Supporting Information

Contents

- 1. General Information
- 2. Experimental Section
- A. Ligand Evaluation for α -C-H Alkylation of Pyrrolidine
- B. Substrate Preparation
- C. Product formation
- D. Deprotection of auxiliary
- 3. References
- 4. NMR Spectra

1. General Information

Unless otherwise noted, all materials were used as received from commercial sources without further purification. Amine substrates were purchased from Acros, Sigma-Aldrich, Alfa-Aesar, or Combi-blocks and used as received. Alkene coupling partners were procured from Sigma Aldrich, or Combi-Blocks and used as received. [Ir(cod)₂]OTf and other Ir(I) catalysts were synthesized according to literature procedure¹. Anhydrous 1,2-dimethoxyethane (DME) and chlorobenzene were purchased from Sigma Aldrich and Acros, respectively and used as received. All reactions were run in heating block on hot plate. Prior to beginning an experiment, the hot plate was turned on, and the heating block was allowed to equilibrate to the desired temperature for 30 minutes. Thin-layer chromatography (TLC) was performed on EMD 250 mm silica gel F-254 plates. Visualization of the developed plates was performed by fluorescence quenching or by KMnO₄ stain. Chromatographic purification of products was accomplished using forceflow chromatography on ICN 60 32-64 mesh silica gel 63 or Analtech Preparative TLC uniplates (20x20cm, 500mm thickness). ¹H and ¹³C NMR spectra were recorded on Varian Inova (400 MHz and 100 MHz, respectively) or Bruker DRX equipped with a 5mm DCH cryoprobe (600 MHz and 150 MHz, respectively) and instruments internally referenced to tetramethylsilane or chloroform or acetone signals (note: CDCl₃ referenced at δ 7.26 ppm for ¹H and δ 77.16 ppm for ¹³C; Acetone- d_6 referenced at δ 2.05 ppm for ¹H and δ 29.84 ppm for ¹³C). The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m =multiplet, and a = apparent. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight).

2. Experimental Section

		$\begin{array}{c} \text{Ir(cod)}_2\text{]BF}_4 \\ (10 \text{ mol}\%) \\ \text{gand} (X \text{ mol}\%) \\ \text{gassed DME} \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$		CO₂Et ∫
Entry	Ligand	Loading (mol%)	Yield 2a (%)	d.r.
1	No ligand		60%	1.5:1
2	Me HBF ₄ ,"PPh ₂ Me Me	10	26%	1.5:1
3	O P-N Me Me	10	25%	1.5:1
4	$F_{3}C \longrightarrow F_{4}C \xrightarrow{F_{3}C} F_{5}C \xrightarrow{F_{6}} F_{6} \xrightarrow{F_{6}} F_{7}C \xrightarrow{F_{6}} F_{7}C \xrightarrow{F_{6}} F_{7}C \xrightarrow{F_{7}} F_{$	5 •CH3 •CH3	28%	1.5:1
5	$F_{3}C$ $F_{3}C$ $F_{4}C$ F	2.5 СН ₃	50%	1.5:1
6	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	2.5	38%	1.5:1
7		сн ₃ 2.5 сн ₃	40%	1.5:1

A. *Table S1.* Ligand Evaluation for α -C-H Alkylation of Pyrrolidine.^[a,b]

^[a] Conditions: 2 (0.1 mmol), ethyl acrylate (0.28 mmol), [Ir(cod)₂]BF₄ (10 mol%), Ligand (2.5–10 mol%), degassed DME (0.5 mL), 85 $^{\circ}$ C, Argon (1 atm), 24 h. ^[b] Crude yields were determined by ¹H NMR analysis using 1,3,5–trimethylbenzene as internal standard.

B. General Procedure for Installation of Alkoxythiocarbonyl Auxiliaries

To a stirring solution of 1,1'-thiocarbonyldiimidazole (8.0 g, 45 mmol, 2 equiv.) in THF (30 mL, 0.75 M) under N₂ was added (–)-menthol or 3-pentanol (22.5 mmol, 1.0 equiv.) and the reaction was allowed to heat to 50 °C for 16 h. At this point, reaction was diluted with water (50 mL) and EtOAc (100 mL). The layers were separated and the organic layer was repeatedly washed with 0.5 M HCl (40 mL), water (3× 30 mL) and brine (30 mL). The organic layer was dried over anhydrous Na₂SO₄. Solvent was removed *in vacuo* to give a crude residue that was purified by column chromatography (Hexanes: EtOAc, 3:1 v/v) to give intermediates **1** or **S1**.

