Supplemental Material

Molybdenum-based diazotrophy in a Sphagnum peatland in northern Minnesota

Melissa J. Warren^{1*}, Xueju Lin^{2**}, John C. Gaby^{2***}, Cecilia B. Kretz^{1****}, Max Kolton², Peter L. Morton³, Jennifer Pett-Ridge⁴, David J. Weston⁵, Christopher W. Schadt⁵, Joel E. Kostka^{1,2}, Jennifer B. Glass^{1,2#}

¹School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
²School of Biology, Georgia Institute of Technology, Atlanta, GA, USA

³Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, Florida, USA

⁴Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA

⁵Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Now at: *CH2M, Atlanta, GA, USA; **InstantLabs, Baltimore, MD, USA; ***Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Oslo, Norway; ****Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA

#Corresponding author: Jennifer B. Glass, 404-894-3942; jennifer.glass@eas.gatech.edu Running Title: Nitrogen fixation in a *Sphagnum* peat bog

Table S1. Dissolved trace metal concentrations in S1 transect 3 (far, mid and near sites).

BD indicates "below detection" and N/A indicates that the element of interest was not analyzed.

Site	Туре	Depth (cm)	V	Mn	Fe	Co	Ni	Cu	Zn	Мо
June 2014										
	Hummock	0-10	10	487	4,081	1	N/A	30	344	1
E		0-10	14	443	1,797	5	N/A	11	208	4
Far	Hollow	30-50	14	186	1,920	7	N/A	13	275	2
		100-150	8	115	1,149	3	N/A	12	228	1
	Hummock	0-10	13	2,222	3,527	3	N/A	29	534	1
NC 1		0-10	11	555	21,112	5	N/A	16	284	1
Mild	Hollow	30-50	21	158	6,800	4	N/A	20	186	4
		100-150	5	60	7,907	2	N/A	12	154	7
	Hummock	0-10	8	445	2,483	1	N/A	25	227	1
N	Hollow	0-10	9	1,148	24,030	5	N/A	8	474	4
Near		30-50	12	284	14,139	6	N/A	12	143	2
		100-150	12	69	7,071	4	N/A	9	86	5
September 2014						2014				
		0-10	BD	289	22,576	9	23	8	211	BD
Far	Hollow	30-50	BD	368	11,818	15	83	7	251	5
		100-150	BD	231	9,975	7	17	8	48	BD
		0-10	BD	309	34,980	15	34	38	123	BD
Mid	Hollow	30-50	BD	89	30,816	3	9	20	202	BD
		100-150	BD	213	23,035	10	19	9	223	BD

Table S2.	Statistics f	for metagenome sec	uences and <i>nifH</i>	gene cluster I-	IV analysis.
-----------	--------------	--------------------	------------------------	-----------------	--------------

				#						
c 1	с I	raw #	#	functional	#nifH				***	non
Sample	Sample	seqs	sequences	genes	genes	I	п	Ш	IV/V	assigned
	T3M 0									
T3M	R1	23149446	20636767	5419176	1203	23	4	27	42	1
0cm	T3M 0				1205	25	-	27	72	1
	R2	23149446	20636767	4834626						
	T3M									
T3M	30 R1	23396969	21420027	5864331	1204	10	1	52	26	1
30cm	T3M				1304	18	1	55	20	1
	30 R2	23396969	21420027	5626796						
	T3M									
T3M	75 R1	22408842	20698248	4244995	611	24	0	2.1	24	0
75cm	T3M				511	54	0	31	34	0
	75 R2	22408842	20698248	4548589						
	T3F 0									
T3F	R1	17800326	16292777	3761428						
0cm	T3F 0				28944	49	4	21	25	1
	R2	17800326	16292777	3585934						
	T3F 30									
T3F	R1	30686580	27965337	7598974						
30cm	T3F 30				58075	49	5	23	22	1
coem	R2	30686580	27965337	7374546						
	T3E 75	20000200	219000001	1511510						
T3F	R1	909520	824421	195481						
75cm	T3E 75	707520	024421	175401						
, sem	131 / J P2	000520	824421	205646						
	112	709520	024421	205040						

Figure S1. Depth profiles of dissolved (a) ammonium, (b) nitrate, and (c) phosphate from S1 T3 peat bog middle (circles) and far (squares) sites. Black symbols are from June 2014; gray symbols are from September 2014.

Figure S2. Dissolved copper (white) and iron (shaded) concentrations in pore water from three depths in S1 peat hollows (mid and far sites along T3 transect) in June 2015. Pie charts show the relative abundance of *pmoA* (Cu-containing particulate methane monooxygenase) and *mmoX* (Fe-containing soluble methane monooxygenase) sequences recovered from metagenomes from T3 mid sites (0-10, 25-50, and 75-100 cm).

