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Supplementary Information 
 
 

Supplementary Note 1: Difference map algorithm 
The difference map technique is effectively used in protein crystallography 

experiments for the identification of localized small changes in active sites of molecules1. 
This approach is based on the assumption that the reciprocal-space phases of the 
diffraction pattern changes uniformly after relatively small structural transitions, which 
can be identified through correlations of intensity redistribution along the fringes. It was 
shown that the difference Fourier map is able to detect much smaller features of electron 
density than those revealed by a normal Fourier map with the same phases1. This 
approach can therefore be sensitive to smaller changes within the crystal electronic 
density that are related to second order displacement gradient effects such as polarization 
induced by structural phase transformation under the influence of an electric field. A 
relative change in the diffraction intensity in the vicinity of a reciprocal lattice point 
caused by the application of the electric field from E0 to E, at a given X-ray photon 
energy can be expressed as 			ΔI(E ,q)= I(E ,q)− I(E0 ,q)⎡⎣ ⎤⎦ I(q) , with the intensity 
distribution for the nanoparticle in the virgin state given by: 

 			 I q( )∼ d3rρG111 r( )exp −iG111 ⋅u111( )exp −iq ⋅r( )∫
2
  (1) 

The resulting difference Fourier density in real space, ∆ρ(r), is the difference of the two 
complex density functions, given by the Fourier transform of the differences between the 
coherent diffraction patterns, using the phased diffraction of one of them as the common 
phase function 		ψ (q) : 

			
Δρ(r)= I(E ,q)− I(q)⎡

⎣
⎤
⎦∫ e− iψ (q) eiq⋅rd3q .    (2) 

The deviation of the momentum transfer Q, from the reciprocal lattice vector, G111 is 
given by q = Q – G111 for the measured (111) Bragg peak. The ionic displacement map 
can be obtained from the resulting complex function, ∆ρ(r). Changes in crystal strain, 
when the shape and density are constant, should appear mainly in the imaginary part of 
∆ρ(r). 
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Supplementary Note 2: Phase-field simulation 
Recent theoretical studies based on phase field simulations have predicted the 

presence of vortices in BTO2 and other ferroelectric nanostructures3,4 and the possibility 
to control such vortices using both homogeneous and inhomogeneous electric fields5,6. In 
the phase field simulation, the domain structure of the nanoparticle can be described by 
the spatial distribution of polarization P(P1,P2, P3), the total free energy of the system F 
can be written as:		F = dV fL + fela + fg + fe( )∫ , where fL is the Landau-Devonshire free 

energy density, fela is the elastic energy density, fe is the electrostatic energy density and fg 
is the gradient energy density, respectively. For ferroelectrics with perovskite structure 
the Landau-Devonshire energy density fL can be expressed as: 
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where αi, αij, αijk, and αijkl are the Landau parameters that can get from the experiments. 

The elastic energy density can be written as 
		
fela =

1
2Cijkl ε ij −ε ij

0( ) εkl −εkl0( ) , where Cijkl is 

the elastic stiffness tensor, εij is the total strain, and ε0ij=Qijkl PkPl is the spontaneous strain 
during the phase transformation, in which Qijkl is the electrostrictive coefficient. The 
elastic stiffness tensor is assumed to be equal in the nanoparticle and non-ferroelectric 
matrix. The electrostatic energy can be expressed as fe =1/2(E·P), where E is the 
electrostatic field in the nanoparticle, the electric field can be evaluated from the 
electrostatic potential φ as 	E = −∇ϕ . In the model the space is assumed to be charge free, 
therefore the equation: 

 		∇⋅ −ε0εb∇ϕ +P( ) =0   (4) 
can be used to solve the electric field, in which ε0 and εb are permittivity of vacuum and 
relative background permittivity, respectively. The gradient energy density can be 

obtained by 
		
fg =

1
2GijklPi , jPk ,l , where Gijkl is the gradient coefficient. And in this model, the 

size effect of the free energy in the nanoparticle is not considered in the simulation. In the 
phase field model, the temporal evolution of the polarization can be obtained by solving 
the time-dependent Ginzburg- Landau equation7: 

 
			

