ONLINE SUPPLEMENT

CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function

Lazaros Lataniotis¹, Andreas Albrecht², Fatma O. Kok³, Clinton A.L. Monfries⁴, Lorena Benedetti⁵, Nathan D. Lawson³, Simon M. Hughes⁴, Kathleen Steinhofel⁶, Manuel Mayr¹ and Anna Zampetaki¹

- 1 King's British Heart Foundation Centre, King's College London, UK.
- 2 Middlesex University, School of Science and Technology, London, UK.
- 3 University of Massachusetts Medical School, Department of Molecular, Cell, and Cancer Biology, Worcester, USA.
- 4 King's College London, Randall Division, London, UK.
- 5 King's College London, Division of Cancer Studies, London, UK.
- 6 King's College London, Informatics Department, London, UK.

A CLUSTAL W (1.83) multiple sequence alignment

miR-15a	UAGCAGCACAUAAUGGUUUGUG
miR-15b	UAGCAGCACAUCAUGGUUUACA
miR-16-1	UAGCAGCACGUAAAUAUUGGCG
miR-16-2	UAGCAGCACGUAAAUAUUGGCG
miR-195a	UAGCAGCACAGAAAUAUU-GGC
miR-497a	CAGCAGCACACUGUGGUUUGUA
	***** **

Supplementary Figure S1. A. Sequence Alignment. The T-Coffee multiple sequence alignment program was used to compare the mouse miR-15 family members. Right Panel: miR-497a displays high homology with miR-497b. MiR-497b is encoded by the antisense strand of the miR-497a~195 cluster and does not harbour the same seed sequence. B. Schematic representation of sg195 m2. The DNA sequence corresponding to the transcript annotated in miRBase v21 as stem loop miRNA was used as input sequence to the CRISPR Design tool. PAM sequence is highlighted in blue. The mature miRNA sequence is highlighted in purple and arrow indicated the site of mutations induced by random indels following editing of the genomic locus in mutant cells. C. Minimum free energy structure of the miR-195a stem loop loop following sg195m2 editing as assessed by the structure prediction software RNAfold. The basepairing probability, as indication of structural remodelling or dynamics, was used for color-coding.

CAGCAGCACACUGUGGUUUGU----A ---CACCACAGUGUGGUUUGGACGUGG ** **** *******

MiR-497a MiR-497b

MiR-497a genomic locus (P3+P4) Editing: sg195m2

CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACTGTGGTGTTAGAGCGAGGGTA wt 1 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA 2 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA 3 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA $\tt CCTGCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA$ 4 5 ${\tt CCTGCCCCCGCCCCAGCAGCACCACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACTGTGGTGTTAGAGCGAGGGTA$ 6 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA 7 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA 8 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA 9 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA 10 CCTGCCCCCGCCCCAGCAGCACACTGTGGTTTGTACGGCACTGTGGCCACGTCCAAACCACACTGTGGTGTTAGAGCGAGGGTA

Supplementary Figure S2. Clustal alignment of Sanger sequencing of the miR-497a stem loop locus following sg195m2 editing in VSMCs. Wt: unedited cells, 1-10 randomly picked individual colonies harboring genomic PCR amplicons from sg195m2 edited VSMCs. P3, P4: Genomic PCR primers.

Supplementary Figure S3. Sg195 m2 OFFTARGETS. T7EI assessment of gene editing in the loci of putative OFFTARGET sites for sg195 m2 as predicted by the CRISPR design tool (Zhang Lab, MIT) and CRISPR Finder (Welcome Trust Sanger Institute). OFT; OFFTARGET, ND: Non Detectable, NS: Non Specific.

Supplementary Figure S4. Gene editing of the miR-195a locus using sgRNA195 m3. A. The genomic locus of the miR-497~195 cluster. B. Schematic representation of sg195 m3. The DNA sequence corresponding to the transcript annotated in miRBase v21 as stem loop miRNA was used as input sequence to the CRISPR Design tool. PAM sequence is highlighted in blue. The mature miRNA sequence is highlighted in purple and arrow indicated the site of mutations induced by random indels following editing of the genomic locus in mutant cells. C. T7EI assay for the miR-195a locus following editing with sg195m3. ND: Non detectable. P1, P2: Genomic PCR primers. D. Gene editing of the miR-195a locus resulted in the down-regulation of both miR-195a and miR-497a without affecting the expression of other members of the miR-15 family as assessed by qPCR. U6 was used as a normalization control. n=4, * p<0.05. E. Sanger sequencing of the sg195 m3 edited miR-195a genomic locus. The presence of random indels, mainly deletions was detected and represented as dashes. The PAM sequence is highlighted in grey. Insertions are shown in bold small case fonts. N/A: Not Applicable.