To a solution of intermediate 1 or S1 (1.0 equiv.) in a mixture of THF and DMF (1:1 v/v, 1 M) was added an appropriate secondary amine (1.2 equiv.). The reaction was allowed to stir at room temperature until demonstrated to be completed by TLC (3–16 h). Upon completion, the reaction was diluted with water (50 mL) and EtOAc (100 mL). The layers were separated and the organic layer was repeatedly washed with 0.5 M HCl (40 mL), water (3× 30 mL) and brine (30 mL). The organic layer was dried over anhydrous Na₂SO₄. Solvent was removed *in vacuo* to give a crude residue that was purified by column chromatography (Hexanes: EtOAc eluent) to give the desired substrates.

O-(pentan-3-yl) pyrrolidine-1-carbothioate (3). ¹H NMR (400 MHz, CDCl₃): δ 5.34 (p, J = 6.0 Hz, 1H), 3.73 (*app.* dd, J = 7.2, 6.0 Hz, 2H), 3.51 (*app.* dd, J = 7.3, 6.1 Hz, 2H), 2.03-1.84 (m, 4H), 1.74-1.62 (m, 4H), 0.91 (t, J = 7.5 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 184.5, 82.2, 51.2, 47.0, 25.4, 25.0, 24.0, 8.7. HRMS (ESI-TOF) calculated for C₁₀H₂₀NOS [M+H]: m/z = 202.1260, found 202.1264 (ESI+).

O-(pentan-3-yl) 2-methylpyrrolidine-1-carbothioate (5a). ¹H NMR (600 MHz, CDCl₃, 2:1 mixture of rotamers, peaks corresponded to minor rotamer starred): δ 5.40–5.30 (m, 1H), 4.58–4.43 (m, 0.33H)*, 4.28–4.12 (m, 0.66H)*, 3.84–3.63 (m, 1.35 H), 3.58–3.39 (m, 0.66)*, 2.11–1.84 (m, 3H), 1.74–1.58 (m, 5H), 1.29 (d, *J* = 6.5 Hz, 1H), 1.17 (d, *J* = 6.5 Hz, 2H), 1.00–0.73 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 184.7, 184.5*, 82.5, 81.9*, 57.5*, 54.5, 51.6, 47.1*, 32.5, 31.0*, 25.5, 25.5*, 25.4*, 25.4, 22.6*, 21.8, 19.2, 17.7*, 9.1, 8.9*, 8.8. HRMS (ESI-TOF) calculated for C₁₁H₂₂NOS [M+H]: m/z = 216.1417, found 216.1412 (ESI+).

O-(pentan-3-yl) 2-phenylpyrrolidine-1-carbothioate (5b). ¹H NMR (600 MHz, CDCl₃, 4:1 mixture of rotamers, peaks corresponded to minor rotamer starred): δ 7.38-7.28 (m, 2H), 7.25-7.17 (m, 1H), 7.15-7.02 (m, 2H), 5.59 (*app.* d, *J* = 8.0 Hz, 0.2 H)*, 5.38 (p, *J* = 6.0 Hz, 0.2 H)*, 5.22 (p, *J* = 5.9 Hz, 0.8 H), 5.14 (dd, *J* = 8.1, 2.9 Hz, 0.8 H), 4.10-4.02 (m, 0.8 H), 3.98 (ddd, *J* = 12.4, 8.5, 7.0 Hz, 0.8 H), 3.88-3.83 (m, 0.2 H)*, 3.71 (dt, *J* = 12.4, 8.5 Hz, 0.2 H)*, 2.45-2.29 (m, 1H), 2.05-1.89 (m, 3H), 1.76-1.68 (m, 0.8 H), 1.56 (qd, *J* = 7.5, 5.9 Hz, 1.6H), 1.21 (qd, *J* = 7.4, 5.8 Hz, 1.6 H), 0.96 (t, *J* = 7.5 Hz, 1H), 0.85 (t, *J* = 7.5 Hz, 2.5 H), 0.34 (t, *J* = 7.5 Hz, 2.5 H). ¹³C NMR (151 MHz, CDCl₃): δ 186.0*, 185.2, 142.7, 141.5*, 127.9, 127.9, 126.4, 126.2*, 125.0*, 124.8, 82.9,

82.5*, 65.1*, 62.4, 52.5, 48.2*, 35.1, 33.5*, 25.6*, 25.6*, 25.3, 24.9, 22.3*, 21.7, 9.0*, 8.9*, 8.8, 8.1. **HRMS** (ESI-TOF) calculated for $C_{16}H_{24}NOS$ [M+H]: m/z = 278.1573, found 278.1571 (ESI+).

