	ABC transporter ATP-binding protein	+	4.40	4208346: 4208795	4208590	Transportation
64	L-arabinose	XC3549	Conserved hypothetical protein	+	3.20	4212221: 4212577	4212396	Function unknown protein
65	L-arabinose	XC3576	Outer membrane protein	-	1.94	4250643: 4250903	4250748	Transportation
66	L-arabinose	XC3610	dTDP-4-dehydrorhamnose reductase	-	1.85	4292861: 4293130	4293016	Energy metabolism
67	L-arabinose	XC3621	Conserved hypothetical protein	+	2.25	4301008: 4302788	4302535	Function unknown protein
68	L-arabinose	XC3631	Putative kinase WxcB	-	1.79	4311956: 4312972	4312553	Carbohydrate metabolism

69	L-arabinose	XC3799	Transcriptional regulator	-	1.82	4493133: 4493466	4493304	Signal transduction
70	L-arabinose	XC3806	RNA polymerase sigma-70 factor	-	4.72	4501460: 4501882	4501683	Transcription
71	L-arabinose	XC3843	RNA polymerase sigma-32 factor	-	2.01	4541520: 4541780	4541685	Transcription
72	L-arabinose	XC3870	Conserved hypothetical protein	-	2.09	4575636: 4575974	4575854	Function unknown protein
73	L-arabinose	XC3925	Tyrosyl-tRNA synthetase	-	4.67	4639315: 4639706	4639513	Macromolecule metabolism
74	L-arabinose	XC3926	Conserved hypothetical protein	+	4.67	4639315: 4639706	4639513	Function unknown protein
75	L-arabinose	XC3973	Conserved hypothetical protein	-	2.39	4692449: 4692923	4692620	Function unknown protein
76	L-arabinose	XC3974	Hypothetical protein	-	2.39	4692449: 4692923	4692620	Function unknown protein
77	L-arabinose	XC3975	Conserved hypothetical protein	+	2.39	4692449: 4692923	4692620	Function unknown protein
78	L-arabinose	XC3985	Histone H1	-	3.78	4701326: 4701712	4701496	Signal transduction
79	L-arabinose	XC3986	Protease Do	+	3.78	4701326: 4701712	4701496	Proteolysis
80	L-arabinose	XC4031	PhoP	-	36.13	4747193: 4748123	4747401	Signal transduction
81	L-arabinose	XC4290	Hemagglutinin	-	2.64	5094677: 5094999	5094873	Virulence
82	L-arabinose	XC4295	Conserved hypothetical protein	-	2.99	5097596: 5097983	5097786	Function unknown protein

83	L-arabinose	XC4296	Toluene tolerance protein	+	2.99	5097596: 5097983	5097786	Stress response
84	L-arabinose	XC4327	Oar protein	+	14.88	5138422:	5138660	Transportation
						5138919		
1	IPTG	XC0017	Outer membrane protein	-	4.70	20756:	20998	Transportation
						21196		
2	IPTG	XC0018	Conserved hypothetical protein	+	4.70	20756:	20998	Function unknown protein
						21196		
3	IPTG	XC0131	Conserved hypothetical protein	+	1.66	160874:	161071	Function unknown protein
						161140		
4	IPTG	XC0215	Conserved hypothetical protein	-	4.27	263275:	263506	Function unknown protein
						263688		
5	IPTG	XC0220	Conserved hypothetical protein	-	6.50	266937:	267125	Function unknown protein
						267477		
6	IPTG	XC0758	Soluble lytic murein transglycosylase	-	5.49	910062:	610276	Stress response
						910483		
7	IPTG	XC0759	TonB-dependent receptor	+	5.49	910062:	910276	Transportation
						910483		
8	IPTG	XC0844	Prolyl oligopeptidase family protein	-	2.33	1019073:	1019288	Proteolysis
						1019460		
9	IPTG	XC0860	Conserved hypothetical protein	-	1.71	1039781:	1040012	Function unknown protein
						1040149		
10	IPTG	XC0866	Conserved hypothetical protein	-	1.55	1045282:	1045397	Function unknown protein
						1045522		
11	IPTG	XC1079	Ferric enterobactin receptor	-	2.44	1303508:	1303650	Transportation
						1303847		
12	IPTG	XC1080	Conserved hypothetical protein	+	2.44	1303508:	1303650	Function unknown protein