B MiR-497a genomic locus (P3+P4) Editing: sg195m3

wt 1 2 3 4 5 6 7 8 9 10	CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG CCTGCCCCCG		AGCAG AGCAG AGCAG AGCAG AGCAG AGCAG AGCAG AGCAG AGCAG AGCAG	CACAC CACAC CACAC CACAC CACAC CACAC CACAC CACAC CACAC CACAC CACAC CACAC	TGTG TGTG TGTG TGTG TGTG TGTG TGTG TGT	GTTTO GTTTO GTTTO GTTTO GTTTO GTTTO GTTTO GTTTO GTTTO GTTTO	GTACC GTACC GTACC GTACC GTACC GTACC GTACC GTACC GTACC GTACC	GGCAC GGCAC GGCAC GGCAC GGCAC GGCAC GGCAC GGCAC GGCAC GGCAC	CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG	GCCA GCCA GCCA GCCA GCCA GCCA GCCA GCCA	CGTCC CGTCC CGTCC CGTCC CGTCC CGTCC CGTCC CGTCC CGTCC CGTCC CGTCC	CAAAC CAAAC CAAAC CAAAC CAAAC CAAAC CAAAC CAAAC CAAAC CAAAC	CACA(CACA) CACA(CACA) CACA(CACA) CACA(CACA) CACA(CACA) CACA(CACA)	CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG CTGTG	GTGT' GTGT' GTGT' GTGT' GTGT' GTGT' GTGT' GTGT' GTGT' GTGT' ****	IAGAO IAGAO IAGAO IAGAO IAGAO IAGAO IAGAO IAGAO IAGAO	GGAG GGAG GGAG GGAG GGAG GGAG GGAG GGA	GGTA GGTA GGTA GGTA GGTA GGTA GGTA GGTA
r							T7E	El										
U	CON	OF	Γ1	OFT	2	OFT	<u> </u>	OFT	[4	OFT	<u>5</u>	OF	Г6					
	sg195m3	+	+	+	+	+	- +	+	+	+	+	+	+					
650bp	_							-		-	-	-	-					
500bp	-		_		-				-		_							
400bp	-		_															
300bp	—																	
200bp	-																	
													1					
100bp	-	1			۰.								500 J.					
	Indels %	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					

Supplementary Figure S5. Gene editing of the miR-195a locus using sgRNA195 m3. A. Minimum free energy structure of the miR-195a stem loop following sg195m3 editing as assessed by the structure prediction software RNAfold. The base-pairing probability, as indication of structural remodelling or dynamics, was used for color-coding. B. Clustal alignment of Sanger sequencing of the miR-497a stem loop locus following sg195m3 editing in VSMCs. Wt: unedited cells, 1-10 randomly picked individual colonies harboring genomic PCR amplicons from sg195m2 edited VSMCs. P3, P4: Genomic PCR primers. C. Sg195 m3 OFFTARGETS. T7EI assessment of gene editing in the loci of putative OFFTARGET sites for sg195 m3 as predicted by the CRISPR design tool (Zhang Lab, MIT) and CRISPR Finder (Welcome Trust Sanger Institute). OFT; OFFTARGET, ND: Non Detectable.

Supplementary Figure S6. QPCR quantification of miRNA expression following miR-195 inhibition. U6 was used as a normalization control. LNA-CON: control LNA oligonucleotide, LNA-195a: LNA anti-miR targeting miR-195a. N=3, * p<0.05

Supplementary Figure S7. Secondary structures with pseudoknots. Generated by vsfold5 (Chiba Institute of Technology, Japan): <u>http://www.rna.it-chiba.ac.jp/~vsfold/vsfold5/</u> (Settings: 37°C temperature; Kuhn length 6; Jacobson-Stockmayer gamma = 1.75; contiguous stems = 6). WT: unedited cells, MUT1: mutated cells harbouring a 1 nt deletion in miR-195a stem loop, MUT5: mutated cells harbouring a 18nt deletion in the miR-195a stem loop. Red rectangulars in MUT1 highlight differences from WT.