O-(pentan-3-yl) 3-((*tert*-butoxycarbonyl)amino)pyrrolidine-1-carbothioate (5c). ¹H NMR (600 MHz, CDCl₃, 1:1 mixture of rotamers): δ 5.37–5.11 (m, 1H), 4.86–4.71 (m, 1H), 4.19 (*app.* d, *J* = 7.6 Hz, 1H), 3.98–3.65 (m, 2H), 3.60–3.49 (m, 1H), 3.39–3.29 (m, 1H), 2.13 (tdd, *J* = 9.4, 8.3, 6.8, 3.8 Hz, 1H), 1.91–1.76 (m, 1H), 1.65–1.55 (m, 4H), 1.46–1.26 (m, 9H), 0.92–0.73 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 185.4*, 185.2, 154.7, 82.9*, 82.8, 79.3, 56.4, 52.7, 49.8, 49.0, 48.7*, 45.1, 31.3, 30.0*, 27.9*, 27.8, 25.4*, 25.4, 25.4*, 25.4, 8.8, 8.8*. **HRMS** (ESI-TOF) calculated for C₁₅H₂₉N₂O₃S [M+H]: m/z = 317.1893, found 317.1890 (ESI+).

O-(pentan-3-yl) hexahydrocyclopenta[*c*]pyrrole-2(1*H*)-carbothioate (5d). ¹H NMR (600 MHz, CDCl₃): δ 5.33 (p, *J* = 6.0 Hz, 1H), 4.02–3.87 (m, 1H), 3.78–3.67 (m, 1H), 3.59–3.47 (m, 1H), 3.37–3.23 (m, 1H), 2.70 (dddd, *J* = 13.1, 10.3, 8.1, 4.9 Hz, 2H), 1.87–1.72 (m, 3H), 1.72–1.60 (m, 5H), 1.55–1.39 (m, 2H), 0.90 (td, *J* = 7.4, 2.2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 184.5, 82.4, 57.2, 52.8, 42.8, 41.4, 31.3, 31.2, 25.5, 24.8, 8.9, 8.8. HRMS (ESI-TOF) calculated for C₁₃H₂₄NOS [M+H]: m/z = 242.1573, found 242.1568 (ESI+).

Benzyl 7–((pentan–3–yloxy)carbonothioyl)–2,7–diazaspiro[4.4]nonane–2 carboxylate (5e)

¹**H NMR** (600 MHz, CDCl₃, mixture of rotamers, rotameric peaks are overlapped in ¹H NMR): δ 7.53–7.32 (m, 5H), 5.43–5.33 (m, 1H), 5.14 (s, 2H), 3.91–3.28 (m, 8H),

2.05–1.83 (m, 4H), 1.76–1.62 (m, 4H), 1.01–0.85 (m, 6H). ¹³C NMR (151 MHz, CDCl₃, peaks corresponded to the minor rotamer starred): δ 185.4*, 185.2, 154.3, 154.3*, 136.3, 136.1*, 128.0, 127.6, 127.5, 127.4*, 127.1*, 126.5*, 83.0, 66.5*, 66.4, 59.6, 55.7, 55.7*, 54.5, 54.3*, 50.2, 48.3*, 47.4, 47.2*, 46.3, 46.2*, 44.8, 44.5*, 34.6, 34.5*, 34.3, 34.2*, 33.8, 33.2*, 25.5, 25.5*, 8.9, 8.9*. HRMS (ESI-TOF) calculated for C₂₁H₃₁N₂O₃S [M+H]: m/z = 391.2050, found 391.2054 (ESI+).