						1303847		
13	IPTG	XC1113	Ferric enterobactin receptor	-	2.86	1349310:	1349479	Function unknown protein
						1349736		
14	IPTG	XC1141	TolB protein	+	1.86	1382994:	1383259	Function unknown protein
						1383388		
15	IPTG	XC1235	beta-lactamase	-	6.06	1511440:	1511651	Stress response
						1511866		
16	IPTG	XC1236	Conserved hypothetical protein	+	6.06	1511440:	1511651	Function unknown protein
						1511866		
17	IPTG	XC1305	Phosphotransferase system HPr enzyme	-	6.31	1597228:	1597457	Carbohydrate metabolism
						1597670		
18	IPTG	XC1306	Conserved hypothetical protein	-	6.31	1597228:	1597457	Function unknown protein
						1597670		
19	IPTG	XC1415	Conserved hypothetical protein	-	7.61	1707905:	1708122	Function unknown protein
						1708350		
20	IPTG	XC1474	RNA polymerase ECF-type sigma factor	-	3.82	1773373:	1773623	Transcription
						1773853		
21	IPTG	XC1475	ATP-dependent RNA helicase	+	3.82	1773373:	1773623	Macromolecule metabolism
						1773853		
22	IPTG	XC1534	Conserved hypothetical protein	-	2.01	1843394:	1843580	Function unknown protein
						1843696		
23	IPTG	XC1546	TonB-dependent receptor	-	4.54	1863582:	1863788	Transportation
						1863997		
24	IPTG	XC1635	VirB11 protein	+	1.81	1961345:	1961440	Secretion system
						1961652		
25	IPTG	XC1800	3-methyladenine DNA glycosylase	-	4.51	2189143:	2189329	Macromolecule metabolism
						2189553		
26	IPTG	XC1801	Chemotaxis protein	+	4.51	2189143:	2189329	Stress response

						2189553		
27	IPTG	XC1867	Cysteinyl-tRNA synthetase	-	10.00	2261975:	2262233	Macromolecule metabolism
						2262443		
28	IPTG	XC1868	Conserved hypothetical protein	+	10.00	2261975:	2262233	Function unknown protein
						2262443		
29	IPTG	XC1969	Cytochrome C4	-	2.89	2375906:	2376071	Energy metabolism
						2376234		
30	IPTG	XC1970	Cation efflux system protein	+	2.89	2375906:	2376071	Transportation
						2376234		
31	IPTG	XC2018	Conserved hypothetical protein	+	1.93	2432061:	2432195	Function unknown protein
						2432300		
32	IPTG	XC2228	c-di-GMP phosphodiesterase A	+	3.66	2684448:	2687666	Signal transduction
						2688647		
33	IPTG	XC2506	Carbon storage regulator	-	2.33	3035555:	3035769	Signal transduction
						3035905		
34	IPTG	XC2535	Conserved hypothetical protein	-	3.07	3066064:	3066303	Function unknown protein
						3066466		
35	IPTG	XC2536	Topoisomerase IV subunit B	+	3.07	3066064:	3066303	Macromolecule metabolism
						3066466		
36	IPTG	XC2607	Conserved hypothetical protein	-	2.27	3148422:	3148664	Function unknown protein
						3148844		
37	IPTG	XC2705	Hypothetical protein	-	2.34	3250670:	3250814	Function unknown protein
						3251008		
38	IPTG	XC2811	Conserved hypothetical protein	+	2.96	3383802:	3383956	Function unknown protein
						3384159		
39	IPTG	XC2899	TonB-dependent receptor	+	2.93	3481929:	3482114	Transportation
						2482204		
						5462294		