δPi r,t( )
δt

= −L δF
δPi r,t( ) , 	 i =1,2,3( )   (5) 

where r is the spatial vector and L is the kinetic coefficient. We have simulated the 
evolution of the polarization in the nanoparticle, while maintaining a fixed polarization 
P = eme0 E for different external electric fields E in the matrix. 
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Supplementary Note 3: Analysis of coherent X-ray diffraction signature due to 
structural phases 
The monoclinic phase of the nanoparticle has noticeable influence on the analysis of our 
Bragg coherent X-ray diffraction in reciprocal space. The signature of this monoclinic 
cross-over region in reciprocal space contributes to the asymmetry and splitting 
(modulation) of the Bragg peaks as shown in our measured coherent X-ray diffraction 
(CXD) patterns (see Figure 1, Supplemental Figure 3 and Supplementary Figure 11). 

To understand these signatures in reciprocal space measured in the vicinity of the 
(111) Bragg peak, let us consider that the elastic and ferroelectric displacement field 
within the nanoparticle is given by 		u =u111 . Within the kinematical limits and first Born 
approximation8, the scattered X-ray intensity distribution at the detector plane obtained 
from the nanoparticle can be given as: 

			 
I(q)~ ρG111(r)e

− iG111⋅u111 e− iq⋅rd3r
V
∫

2

= !ρ(r)e− iq⋅rd3r
V
∫

2

,  (6) 

where 		ρG111 r( )  is the ideal real-valued Bragg electron density distribution within the 

nanoparticle and 			 !ρ(r)= ρG111(r)e
− iG111⋅u111  represents the complex-valued strained state of 

the ferroelectric BTO nanoparticles. For brevity, the intensity distribution equation can be 
interpreted as the magnitude squared of the Fourier transform from a complex-valued 
density function: 

 			 I(q)= FFT[ !ρ(r)]
2

. (7) 
Under electric field E2 (223 kV cm-1), the nanoparticle is in the monoclinic phase with 
displacement field given by 		u111 =uM . This implies that the splitting of the Bragg peak 
(see Supplementary Figure 11) under this field is strongly modulated by the magnitude 
squared of the Fourier transform of the complex density function: 

			 !ρmono(r)= ρG111(r)e
− iG111⋅uM .    (8) 

This diffraction pattern is centrosymmetric about the center 0th order peak, with the 
inverse of 1st and -1st order satellite peaks separation related to the ordering of this 
monoclinic phase. Under field E1 (0 kV cm-1) and E3 (0 kV cm-1) the particle undergoes a 
structural phase transition exhibiting the coexisting tetragonal (T) and monoclinic (M) 
phases. Under these two electric field cases, the displacement field within the 
nanoparticle can be expressed as 		u111 =uM +uT . This implies that the nanoparticle 

complex electron density becomes 			 !ρ(r)= ρG111(r)e
− iG111⋅(uT+	uM) . This cross-over between 

the M and T phases provides a different type of modulation and asymmetry to the Bragg 
peak (see diffraction patterns in Supplementary Figure 11) than the one observed in the 
purely monoclinic phase. In our analysis, we considered the diffraction patterns at E1 and 
E3 as a perturbation to the pure monoclinic phase at E2 given by:  

			 !ρ(r)= ρG111(r)e
− iG111⋅(uT+	uM) = ρG111(r)e

− iG111⋅	uM e− iG111⋅	uT = !ρmono(r)e
− iG111⋅	uT .  (9) 
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This implies that the centrosymmetric nature of the measured Bragg peak when the 
particle is in the monoclinic phase becomes modulated by contributions from domain 
patterns of the T phase. 

The subtle discrepancies in phase field simulation and experimental 
reconstructions (see Figure 2) can be attributed to the experimental noise, residual strain, 
and other physical features within the nanoparticle not accounted for by the phase field 
model. 
  