ethyl ((pentan-3-yloxy)carbonothioyl)-L-prolinate (5f). ¹H NMR (600 MHz, CDCl₃, 1.3:1 mixture of rotamers, peaks corresponded to minor rotamer starred): δ 5.30–5.22 (m, 1H), 4.72 (dd, J = 8.9, 2.6 Hz, 0.45 H)*, 4.41 (dd, J = 8.8, 3.5 Hz, 0.55 H), 4.18–4.00 (m, 2H), 3.85 (ddd, J = 12.1, 8.0, 4.3 Hz, 0.55 H), 3.74 (*app.* dt, J = 11.8, 7.6 Hz, 0.55 H), H)*. 3.52 J = 11.8, 3.71-3.64 (m. 0.45 (app. dt. 7.5 Hz. 0.45 H)*, 2.31–2.12 (m, 1H), 2.05–1.81 (m, 3H), 1.66–1.44 (m, 4H), 1.26–1.14 (m, 3H), 0.92–0.69 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 186.3*, 185.3, 170.9*, 170.9, 83.1, 63.4, 60.7*, 60.5*, 59.6, 51.7, 47.5, 30.3, 29.0*, 25.5*, 25.5, 25.4*, 25.3, 23.5*, 22.6, 13.7, 8.8*, 8.7. **HRMS** (ESI-TOF) calculated for $C_{13}H_{24}NO_3S$ [M+H]: m/z = 274.1471, found 274.1475 (ESI+).

ethyl (2*S*,4*R*)–4–hydroxy–1–((((1*R*,2*S*,5*R*)–2–isopropyl–5 methylcyclohexyl)oxy)carbonothioyl)pyrrolidine–2–carboxylate (5g).

¹**H NMR** (600 MHz, CDCl₃, 1.5:1 mixture of rotamers, peaks corresponded to the minor rotamer starred): δ 5.19 (tdd, J = 10.8, 4.4, 2.4 Hz, 1H), 4.84 (dd, J = 8.5, 6.4 Hz, 0.4 H)*, 4.60–4.49 (m, 1.6 H), 4.27–4.07 (m, 2H), 4.03 (dt, J = 12.8, 2.0 Hz, 0.6 H), 3.96 (dd, J = 12.8, 4.5 Hz, 0.6 H), 3.79 (dd, J = 12.5, 5.2 Hz, 0.4 H)*, 3.69 (ddd, J = 12.5, 3.5, 1.4 Hz, 0.4 H)*, 2.42–2.36 (m, 0.6 H), 2.35–2.29 (m, 0.4 H)*, 2.22–2.13 (m, 2H), 1.95–1.80 (m, 2H), 1.68 (ddt, J = 12.7, 5.8, 3.7 Hz, 2H), 1.56–1.39 (m, 2H),

1.27 (dt, J = 16.0, 7.1 Hz, 3H), 1.16–1.05 (m, 1H), 0.98–0.87 (m, 7H), 0.82 (dd, J = 6.9, 2.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃): δ 186.5*, 185.4, 171.1, 170.8*, 81.3*, 81.2, 69.1*, 68.3, 61.8, 60.9*, 60.8, 59.6*, 58.7, 55.2, 47.1*, 47.0, 40.4*, 40.0, 38.5, 37.5*, 33.9, 30.8*, 30.7, 26.4*, 26.0, 23.5*, 23.1, 21.6, 20.3*, 16.8*, 16.5, 13.8, 13.6*. HRMS (ESI-TOF) calculated for C₁₈H₃₂NO₄S [M+H]: m/z = 358.2047, found 358.2051 (ESI+).

O-(pentan-3-yl) piperidine-1-carbothioate (5h). ¹H NMR (600 MHz, CDCl₃): δ 5.36 (p, J = 6.0 Hz, 1H), 3.99 (*app.* t, J = 5.2 Hz, 2H), 3.74–3.48 (m, 2H), 1.71–1.54 (m, 8H), 1.54–1.38 (m, 2H), 0.85 (t, J = 7.7 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 186.2, 83.0, 50.5, 45.7, 25.5, 24.8, 24.0, 8.9. HRMS (ESI-TOF) calculated for C₁₁H₂₂NOS [M+H]: m/z = 216.1417, found 216.1413 (ESI+).

O-(pentan-3-yl) 3,4-dihydroisoquinoline-2(1*H*)-carbothioate (5i). ¹H NMR (600 MHz, CDCl₃): δ 7.37-6.84 (m, 4H), 5.51-5.44 (m, 1H), 5.12 (s, 1H), 4.80 (s, 1H), 4.21 (*app.* t, *J* = 6.0 Hz, 1H), 3.97-3.77 (m, 1H), 2.94-2.81 (m, 2H), 1.78-1.57 (m, 4H), 0.98-0.85 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 187.0*, 186.8, 134.6*, 134.0, 132.8, 132.0*, 128.0*, 127.6, 126.5*, 126.3, 126.2, 126.1*, 126.1, 125.7, 83.3*, 83.2, 51.0, 47.1*, 46.6, 42.9, 28.6, 28.1*, 25.6, 9.1, 9.0*. HRMS (ESI-TOF) calculated for C₁₅H₂₂NOS [M+H]: m/z = 264.1417, found 264.1419 (ESI+).