						3507457		
41	IPTG	XC2994	Conserved hypothetical protein	-	1.67	3591247:	3591413	Function unknown protein
						3591586		
42	IPTG	XC3127	Conserved hypothetical protein	+	5.11	3731486:	3733093	Function unknown protein
						3734859		
43	IPTG	XC3136	Hypothetical protein	-	1.57	3749147:	3749194	Function unknown protein
						3749347		
44	IPTG	XC3240	Outer membrane protein Slp	+	6.81	3885418:	3885652	Stress response
						3885858		
45	IPTG	XC3257	Conserved hypothetical protein	-	2.25	3899542:	3899727	Function unknown protein
						3899897		
46	IPTG	XC3300	Outer membrane protein	-	2.30	3952150:	3952345	Transportation
						3952568		
47	IPTG	XC3326	30S ribosomal protein S8	-	1.80	3978303:	3978394	Macromolecule metabolism
						3978503		
48	IPTG	XC3379	Extracellular protease	-	2.90	4030103:	4030269	Virulence
						4030481		
<mark>4</mark> 9	IPTG	XC3452	PgrR	-	8.13	4099219:	4100779	Signal transduction
						4101185		
50	IPTG	XC3518	Conserved hypothetical protein	-	3.18	4180246:	4180417	Function unknown protein
						4180622		
51	IPTG	XC3519	Conserved hypothetical protein	+	3.18	4180246:	4180417	Function unknown protein
						4180622		
52	IPTG	XC3545	Conserved hypothetical protein	-	3.67	4208392:	4208581	Function unknown protein
						4208790		
53	IPTG	XC3546	ABC transporter ATP-binding protein	+	3.67	4208392:	4208581	Transportation
						4208790		
54	IPTG	XC3549	Conserved hypothetical protein	+	2.96	4212222:	4212396	Function unknown protein

						4212572		
55	IPTG	XC3576	Outer membrane protein	-	2.12	4250683:	4250800	Transportation
						4250943		
56	IPTG	XC3585	Leucyl aminopeptidase	+	4.16	4261331:	4261535	Proteolysis
						4261970		
57	IPTG	XC3620	Sugar translocase	+	1.69	4300375:	4300604	Transportation
						4300829		
58	IPTG	XC3628	Membrane protein WxcE	-	1.62	4308487:	4308685	Carbohydrate metabolism
						4308919		
59	IPTG	XC3693	Conserved hypothetical protein	-	3.10	4381037:	4381230	Function unknown protein
						4381439		
60	IPTG	XC3694	Outer membrane protein	+	3.10	4381037:	4381230	Transportation
						4381439		
61	IPTG	XC3806	RNA polymerase sigma-70 factor	-	3.98	4501480:	4501683	Transcription
						4501877		
62	IPTG	XC3870	Conserved hypothetical protein	-	1.94	4575682:	4575817	Function unknown protein
						4575973		
63	IPTG	XC3926	Conserved hypothetical protein	+	4.36	4639312:	4639501	Function unknown protein
						4639693		
64	IPTG	XC3974	Hypothetical protein	-	2.19	4692486:	4692682	Function unknown protein
						4692917		
65	IPTG	XC3975	Conserved hypothetical protein	+	2.19	4692486:	4692682	Function unknown protein
						4692917		
66	IPTG	XC3985	Histone H1	-	2.97	4701342:	4701510	Signal transduction
						4701731		
67	IPTG	XC3986	Protease Do	+	2.97	4701342:	4701510	Proteolysis
						4701731		
68	IPTG	XC4031	PhoP	-	32.33	4747175:	4747399	Signal transduction

						4748105		
69	IPTG	XC4295	Conserved hypothetical protein	-	3.02	5097569:	5097795	Function unknown protein
						5097979		
70	IPTG	XC4296	Toluene tolerance protein	+	3.02	5097569:	5097795	Stress response
						5097979		
71	IPTG	XC4327	Oar protein	+	12.92	5138441:	5138658	Transportation
						5138932		

^a Names and codes of identified genes are according to genomic annotation of *X. campestris* pv. *campestris* 8004. ^b "-" represents anti-sense strand; "+" represents sense strand.

^c Yellow highlight genes that were retrieved from both IPTG and L-arabinose treated bacterial samples.