5 
 

Supplementary Note 4: Analysis of structural phase transformation 
By applying a cyclic electric field to the capacitor (Supplementary Figure 3), we induce a 
reproducible phase transformation. This is evident by the splitting of the (111) reflection 
along different Debye-Shearer rings corresponding to d-spacing of 2.43 Å, 2.32 Å, and 
2.22 Å. To understand the nature of these structural phases and the mechanisms 
controlling their nucleation, we perform 3D phase-field simulations while monitoring the 
evolution of the minimum free energy density of polarization states within the 
nanoparticle (Supplementary Figure 11). We focus our attention on the ferroelectric 
polarization state and its distribution within the particle at fields E1 (Fig. 3A), E2 
(Fig. 3B) and E3 (Fig. 3C). At electric field E1 the state of the particle shows phase co-
existence of tetragonal (T) and monoclinic (M) structures. As we increase the external 
electric field to an experimentally allowed maximum of 10V, the T phase nucleates into a 
predominant M-phase (Fig. 3D). Decreasing the field to the remnant state transforms the 
particle back to a mixture of T+M phases with noticeable hysteresis in polarization. Phase 
field modeling predicts that if the electric field is large enough (the saturation field), the 
polarization will be poled to adopt the R phase. 

We distinguish between the various forms of domain walls by comparing them with 
idealized profiles of boundaries separating nanodomain states with opposite polarization, 
i.e. 180 degree domain walls. The idealized polarization profiles in Supplementary 
Figure 9 depict that Bloch domain walls are chiral and polarization reversal is achieved 
by polarization rotation within the plane of the domain wall while in contrast, for ideal 
Ising wall the polarization remains strictly parallel or antiparallel to the spontaneous 
polarization of the adjacent domains. 
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Supplementary Figure 1: Scheme of the capacitor. The BTO nanoparticles have been 
placed in a non-polarizing medium. Gold electrodes were later sputtered on the matrix 
providing outlets for wire bonding. The high penetrating abilities of X-rays make the 
system to be virtually transparent to perform Bragg diffraction. 
 
 
 

 
Supplementary Figure 2: Laboratory X-ray diffraction data for BTO powder. XRD 
diffraction shows ensemble average information on crystalline phases of the BTO nano 
powder. Since this data is collected using a wide X-ray beam, we can only conclude 
statistically on the collective crystallographic facets orientation of the nanoparticles. 
Bragg coherent diffraction experiment performed in this work allows us to localize a 
single nanoparticle. 
 
 



 
 

Supplementary Figure 3: Evolution of the Bragg coherent X-ray diffraction pattern 
under applied electric field for a single BTO nanoparticle undergoing structural 
phase transition. The numbering of each diffraction pattern from (1) to (4e) corresponds 
to the states of the nanoparticle under different values of a cyclic external electric field. 
Diffraction pattern at state (1) is collected under 0V, (1a) under applied field of 2V, (1b) 
under applied field of 8V, (2) under applied field of 9V, (2a) under applied field of 5V, 
(3) under applied field of 0V, (3a) under applied field of -1V, (3b) under applied field of - 
7V, (3c) under applied field of -10V, (4a) under applied field of -8V, (4b) under applied 
field of -6V, (4c) under applied field of -4V, (4d) under applied field of -2V, and  (4e) 
under applied field of 0V. As given by phase field simulation, 10V corresponds to an 
electric field of 223 kV cm-1across the single BTO nanoparticle. Scale bar corresponds to 
0.1 Å-1. 
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Supplementary Figure 4: Evolution of the diffraction pattern under applied electric 
field for two inactive BTO nanoparticles. a, particle 1 at zero applied electric field 
before cycling. b, particle 1 under maximum electric field after 30 continuous cycles. c, 
particle 2 at zero applied electric field before cycling. d, particle 2 under maximum 
electric field after 30 continuous cycles. These particles do not undergo the expected 
structural phase transition. Scale bar corresponds to 0.1 Å-1. 
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Supplementary Figure 5: Resolution estimation by phase retrieval transfer function. 
The phase retrieval transfer function (PRTF) is a tool that provides an accurate resolution 
measure. The experimental diffractions are averaged over constant reciprocal space 
frequency contours to produce the PRTF, which takes a value of 1 where the iterative 
algorithm produced perfect convergence consistently, and a value near 0 where the 
algorithm continually failed to converge. The dotted line at the PRTF cutoff of 0.5 (50%) 
is used to determine the resolution at approximately 20nm. 
 