WT, L=449

SS without pseudoknots:

SS with pseudoknots:

>miR-497 nt pos: 21 – 104 atom pos: 627-3318 >miR-195a-WT nt pos: 346 – 439 atom pos: 11068-14088

MUT1, L=448

SS without pseudoknots:

SS with pseudoknots:

>miR-497 nt pos: 21 – 104 atom pos: 627-3318 >miR-195-MUT1 nt pos: 346 – 438 atom pos: 11068-14055

MUT5, L= 431

SS without pseudoknots:

SS with pseudoknots:

>miR-497 nt pos: 21 - 104 atom pos: 627 - 3318 >miR-195-MUT5 nt pos: 346 - 421 atom pos: 11068 - 13516

Supplementary Figure S8. The optimal secondary structure in dot-bracket notation. Data were generated by vsfold5 (Chiba Institute of Technology, Japan): <u>http://www.rna.it-chiba.ac.jp/~vsfold/vsfold5/</u> (Settings: 37°C temperature; Kuhn length 6; Jacobson-Stockmayer gamma = 1.75; contiguous stems = 6). WT: unedited cells, MUT1: mutated cells harbouring a 1 nt deletion in miR-195a stem loop, MUT5: mutated cells harbouring a 18nt deletion in the miR-195a stem loop. L: length, atom pos: atomic position. A base pair between base i and j is represented by a '(' at position i and a ')' at position j, unpaired bases are represented by dots (Vienna RNA package). Grouping of base positions are represented as [].

Supplementary Figure S9. Reconstruction movie of the tertiary structure of the primiR-497~195. WT: unedited cluster, MUT1: mutated cluster harbouring a 1 nt deletion in miR-195a stem loop, MUT5: mutated cells harbouring a 18nt deletion in the miR-195a stem loop.

https://nms.kcl.ac.uk/kks/projects/SREP-17-12031.php

Username: cluster Password: 195497

CLUSTAL W (1.83) multiple sequence alignment

miR-143	UGAGAUGA	AGCACUG	SUAGCUC
miR-145a	GUCCAGUUUU	CCCAGGA	AUCCCU
	** *	**	*

В

Supplementary Figure S10. A. Sequence Alignment. The T-Coffee multiple sequence alignment program was used to compare the miRNAs located in the mouse miR-143~145 cluster. B. Schematic representation of sg145 m1 and sg145 m2. The DNA sequence corresponding to the transcript annotated in miRBase v21 as stem loop miRNA and upstream sequences were used as input to the CRISPR Design tool. PAM sequence is highlighted in blue. The mature miRNA sequence is highlighted in purple and the arrow indicates the site of mutations C. Minimum free energy structure of the miR-145a stem loop as assessed by the structure prediction software RNAfold. The base-pairing probability, as indication of structural remodelling or dynamics, was used for color-coding.

MiR-143 genomic locus (P5+P6) Editing: sg145m1

wt CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 1 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 2 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 3 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 4 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 5 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 6 7 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 8 9 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 10 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG

MiR-143 genomic locus (P5+P6) Editing: sg145m2

wt CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 1 2 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 3 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 4 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 5 6 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 7 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 8 9 CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG CCTGAGGTGCAGTGCTGCATCTCTGGTCAGTTGGGAGTCTGAGATGAAGCACTGTAGCTCAGG 10

Supplementary Figure S11. Clustal alignment of Sanger sequencing of the miR-143 stem loop locus following sg145m1 and sg145m2 editing in VSMCs. Wt: unedited cells, 1-10 randomly picked individual colonies harboring genomic PCR amplicons from edited VSMCs. P5, P6: Genomic PCR primers.