No.	PID	Gene name	Gene function	Motif_sequence	
			Xanthomonas campestris pv. campestris 8004		
1	66571713	XC_0029	alcohol dehydrogenase	CCATTCACG	
2	66571804	XC_0123	TonB-dependent receptor	TTGTTCATG	
3		XC_0145		CTGTTCACG	
4	66571863	XC_0186	cardiolipin synthase	ACGTTCATT	
5	66571922	XC_0245	transcriptional regulator araC family	CTGTTCACC	
6	66571951	XC_0274	organic hydroperoxide resistance protein	TCATTCATT	
7	66571956	XC_0280	quinone oxidoreductase	CCATTCACT	
8	66572013	XC_0338	conserved hypothetical protein	TCATTCAGC	
9	66572020	XC_0345	xanthomonadin biosynthesis related protein 1	TCATTCATG	
10	66572031	XC_0356	dihydroxy-acid dehydratase	CTGTTCACC	
11	66572039	XC_0364	conserved hypothetical protein	ACGTTCAGT	
12	66572066	XC_0391	threonine dehydratase	ATGTTCATT	
13	66572101	XC_0427	glycogen debranching enzyme	TCGTTCACC	
14	66572106	XC_0432	outer membrane protein	TTGTTCATG	
15	66572234	XC_0563	conserved hypothetical protein	CTGTTCATT	
16	66572312	XC_0642	ferripyoverdine receptor	ATATTCATT	
17	66572317	XC_0647	two-component system sensor protein	CTGTTCATG	
18	66572360	XC_0691	rod shape-determining protein	ATGTTCAGG	
19	66572373	XC_0705	endopolygalacturonase	CCATTCACC	
20	66572377	XC_0709	conserved hypothetical protein	ATGTTCACG	
21	66572384	XC_0716	transcriptional regulator	TCATTCATG	

Table S5. Theoretical prediction identified bacterial genes with a PhoP binding motif in the promoter region.

22	66572396	XC_0728	two-component system sensor protein	CCATTCAGC		-
23	66572410	XC_0742	type II secretion system protein G	TCGTTCACC		
24	66572444	XC_0776	conserved hypothetical protein	CCGTTCATC		
25	66572477	XC_0812	two-component system regulatory protein	CTATTCACG	-	
26	66572484	XC_0819	polyphosphate-selective porin O	CTGTTCATT		
27	66572486	XC_0821	NADP-dependent malic enzyme	TTGTTCAGG		
28	66572509	XC_0844	prolyl oligopeptidase family protein	TCGTTCAGC		
29	66572516	XC_0851	inorganic pyrophosphatase	CTATTCAGT		
30	66572519	XC_0854	conserved hypothetical protein	ATGTTCATG		
31	66572520	XC_0855	conserved hypothetical protein	TCGTTCACC		
32	66572580	XC_0916	transcriptional regulator blaI family	ATGTTCAGT		
33	66572587	XC_0923	transcriptional regulator	CCGTTCACT		
34	66572635	XC_0971	conserved hypothetical protein	ATATTCACG		
35	66572639	XC_0975	conserved hypothetical protein	TCGTTCATG		
36	66572656	XC_0992	NADPH-sulfite reductase flavoprotein subunit	TCGTTCATC		
37	66572681	XC_1017	lipase/esterase	ATGTTCATG		
38	66572699	XC_1038	conserved hypothetical protein	TTATTCAGC		
39	66572720	XC_1060	pilus biogenesis protein	CTATTCAGT		
40	66572733	XC_1073	conserved hypothetical protein	CCATTCATT		
41	66572740	XC_1080	conserved hypothetical protein	TTGTTCAGG		
42	66572778	XC_1118	transcriptional activator ampR family	ACGTTCACC		
43	66572788	XC_1128	aspartyl-tRNA synthetase	CTATTCAGC		
44	66572801	XC_1141	TolB protein	TCGTTCATG	3834475	TTGTTCAGC
45	66572844	XC_1184	PilH protein	CCATTCACC		