 
 
 
 

 
Supplementary Figure 6: Schematic diagram of nanoparticle in phase field 
simulation. The diagram shows the design of the particle model used in the phase field 
simulation. The unit is composed of 48x48x48 grid points of which the central 15x24x15 
grid points is the particle of BTO itself, surrounded by the non-ferroelectric medium. 
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Supplementary Figure 7: Three-dimensional renderings of polarization dynamics. 
Isosurfaces of polarization P111 for three different applied electric fields E1 (0 kV cm-1), 
E2 (223 kV cm-1), and E3 (0 kV cm-1). Different 3D views are shown to highlight the 
morphology and evolution of poly-domain states within a single BTO nanoparticle. For 
fields E1 and E3 the blue and red isosurface color represent contour levels of the 
polarization drawn at -0.18 Cm-2 and +0.18 Cm-2 respectively. For field E2, the blue and 
red isosurface color represent contour levels of the polarization drawn at -0.23 Cm-2 and 
+0.23 Cm-2 respectively. Scale bars correspond to 60 nm. 
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Supplementary Figure 8: Variance of the displacement field under applied electric 
field. Projections of variance (placed along with the 3D of polarization) for 3 applied 
fields E1 (0 kV cm-1), E2 (223 kV cm-1), and E3 (0 kV cm-1). Variance of the displacement 
fields help to assess the regions of domain wall intersection and its dynamics. For fields 
E1 and E3 the blue and red isosurface color represent contour levels of the polarization 
drawn at -0.18 Cm-2 and +0.18 Cm-2 respectively. For field E2, the blue and red 
isosurface color represent contour levels of the polarization drawn at -0.23 Cm-2 and 
+0.23 Cm-2 respectively. 
 
 

 
Supplementary Figure 9: Schematic of domain walls. Idealized Profiles of (a) Ising, 
(b) Neel and (c) Bloch domain walls in ferroelectrics. A ferroelectric material possesses a 
built-in electrical polarization that is switchable with an electric field. In contrast to 
ferromagnetic materials in ferroelectrics, the spontaneous electrostriction, the coupling 
between ferroelectric polarization and lattice strain, imposes a significant energy cost for 
rotating the polarization away from the symmetry-allowed directions in the crystal lattice. 
Thus, ferroelectric domain wall can be either Ising type, Neel and Bloch domain. The 
light red and blue planes are used to indicate regions of opposite spontaneous 
polarization. 
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Supplementary Figure 10: Optical microscopy and SEM images of the BTO sample. 
The images show the uniform distribution of particles in nanopowder which ensures that 
if single Bragg reflection is detected on X-ray detector, during coherent diffraction 
imaging experiment, it corresponds to a single nanoparticle.  
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Supplementary Figure 11: Principle scheme of the BCDI experiment. a, Illustration 
of the experimental scheme with incident coherent X-ray beam being scattered from the 
extremities of the nanoparticle under applied electric field. Detector is used to record the 
diffraction patterns and is mounted on motorized arm to properly position the detector 
around the diffraction sphere for fine tuning into specific peak. b, Diffraction patterns 
recorded at different applied electric fields with numbering indicating evolution of the 
pattern from (1) for 0V of applied field, (2) 10V of applied field, (3) again 0V of applied 
field, and (4) for -10V of applied field. As given by phase field simulation, 10V 
corresponds to an electric field of 223 kV cm-1across the single BTO nanoparticle. Scale 
bar corresponds to 0.1 Å-1. 
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Supplementary Figure 12: Evolution of minimum free energy density of polarization 
P with the increasing of the applied electric field along (111) direction. a, Minimum 
free energy density at the initial zero field exhibiting primary T phase. b, The minima of 
free energy density is at M phase with the increasing of the electric field. c, Minimum 
free energy density at the maximum filed exhibiting primary R phase. 
 
 
 

Supplementary Table 1: Elastic and electrostrictive coefficients of BTO used to fit 
polarization maps. 

c11(1011 N·m–2) 1.78 
c12(1011 N·m–2) 0.964 
c44(1011 N·m–2) 1.22 
Q11(C–2·m4) 0.10, 0.11 
Q12(C–2·m4) -0.034, -0.045 
Q44(C–2·m4) 0.029, 0.059 
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