5 NC	_0000	08 <mark>4.6: 62</mark> M	162M (26)	(bp) C 🗸	$\langle \Diamond \rangle$		i +	a ti s			Tools 🔹 🚆	Tracks -	2?
670 K	61,6	68 K	61,666 K	61,664 K	61,662 K	61,660 K	61,658 K	61,656 K	61,654 K	61,652 K	61,650 K	61,648 K	61,646 K
Genes,	NCBI	Mus mu	isculus A	Annotation	Release 1	06, 2016-06	5 (4) ()) Carmn						
		NR_04540	2.1	>	>	>		->	→	├ →	Mir14	50 	2
											Mir143		

Supplementary Figure S12. Genomic organization of the Carmn locus. Snapshot obtained from NCBI database (<u>https://www.ncbi.nlm.nih.gov/gene/328968)</u> depicting the genomic locus of Carmn (cardiac mesoderm enhancer-associated non-coding RNA) and miR-143~145 cluster.

Supplementary Figure S13. A. Sequence Alignment. The T-Coffee multiple sequence alignment program was used to compare the miRNAs residing in the mouse miR-17~92 cluster. **B. Schematic representation of sg18.** The DNA sequence corresponding to the transcript annotated in miRBase v21 as stem loop miRNA was used as input sequence to the CRISPR Design tool. PAM sequence is highlighted in blue. The mature miRNA sequence is highlighted in purple and arrow indicated the site of mutations induced by random indels following editing of the genomic locus in mutant cells. **C. Minimum free energy structure of the miR-18a stem loop as assessed by the structure prediction software RNAfold.** The base-pairing probability, as indication of structural remodelling or dynamics, was used for color-coding.

MiR-17 genomic locus (P9+P10) Editing: sg18

wt GTCAGAATAATGTCAAAGTGCTTACAGTGCAGGTAGTGATGTGTGCATCTACTGCAGTGAGGGCACTTGTAGCATTATGCTGAC GT CAGAATAATGT CAAAGT GCTT ACAGTGC AGGT AGT GAT GTGT GCATCT ACTG CAGT GAGGGC ACTT GTAGCATTATGC TGAC 1 2 GTCAGAATAATGTCAAAGTGCTTACAGTGCAGGTAGTGATGTGTGCATCTACTGCAGTGAGGGCACTTGTAGCATTATGCTGAC 3 GT CAGAATAATGT CAAAGT GCTT ACAGTGC AGGT AGT GAT GTGT GCATCT ACTG CAGT GAGGGC ACTT GTAGCATTATGC TGAC 4 GT CAGAATAATGT CAAAGT GCTT ACAGT GCAGGT AGT GAT GT GT GCATCT ACT GCAGT GAGGGC ACTT GT AGCATT AT GCT GAC 5 GTCAGAATAATGTCAAAGTGCTTACAGTGCAGGTAGTGATGTGTGCATCTACTGCAGTGAGGGCACTTGTAGCATTATGCTGAC 6 GTCAGAATAATGTCAAAGTGCTTACAGTGCAGGTAGTGATGTGTGCATCTACTGCAGTGAGGGCACTTGTAGCATTATGCTGAC 7 GTCAGAATAATGTCAAAGTGCTTACAGTGCAGGTAGTGATGTGTGCATCTACTGCAGTGAGGGCACTTGTAGCATTATGCTGAC 8 GT CAGAATAATGT CAAAAGT GCTT ACAGTGC AGGT AGT GAT GTGT GCATCT ACTG CAGT GAGGGC ACTT GTAGCATTATGC TGAC

MiR-19a genomic locus (P9+P10) Editing: sg18

wt GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAATCTATGCAAAACTGATGGTGGCCTGC 1 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAACTGATGGTGGCCTGC 2 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAACTGATGGTGGCCTGC 3 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAACTGATGGTGGCCTGC 4 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAACTGATGGTGGCCTGC 5 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAAACTGATGGTGGCCTGC 6 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAAACTGATGGTGGCCTGC 7 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAAACTGATGGTGGCCTGC 8 GCAGCCCTCTGTTAGTTTTGCATAGTTGCACTACAAGAAGAATGTAGTTGTGCAAAATCTATGCAAAACTGATGGTGGCCTGC