46	66572886	XC_1227	sulfite synthesis pathway protein	CTGTTCATT
47	66572894	XC_1235	beta-lactamase	CCATTCATC
48	66572930	XC_1271	conserved hypothetical protein	CTGTTCACC
49	66572951	XC_1292	endoproteinase Arg-C	ATATTCAGC
50	66572965	XC_1306	conserved hypothetical protein	CCATTCATT
51	66572966	XC_1307	conserved hypothetical protein	ATGTTCATC
52	66572974	XC_1315	conserved hypothetical protein	ACATTCACG
53	66572979	XC_1320	conserved hypothetical protein	ACGTTCACC
54	66572981	XC_1322	5'-phosphoribosylglycinamide transformylase	TCGTTCATG
55	66572988	XC_1329	conserved hypothetical protein	CTGTTCAGC
56	66573021	XC_1362	conserved hypothetical protein	ACATTCAGG
57	66573037	XC_1378	single-stranded DNA binding protein	ACATTCATC
58	66573043	XC_1384	alcohol dehydrogenase	TTGTTCACG
59	66573075	XC_1417	conserved hypothetical protein	TCATTCACG
60	66573119	XC_1461	conserved hypothetical protein	ACATTCAGG
61	66573132	XC_1474	RNA polymerase ECF-type sigma factor	TTGTTCAGG
62	66573156	XC_1498	lipoprotein	CCGTTCACG
63	66573163	XC_1505	outer membrane protein	ATATTCATC
64	66573168	XC_1510	TldD protein	ACGTTCAGC
65	66573169	XC_1511	conserved hypothetical protein	CCGTTCATG
66	66573190	XC_1534	conserved hypothetical protein	TTATTCAGG
67	66573227	XC_1571	conserved hypothetical protein	ACGTTCAGT
68	66573295	XC_1639	VirB4 protein	CTATTCAGG
69	66573298	XC_1642	alpha-glucosidase	CTATTCATG

70	66573366	XC_1710	conserved hypothetical protein	ACGTTCACC	-	
71	66573388	XC_1733	L-lysine 6-aminotransferase	CCATTCATT		
72	66573394	XC_1739	protein-export membrane protein	ATGTTCACC		
73	66573454	XC_1801	chemotaxis protein	ACATTCAGG	2189514	ACGTTCACT
74	66573460	XC_1807	conserved hypothetical protein	CCGTTCACG		
75	66573487	XC_1834	ABC transporter ATP-binding protein	TCGTTCATG		
76	66573495	XC_1842	conserved hypothetical protein	TCGTTCATG		
77	66573510	XC_1857	peptidase	CCGTTCACC		
78	66573558	XC_1905	conserved hypothetical protein	CTGTTCACT		
79	66573562	XC_1909	transcriptional regulator lacI family	TTATTCACG		
80	66573575	XC_1922	50S ribosomal protein L36	TCATTCAGG		
81	66573605	XC_1952	phosphoenolpyruvate synthase	CCATTCAGC		
82	66573623	XC_1970	cation efflux system protein	CTGTTCACG		
83	66573687	XC_2036	conserved hypothetical protein	ATGTTCATC		
84	66573700	XC_2049	plasmid-related protein	TCATTCATC		
85	66573705	XC_2055	conserved hypothetical protein	CCGTTCACC		
86	66573742	XC_2096	transcriptional regulator luxR/uhpA family	TTATTCACG		
87	66573745	XC_2099	pseudouridylate synthase	ATGTTCAGC		
88	66573754	XC_2108	single-stranded DNA binding protein	ACATTCATT		
89	66573810	XC_2164	conserved hypothetical protein	CCGTTCACT		
90	66573856	XC_2211	outer-membrane lipoproteins carrier protein precursor	CCATTCATC		
91	66573876	XC_2231	flagellar protein	TCGTTCAGG		-
92	66573877	XC_2232	flagellar protein	ACGTTCACG		
93	66573890	XC_2245	flagellar protein	TTATTCATC		