C. General procedure for product formation:

A 2-dram vial was charged with substrate (0.1 mmol) and the vial was evacuated by passing through alternative cycles of vacuum/Argon. Degassed PhCl (0.5 mL) was then added to the above vial. In a separate 2-dram vial, under an Argon atmosphere (glovebox), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol) was added followed by a solution of substrate in degassed PhCl (0.5 mL). Subsequently, alkene (0.8 mmol) was added to the above reaction mixture and the reaction was allowed to stir at 85 °C, under an Argon atmosphere, for 6 or 24 h. Upon completion, the reaction was filtered over Celite®

and the filter cake was thoroughly washed with EtOAc: MeOH (9:1 v/v). Solvent was removed *in vacuo* to give a crude residue that was purified by preparative TLC. NB: addition of degassed PhCl and alkene was performed outside of glovebox.

Ethyl 3-(1-((pentan-3-yloxy)carbonothioyl)pyrrolidin-2-yl)propanoate (4amono)

Prepared according to general procedure B using *O*–(pentan–3–yl) pyrrolidine–1– carbothioate **3** (20.2 mg, 0.1 mmol, 1 equiv.), $[Ir(cod)_2]OTf$ (5.7 mg, 0.01 mmol, 10 mol%), ethyl acrylate (80 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (2:1 v/v Hexanes/EtOAc) to give **4a**_{mono} (7.30 mg, 24%) and **4a**_{di} (17.6 mg, 44%) as colourless oils. ¹H NMR (600 MHz, CDCl₃, 1.8:1 mixture of rotamers): δ 5.46–5.41 (m, 0.65 H), 5.39–5.35 (m, 0.35 H), 4.45–4.38 (m, 0.35 H), 4.21–4.09 (m, 2.65 H), 3.88–3.69 (m, 1.3 H), 3.63–3.50 (m, 0.7 H), 2.52–2.24 (m, 2H), 2.14–1.90 (m, 4H), 1.87–1.62 (m, 6H), 1.35–1.20 (m, 4H), 1.02–0.84 (m, 7H). ¹³C NMR (151 MHz, CDCl₃): δ 185.3, 185.1*, 172.8*, 172.3, 82.9, 82.3*, 61.2*, 60.1, 60.0*, 58.1, 51.6, 47.1*, 31.3*, 30.9, 29.7, 29.2*, 28.3, 28.2*, 26.9*, 25.5, 25.4*, 25.3, 22.7*, 21.8, 13.8*, 13.7, 9.1, 8.9*, 8.9*, 8.8. HRMS (ESI-TOF) calculated for C₁₅H₂₈NO₃S [M+H]: m/z = 302.1784, found 302.1781 (ESI+).

Diethyl 3,3'-((2*S*,5*S*)-1-((pentan-3-yloxy)carbonothioyl)pyrrolidine-2,5diyl)dipropionate (4a_{di}, trans diastereomer, relative stereochemistry shown). ¹H NMR (600 MHz, CDCl₃, mixture of rotamers, rotameric peaks are overlapped in ¹H NMR): δ 5.45-5.37 (m, 1H), 4.26-4.20 (m, 1H), 4.19-4.07 (m, 4H), 4.03-3.96 (m, 1H), 2.67-2.53 (m, 1H), 2.47-2.34 (m, 2H), 2.32-2.21 (m, 3H), 2.19-2.09 (m, 2H), 2.08-1.97 (m, 2H), 1.84-1.62 (m, 6H), 1.32-1.17 (m, 6H), 1.00-0.80 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 186.4, 185.0, 172.7, 172.2, 82.8*, 82.6, 62.3*, 61.6, 60.1*, 60.0, 59.0*, 58.6, 31.7, 31.5, 31.3*, 31.2*, 30.7*, 30.0*, 29.2*, 29.1*, 28.9*, 28.1, 27.7*, 27.4, 26.4, 25.9, 25.5, 25.4*, 25.3, 13.8, 13.7, 13.6*, 9.2, 9.2*, 8.9. HRMS (ESI-TOF) calculated for $C_{20}H_{36}NO_5S$ [M+H]: m/z = 402.2309, found 402.2308 (ESI+).