MiR-20a genomic locus (P9+P10) Editing: sg18

wt	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCACCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAACTCCAG$
1	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAACTCCAG$
2	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAAACTCCAG$
3	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAACTCCAG$
4	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAACTCCAG$
5	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAAACTCCAG$
6	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAACTCCAG$
7	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCACTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAACTCCAG$
8	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAAACTCCAG$
9	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAAACTCCAG$
10	${\tt GTGTGATGTGACAGCTTCTGTAGCACTAAAGTGCTTATAGTGCAGGTAGTGTGTAGCCATCTACTGCATTACGAGCACTTAAAGTACTGCCAGCTGTAGAAACTCCAG$

Supplementary Figure S14. Clustal alignment of Sanger sequencing of miR-17, miR-19a and miR-20a stem loop loci following sg18 editing in VSMCs. Wt: unedited cells, 1-10 randomly picked individual colonies harboring genomic PCR amplicons from edited VSMCs. P9, P10: Genomic PCR primers.

A CLUSTAL W (1.83) multiple sequence alignment

miR-106b	UAA	AGU	GCUGA-	-CAGUGCAG-	-AU
miR-25	CAU	UGCI	ACUUGU	JCUCGGUCU-·	-GA
miR-93	CAA	AGU	GCUGU-	-UCGUGCAGG	UAG
	*	*	**	*	

С

Supplementary Figure S15. A. Sequence Alignment. The T-Coffee multiple sequence alignment program was used to compare the miRNAs residing in the mouse miR-106b~25 cluster. **B. Schematic representation of sg25.** The DNA sequence corresponding to the transcript annotated in miRBase v21 as stem loop miRNA was used as input sequence to the CRISPR Design tool. PAM sequence is highlighted in blue. The mature miRNA sequence is highlighted in purple and the arrow indicates the site of mutations induced by random indels following editing of the genomic locus in mutant cells. **C. Minimum free energy structure of the miR-25 stem loop as assessed by the structure prediction software RNAfold.** The base-pairing probability, as an indication of structural remodelling or dynamics, was used for color-coding.

MiR-93 genomic locus (P11+P12) Editing: sg25

wt	eq:agtcatggggggggggggggggggggggggggggggggg
1	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
2	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
3	${\tt AGTCATGGGGGGCTCCAAAGTGCTGTTCGTGCAGGTAGTGTAATTACCTGACCTACTGCTGAGCTAGCACTTCCCCGAGCCCCCAGGACA}$
4	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
5	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
6	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
7	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
8	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
9	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
10	AGTCATGG-GGCTCCAAAGTGCTGTTCGTGCAGGTAGTGTAATTACCTGACCTACTGCTGAGCTAGCACTTCCCCGAGCCCCCAGGACA
	** *** *** ****************************

MiR-106b genomic locus (P11+P12) Editing: sg25

wt CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG ${\tt CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG}$ 1 2 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 3 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 4 5 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 6 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 7 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 8 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 9 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG 10 CCTGCTGGGACTAAAGTGCTGACAGTGCAGATAGTGGTCCTCTCTGTGCTACCGCACTGTGGGTACTTGCTGCTCCAGCAGG

Supplementary Figure S16. Clustal alignment of Sanger sequencing of miR-93 and miR-106b stem loop loci following sg25 editing in VSMCs. Wt: unedited cells, 1-10 randomly picked individual colonies harboring genomic PCR amplicons from edited VSMCs. P11, P12: Genomic PCR primers.

Supplementary Table 1.