94	66573912	XC_2267	flagellar protein	CTGTTCACC
95	66573944	XC_2300	chemotaxis protein	CCATTCATG
96	66573950	XC_2306	chemotaxis protein	ACGTTCAGT
97	66573969	XC_2326	aconitate hydratase 2	ACATTCACT
98	66573975	XC_2332	RpfF protein	ACGTTCAGT
99	66573999	XC_2356	enoyl-CoA hydratase	CCATTCATG
100	66574010	XC_2367	cationic amino acid transporter	CCATTCATG
101	66574019	XC_2376	phosphoribosylformimino-5-aminoimidazole carboxam	CTGTTCACC
102	66574028	XC_2385	conserved hypothetical protein	ACGTTCAGC
103	66574069	XC_2429	conserved hypothetical protein	CTGTTCACC
104	66574077	XC_2437	hypothetical protein - Escherichia coli plasmid Colla (fragment) gi	CTGTTCACT
105	66574113	XC_2473	conserved hypothetical protein	ACGTTCACT
106	66574146	XC_2506	carbon storage regulator	TCATTCAGG
107	66574162	XC_2522	lipoprotein	CCGTTCATC
108	66574184	XC_2544	general stress protein	TTGTTCACC
109	66574188	XC_2548	conserved hypothetical protein	CCGTTCATG
110	66574198	XC_2558	glycosyl transferase	CTGTTCACT
111	66574202	XC_2562	cytochrome like B561	ACGTTCACC
112	66574205	XC_2565	conserved hypothetical protein	CCGTTCACC
113	66574218	XC_2578	response regulator	CCATTCAGG
114	66574220	XC_2580	endonuclease precursor	CCATTCACT
115	66574264	XC_2625	IS1404 transposase	CTGTTCACC
116	66574312	XC_2673	asparaginyl-tRNA synthetase	CTGTTCAGG
117	66574349	XC_2710	ABC transporter phosphate permease	TTGTTCATC

118	66574374	XC_2735	ABC transporter vitamin B12 uptake permease	CTGTTCATG	
119	66574376	XC_2737	ABC transporter ATP-binding protein	ATGTTCATG	
120	66574407	XC_2768	outer membrane protein	CCGTTCATT	
121	66574409	XC_2770	conserved hypothetical protein	TTGTTCAGG	
122	66574419	XC_2780	phage-related integrase	ATGTTCAGT	
123	66574449	XC_2810	conserved hypothetical protein	TTGTTCAGG	
124	66574454	XC_2815	peptidoglycan-associated outer membrane lipoprotein	CCGTTCACC	
125	66574466	XC_2827	transcriptional regulator marR family	CCATTCAGT	
126	66574468	XC_2829	conserved hypothetical protein	TTGTTCATG	
127	66574479	XC_2840	transcriptional regulator marR family	TTATTCATT	
128	66574526	XC_2888	conserved hypothetical protein	ACGTTCATG	
129	66574538	XC_2900	methionyl-tRNA synthetase	ATGTTCACG	
130	66574547	XC_2909	conserved hypothetical protein	CCGTTCATC	
131	66574552	XC_2914	conserved hypothetical protein	ACGTTCATC	
132	66574558	XC_2920	conserved hypothetical protein	TTGTTCAGG	
133	66574559	XC_2921	conserved hypothetical protein	ATGTTCATG	
134	66574576	XC_2938	conserved hypothetical protein	TTATTCACG	
135	66574602	XC_2964	RNA methyltransferase	ATGTTCATG	
136	66574661	XC_3023	HrpW protein	CCATTCATC	
137	66574708	XC_3072	positive regulator of sigma-B	ACGTTCAGC	
138	66574749	XC_3113	conserved hypothetical protein	TCGTTCACG	
139	66574795	XC_3161	excinuclease ABC subunit A	CTGTTCAGC	
140	66574804	XC_3170	oxidoreductase	TCGTTCACC	
141	66574808	XC_3174	conserved hypothetical protein	CCGTTCACG	