Figure S3. Depth profiles of copy numbers for DNA (white) and cDNA (black) for (a) *nifH*,
(b) *pmoA* and (c) *mcrA* in units of copies per gram of dry weight for the S1 bog T3 mid site.
Panel (b) is modified from Esson, et al. (1).

Figure S4. Evolutionary history of retrieved *vnf* and *anf* genes inferred using the Maximum Likelihood method. Black circles represent two assembled metagenomic *vnfD* reads from the S1 bog T3F site (25 cm depth). Black triangles represent *anfD* amplicons from S1 bog T3F site (20 cm depth). The percentage of trees in which the associated taxa clustered together is shown next to the branches.

Figure S5. Correlation between *nifH*:16S rRNA cDNA transcript ratios and acetylene reduction rates for hummock and hollow (line around symbols) peat bog samples from June 2014 incubated under $80\%N_2+20\%$ CO₂ headspace with (circles) and without (squares) 1% CH₄. When normalized to dry peat, these data range from 10^3 to 10^7 *nifH* copies g⁻¹.

Figure S6. Correlation between ARA and ${}^{15}N_2$ incorporation. The slope of the graph is the conversion factor (3.9).

Figure S7. Universal *nifH* primer sequences aligned with corresponding template from

methanogen (cluster III) nifH genes.

	primor nome (position*)	BalE (115 124)	BalB (457,476)	E1 (25.50)	B6 (457 472)
	primer name (position)	TOCOL YOUR BROCHARCEC	ATROCCATCATVTCBCCCCA	TAYOOT A BOOTOOT A TYOOT A A PTC	GCCATCATVTCLCCLGA
	primer sequence (5 to 5)				
	Mbo"	CGAGT	-666-61C	CAACTCAA	G-GTCG
	Mac	C <mark>A</mark> A	TGTTACT	TAGCCTAA	GTTACT
	Mmg	TCCAA	TGTCACT	CAGCTAAA	GTCACT
	Mpa	CCAC	-GCACC	CAACACAG	ACCG
	Mba	TCGAT	A G TA CT	CAATATAA	GTTACT
	Mpe	CGGCT	-GTGTT	CAGTTCAG	GTTT
	Mco	CC A	-GACT	CCACACG	CTG
	Mli	TGGC	-GCACGC	CAACCCG	ACGC
	Mmt	TCCAG	TGTCACT	CAGCTAAA	GTCACT
	primer name (position*)	nifH2 (115-131)	nifH1 (460-476)	IGK3 (19-47)	DVV (388-413)
	primer sequence (5' to 3')	TGYGAYCCNAARGCNGA	ADNGCCATCATYTCNCC	GCIWTHTAYGGIAARGGIGGIATHGGIAA	ATIGCRARICCICCRCATACIACRTC
	Mbo	CCGAG	-GGG-GTC	AA-TCAACTCA	GACGCA
	Mac	CCAAA	-TT	AA-TTAGCCTA	GAAGTAG
	Mmg	TCAA	-TTGTC	AA-CCAGCTAA	GAATGCGG
	Mpa	CCAC	-GCACC	AA-CCAACACA	CGCCGGA
	Mba	TCGA	-TAGTT	AA-CCAATATA	AATAACAA
	Mpe	CCGC	-GTGTT	AA-TCAGTTCA	TGTGTGA
	Mco	CCAA	-GACT	CA-TCCACACC	AGGGGGGG
	Mli	CTGC	-GCACG	AA-TCAACCCC	GGGGGGGGGGGGG
	Mmt	TCCAG	-TTGTC	AA-CCAGCTAA	GAATGTGG
in	e to the nifH sequence of A	Izotobacter vinlandii (Genbank ACCN	# M20568)		
	llowing abbreviations repre-	sent species names: Mbo. Candidatus	Methanoregula boonei 6A8:Mac. A	fethanosarcina acetivorans C2A: Mmg. Methan	osarcina mazei Go1: Mpa.

*Relative to the null'sequence of Acoubtert violandii (Genhada ACCV) MD0560
*De following barevistoris representations expected models in maccel Gol1, Mpa,
*De following barevistoris representations expected models in the second s

References

 Esson, K. C., X. Lin, D. Kumaresan, J. P. Chanton, J. C. Murrell, J. E. Kostka. 2016. Alpha-and gammaproteobacterial methanotrophs codominate the active methaneoxidizing communities in an acidic boreal peat bog. Appl Environ Microbiol 82:2363-2371.