miRNA [miRNA family] MiRBase stem loop		Coordinates (GRCm38)	Mature miRNA Sequence	Cluster
	accession number			
miR-15a [miR-15]	MI0000564	chr14: 61632027-61632110 [-]	UAGCAGCACAUAAUGGUUUGUG	miR-15a~16-1
miR-16-1 [miR-15]	MI0000565	chr14: 61631880-61631972 [-]	UAGCAGCACGUAAAUAUUGGCG	miR-15a~16-1
miR-15b [miR-15]	MI0000140	chr3: 69009772-69009835 [+]	UAGCAGCACAUCAUGGUUUACA	miR-15b~16-2
miR-16-2 [miR-15]	MI0000566	chr3: 69009902-69009996 [+]	U AGCAGCA CGUAAAUAUUGGCG	miR-15b~16-2
miR-195 [miR-15]	MI0000237	chr11: 70235042-70235135 [+]	U AGCAGCA CAGAAAUAUUGGC	miR-497~195
miR-497a [miR-15]	MI0004636	chr11: 70234717-70234800 [+]	CAGCAGCACACUGUGGUUUGUA	miR-497~195
miR-497b [miR-140]	MI0026030	chr11: 70234692-70234816 [-]	CACCACAGUGUGGUUUGGACGUGG	miR-497~195
miR-143 [miR-143]	MI0000257	chr18: 61649196-61649258 [-]	G GUGCAGU GCUGCAUCUCUGG	miR-143~145
miR-145 [miR-145]	MI0000169	chr18: 61647825-61647894 [-]	GUCCAGUUUUCCCAGGAAUCCCU	miR-143~145
miR-17 [miR-17]	MI0000687	chr14: 115043671-115043754 [+]	CAAAGUGCUUACAGUGCAGGUAG	miR-17~92
miR-18a [miR-18]	MI0000567	chr14: 115043851-115043946 [+]	UAAGGUGCAUCUAGUGCAGAUAG	miR-17~92
miR-19a [miR-19]	MI0000688	chr14: 115044000-115044081 [+]	U GUGCAAA UCUAUGCAAAACUGA	miR-17~92
miR-20a [miR-17]	MI0000568	chr14: 115044157-115044263 [+]	U AAAGUGC UUAUAGUGCAGGUAG	miR-17~92
miR-19b-1 [miR-19]	MI0000718	chr14: 115044305-115044391 [+]	U GUGCAAA UCCAUGCAAAACUGA	miR-17~92
miR-92a-1 [miR-25]	MI0000719	chr14: 115044427-115044506 [+]	UAUUGCACUUGUCCCGGCCUG	miR-17~92
miR-106b [miR-17]	MI0000407	chr5: 138165737-138165818 [-]	U AAAGUGC UGACAGUGCAGAU	miR-106b~25
miR-93 [miR-17]	MI0000581	chr5: 138165523-138165610 [-]	CAAAGUGCUGUUCGUGCAGGUAG	miR-106b~25
miR-25 [miR-25]	MI0000689	chr5: 138165321-138165404 [-]	CAUUGCACUUGUCUCGGUCUGA	miR-106b~25
miR-106a [miR-17]	MI0000406	chrX: 52742503-52742567 [-]	CAAAGUGCUAACAGUGCAGGUAG	miR-106a~363
miR-18b [miR-18]	MI0005483	chrX: 52742331-52742413 [-]	UAAGGUGCAUCUAGUGCUGUUAG	miR-106a~363
miR-20b [miR-17]	MI0003536	chrX: 52742113-52742192 [-]	CAAAGUGCUCAUAGUGCAGGUAG	miR-106a~363
miR-19b-2 [miR-19]	MI0000546	chrX: 52741983-52742066 [-]	UGUGCAAAUCCAUGCAAAACUGA	miR-106a~363
miR-92a-2 [miR-25]	MI0000580	chrX: 52741838-52741928 [-]	UAUUGCACUUGUCCCGGCCUG	miR-106a~363
miR-363 [miR-25]	MI0000765	chrX: 52741693-52741767 [-]	CAGGUGGAACACGAUGCAAUUU	miR-106a~363

Supplementary Table 1. Details of miRNA clusters and miRNA families. Data on miRNA clusters were obtained from the MiRBase database. Data on miRNA families were obtained from the Targetscan programme.

Supplementary Table 2.