142	66574834	XC_3200	peroxiredoxin	ATGTTCATG	3834475	TTGTTCAGC
143	66574869	XC_3235	conserved hypothetical protein	CCATTCACC		
144	66574881	XC_3247	molybdenum cofactor biosynthesis protein C	CCGTTCACC		
145	66574901	XC_3267	conserved hypothetical protein	TCATTCACC		
146	66574918	XC_3284	conserved hypothetical protein	TCATTCAGG		
147	66574929	XC_3295	ABC transporter sulfate binding protein	CTGTTCAGG		
148	66574939	XC_3305	conserved hypothetical protein	CCATTCAGC		
149	66574942	XC_3308	peptidyl-prolyl cis-trans isomerase	CCATTCAGG		
150	66574985	XC_3351	50S ribosomal protein L11	TTGTTCAGG		
151	66574989	XC_3355	GTP-binding protein	CCATTCACT		
152	66574995	XC_3361	conserved hypothetical protein	CCATTCAGG	4011473	TTGTTCAGT
153	66575053	XC_3419	transcriptional regulator marR family	CCGTTCATG		
154	66575063	XC_3429	conserved hypothetical protein	CTGTTCACC		
155	66575095	XC_3461	conserved hypothetical protein	ACGTTCACC		
156	66575102	XC_3468	ribokinase	ACGTTCATG		
157	66575105	XC_3471	methionine adenosyltransferase	CCGTTCAGG		
158	66575138	XC_3505	cell division protein FtsZ	CCATTCACG		
159	66575139	XC_3506	cell division protein FtsA	CCTTAATT		
160	66575155	XC_3522	conserved hypothetical protein	TTGTTCATT		-
161	66575167	XC_3534	conserved hypothetical protein	ACGTTCACC		
162	66575179	XC_3546	ABC transporter ATP-binding protein	CCATTCAGG		
163	66575236	XC_3604	flavoprotein-ubiquinone oxidoreductase	ATGTTCATG		
164	66575242	XC_3610	dTDP-4-dehydrorhamnose reductase	TTGTTCAGC		
165	66575258	XC_3627	putative GDP-mannose 4,6-dehydratase	CCGTTCACC		

166	66575264	XC_3633	membrane subunit of LPS efflux transporter	TTGTTCAGG
167	66575265	XC_3634	glycosyltransferase	CTGTTCACC
168	66575266	XC_3635	cystathionine gamma-lyase-like protein	CCATTCAGG
169	66575272	XC_3641	maleylacetoacetate isomerase	CCGTTCATG
170	66575283	XC_3652	beta-ketoacyl-[ACP] synthase I	ATGTTCACT
171	66575323	XC_3693	conserved hypothetical protein	TTGTTCAGG
172	66575342	XC_3712	L-sorbosone dehydrogenase	CTGTTCAGG
173	66575343	XC_3713	conserved hypothetical protein	TCGTTCACG
174	66575365	XC_3735	DNA polymerase related protein	ATGTTCAGC
175	66575410	XC_3780	oxidoreductase	CTGTTCATG
176	66575439	XC_3809	phosphinothricin acetyltransferase	TTGTTCATC
177	66575471	XC_3841	NADH dehydrogenase	ACATTCATT
178	66575480	XC_3850	transcription termination factor Rho	CCGTTCATT
179	66575481	XC_3851	conserved hypothetical protein	TTGTTCATG
180	66575500	XC_3870	conserved hypothetical protein	ACGTTCATT
181	66575554	XC_3925	tyrosyl-tRNA synthetase	CTGTTCATT
182	66575614	XC_3985	histone H1	ACATTCAGC
183	66575615	XC_3986	protease Do	TCGTTCAGC
184	66575641	XC_4012	conserved hypothetical protein	CCGTTCATC
185	66575649	XC_4020	thymidylate kinase	TTGTTCAGT
186	66575661	XC_4032	conserved hypothetical protein	ATGTTCATT
187	66575682	XC_4053	TonB-dependent receptor	TTGTTCATT
188	66575716	XC_4087	beta-ketoacyl-[ACP] synthase II	ACGTTCAGT
189	66575762	XC_4133	transglycosylase associated protein	CCGTTCAGC

190	66575769	XC_4140	conserved hypothetical protein	CCGTTCAGT		-
191	66575850	XC_4222	transcriptional regulator lacI family	TCATTCATG		
192	66575862	XC_4234	XmnI methyltransferase	ATGTTCAGC		
193	66575918	XC_4293	microcystin dependent protein	CCATTCACC		
194	66575921	XC_4296	toluene tolerance protein	ATGTTCAGC		
195	66575924	XC_4299	toluene tolerance protein	ATGTTCAGT		
196	66575935	XC_4310	conserved hypothetical protein	CTGTTCAGC		
197	66575952	XC_4327	Oar protein	CCGTTCAGG	5138751	TTGTTCAGG
198		XC_4352	Cys tRNA	CCGTTCACT		