Assay	Primer	Sequence (5' to 3')	Coordinates (GRCm38)
IVT	F 195m2	TAATACGACTCACTATAGGTGGAGCAGCACAGCCAATAT	chr11: 70,235,100-70,235,120
IVT	R 195m2	TTCTAGCTCTAAAACATATTGGCTGTGCTGCTCCAC	
IVT	F 195m3	TAATACGACTCACTATAGCTCTAGCAGCACAGAAATAT	chr11: 70,235,059-70,235,079
IVT	R 195m3	TTCTAGCTCTAAAACATATTTCTGTGCTGCTAGAG	
IVT	F 145m1	TAATACGACTCACTATAGAGGGGGCGTGGCACGTGCTGA	chr18: 61,647,919-61,647,939
IVT	R 145m1	TTCTAGCTCTAAAACTCAGCACGTGCCACGCCCCT	
IVT	F 145m2	TAATACGACTCACTATAGGATGCTAAGATGGGGATTCC	chr18: 61,647,840-61,647,860
IVT	R 145m2	TTCTAGCTCTAAAACGGAATCCCCATCTTAGCATC	
IVT	F 18a	TAATACGACTCACTATAGTTATGCCAGAAGGAGCACTT	chr14: 115,043,915-115,043,935
IVT	R 18a	TTCTAGCTCTAAAACAAGTGCTCCTTCTGGCATAA	
IVT	F 25	TAATACGACTCACTATAGGCGGAGACTTGGGCAATTGC	chr5: 138,165,367-138,165,387
IVT	R 25	TTCTAGCTCTAAAACGCAATTGCCCAAGTCTCCGC	
GENOMIC PCR	MiR-195 F (P1)	CACACACACCGTCTAGGG	chr11: 70,234,878-70,235,407
GENOMIC PCR	MiR-195 R (P2)	CTGAGCCTTCCACCTCTGAC	
GENOMIC PCR	MiR-497 F (P3)	CCTGTGTCTTCCAGCATTTCTC	chr11: 70,234,360- 70,234,977
GENOMIC PCR	MiR-497 R (P4)	GTATCAGACAACCTGGGGGTT	
GENOMIC PCR	MiR-143 F (P5)	GTGCTGCGTGCATAAAGAGA	chr18: 61,649,137- 61,649,567
GENOMIC PCR	MiR-143 R (P6)	GCTATCCCATGCCAACACTT	
GENOMIC PCR	MiR-145 F (P7)	CTTTCCAAGCCACTCAAAGC	chr18: 61,647,566- 61,648,054
GENOMIC PCR	MiR-145 R (P8)	GGAGCCGTCTCATAGTCTGG	
GENOMIC PCR	MiR-18 F (P9)	CCTGGTCAATGTGAGGCTTT	chr14: 115,043,309- 115,044,386
GENOMIC PCR	MiR-18 R (P10)	CCACAGTCAGTTTTGCATGG	
GENOMIC PCR	MiR-25 F (P11)	TTCTCCGACTTTCCACTGCT	chr5: 138,164,956-138,165,932
GENOMIC PCR	MiR-25 R (P12)	GCCACAAACAGTAGCAGCAA	
Gene expression	Carmn F	AATAGACTGGGCCTCCACCT	chr18: 61,651,154-61,651,267
Gene expression	Carmn R	GTTCCTCTCTGGGGCTCTTC	

Supplementary Table 2. Primer sequences. Genomic primers were labelled P1-P12, as depicted on the genomic loci schematics. IVT: *in vitro* transcription.

Supplementary Table 3.

Assay	GENE	OFFTARGET Sequence	Mismatches	Primer	Sequence (5' to 3')	Locus
GENOMIC PCR	OFFTARGET1 195m2	AGGAGCAGTGCAGCCAATAT	3MMs [1:9:10]	OFT1 195m2 F	GTGCTGGGATTACAGGCATT	chr17:-3133199
GENOMIC PCR	1			OFT1 195m2 R	TCCTTGGAATGAGAGGGCTA	7
GENOMIC PCR	OFFTARGET2 195m2	AGGAGCAACACAGCCACTAT	3MMs [1:8:17]	OFT2 195m2 F	GCCCCAGAGTGTGTGAAAGT	chr8:-10246601
GENOMIC PCR	1			OFT2 195m2 R	TCAAGCCTCTGAATGCACAC	1
GENOMIC PCR	OFFTARGET3 195m2	ATGAGCAGCACAGCGAATAT	3MMs [1:2:15]	OFT3 195m2 F	TCCACATGGACTGCAGTGTT	chr14:-73777792
GENOMIC PCR				OFT3 195m2 R	GCTCCTGTGTTCAGGTGTGA	
GENOMIC PCR	OFFTARGET4 195m2	TGGAGCA <mark>CA</mark> AAGCCAATAT	3MMs [8:9:11]	OFT4 195m2 F	ATTCTCGGGGAAATTCCATC	chrX:+72165663
GENOMIC PCR				OFT4 195m2 R	TTGCACTGCTGTCACACAA	
GENOMIC PCR	OFFTARGET5 195m2	TGGAGCA T CACAGCCAA <mark>C</mark> AT	2MMs [8:17]	OFT5 195m2 F	TATCCTCTCGCCTTTGCACT	chr2:+24952183
GENOMIC PCR				OFT5 195m2 R	GCAGAGTGCATCTGTTGGAA	
GENOMIC PCR	OFFTARGET6 195m2	TGCAGCAGCAAAGCCACTAT	3MMs [3:11:17]	OFT6 195m2 F	CGACTTGCAATCACATGGAG	chr13:+35216430
GENOMIC PCR				OFT6 195m2 R	CACCCACTCGGGACCTACTA	
GENOMIC PCR	OFFTARGET7 195m2	AGGATTAGCTCAGCCAATAT	4MMs [1:5:6:10]	OFT7 195m2 F	AGTGCTGGGCATAGGACAAC	chr2:-91834510
GENOMIC PCR				OFT7 195m2 R	CTGCTCTTCCAAAGGTCCTG	
GENOMIC PCR	OFFTARGET1 195m3	CT G TAGCA A CACAGAAATAT	2MMs [3:9]	OFT1 195m3 F	TGGGTTTGAAGGTCCTGAAG	chr1:-196773757
GENOMIC PCR				OFT1 195m3 R	ACATCCTTGTTGCCCATGAT	
GENOMIC PCR	OFFTARGET2 195m3	CTCTAGCAG G ACAGAAATAA	2MMs [10:20]	OFT2 195m3 F	TCTGCCTCAGCTTTCCAAGT	chr4:+62834971
GENOMIC PCR				OFT2 195m3 R	TGCTCAAGCTACACCCAGTG	
GENOMIC PCR	OFFTARGET3 195m3	TTAAAGCAGCACAGAAATAT	3MMs [1:3:4]	OFT3 195m3 F	TCCCCTGGACTTTGACATTC	chr3:-154152635
GENOMIC PCR				OFT3 195m3 R	AATGCCCTTCCCCAATAATC	
GENOMIC PCR	OFFTARGET4 195m3	AGCTAGCAGCTCAGAAATAT	3MMs [1:2:11]	OFT4 195m3 F	TGGAGAAGGAGGAGGTCTGA	chr15:-76275970
GENOMIC PCR				OFT4 195m3 R	GTGCCTGAACTCTGTGGTGA	
GENOMIC PCR	OFFTARGET5 195m3	GTCTACCAGAACAGAAATAT	3MMs [1:6:10]	OFT5 195m3 F	CCCATTTGCATGGAAAGATT	chr12:+31442719
GENOMIC PCR				OFT5 195m3 R	TGAAATTGGGGAGTGTGTGA	
GENOMIC PCR	OFFTARGET6 195m3	CTCTGTCTGCACAGAAATAT	3MMs [5:6:8]	OFT6 195m3 F	GGGAGACTATTGTGCATGATTTTATT	chr9:-22593762
GENOMIC PCR				OFT6 195m3 R	GGTATTACTGTTTAGGGCCACTCT	

Supplementary Table 3. OFFTARGET Primer sequences. Genomic primers for putative OFFTARGET sites of editing for sg195 m2 and sg195 m3 as predicted by the CRISPR Design tool (Zhang lab, MIT) or the CRISPR Finder (Welcome Trust Sanger Institute- highlighted in blue). The mismatches are shown in red. OFT: OFFTARGET.

ONLINE SUPPLEMENT

CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function

Lazaros Lataniotis¹, Andreas Albrecht², Fatma O. Kok³, Clinton A.L. Monfries⁴, Lorena Benedetti⁵, Nathan D. Lawson³, Simon M. Hughes⁴, Kathleen Steinhofel⁶, Manuel Mayr¹ and Anna Zampetaki¹

- 1 King's British Heart Foundation Centre, King's College London, UK.
- 2 Middlesex University, School of Science and Technology, London, UK.
- 3 University of Massachusetts Medical School, Department of Molecular, Cell, and Cancer Biology, Worcester, USA.
- 4 King's College London, Randall Division, London, UK.
- 5 King's College London, Division of Cancer Studies, London, UK.
- 6 King's College London, Informatics Department, London, UK.

UNCROPPED GEL IMAGES

Fig1c

Fig1f

Fig3c

Fig4b

Fig5b

Fig5c

Fig6c