O–(pentan–3–vl) 2-phenethylpyrrolidine-1-carbothioate $(4c_{mono}).$ Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 0.1 mmol, 1 equiv.), $[Ir(cod)_2]OTf$ (5.7 (20.2)mg, mg, 0.01 mmol. 10 mol%), styrene (92 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (2:1 v/v Hexanes/EtOAc) to give $4c_{mono}$ (5.83 mg, 19%) and $4c_{di}$ (9.42 mg, 23%) as colourless oils. ¹H NMR (600 MHz, CDCl₃, 2.3:1 mixture of rotamers, peaks corresponding to minor rotamer starred): δ 7.54–7.01 (m, 5H), 5.41–5.32 (m, 1H), 4.42 (ddd, J = 10.1, 5.2, 5.42.5 Hz, 0.3H)*, 4.10 (tt, J = 7.2, 2.9 Hz, 0.7H), 3.76 (ddd, J = 6.4, 5.3, 2.6 Hz, 1.4H), 3.69-3.45 (m, 0.6H)*, 2.79-2.38 (m, 2H), 2.20-1.74 (m, 5H), 1.76-1.58 (m, 5H), 0.99-0.70 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 184.9, 184.7*, 141.2*, 140.7, 128.0, 127.9*, 127.8, 125.6, 125.3*, 82.7, 82.1*, 61.9*, 58.3, 51.6, 47.2*, 34.3, 33.0*, 32.5*, 32.4, 29.4, 28.2*, 25.5*, 25.5*, 25.4, 25.4, 22.8*, 21.9, 9.2, 8.9*, 8.9*, 8.8. HRMS (ESI-TOF) calculated for $C_{18}H_{28}NOS$ [M+H]: m/z = 306.1886, found 306.1881 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-diphenethylpyrrolidine-1-carbothioate (4c_{di}). ¹H NMR (600 MHz, CDCl₃, 1.8:1 mixture of rotamers, peaks corresponding to minor rotamer starred): δ 7.48–7.00 (m, 10H), 5.48–5.38 (m, 1H), 4.52 (td, *J* = 7.2, 3.8 Hz, 0.35H)*, 4.32 (dd, *J* = 10.1, 6.7 Hz, 0.65H), 4.20–4.10 (m, 0.35H)*, 4.03 (ddd, *J* = 9.9, 7.2, 2.2 Hz, 0.65H), 2.85–2.48 (m, 5H), 2.32–1.93 (m, 3H), 1.91–1.77 (m, 2H), 1.74–1.46 (m, 6H), 1.08–0.77 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 185.5*, 184.6, 141.3, 141.2*, 140.7, 140.7*, 128.0, 128.0*, 128.0, 127.9*, 127.9, 127.8*, 127.8, 127.8*, 125.5, 125.4*, 125.3, 82.3*, 82.2, 62.7*, 62.2, 59.1*, 58.8, 37.7, 36.4*, 35.3, 34.1*, 32.9, 32.3*, 29.2, 29.0*, 27.9, 27.3*, 26.1, 25.4*, 22.2, 21.6*, 13.7, 13.7*, 9.4, 9.2*, 8.9. **HRMS** (ESI-TOF) calculated for C₂₆H₃₆NOS [M+H]: m/z = 410.2512, found 410.2521 (ESI+).

O-(pentan-3-yl) 2-(4-fluorophenethyl)pyrrolidine-1-carbothioate (4d_{mono}, ¹H and 13 C NMR data were only obtained for $4d_{mono}$ as $4d_{di}$ could not be isolated with sufficient purity for NMR characterization). Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf mmol, 10 mol%), 4-fluorostyrene (96 µL, 0.8 mmol, (5.7 mg, 0.01 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give 4dmono (10.0 mg, 31%) and 4ddi (2.60 mg, 6%) as colourless oils. ¹H NMR (600 MHz, CDCl₃, rotamers in 1.8:1 ratio, peaks corresponding to minor rotamer starred): δ 7.22–7.07 (m, 2H), 7.04–6.89 (m, 2H), 5.36 (td, J = 6.1, 4.6 Hz, 1H), 4.38 (ddt, J = 9.9, 5.7, 2.4 Hz, 0.35H)*, 4.11–4.02 (m, 0.65H), 3.75 (ddd, J = 8.2, 5.9, 3.3 Hz, 1.3H), 3.60–3.47 (m, 0.7H)*, 2.73–2.45 (m, 2H), 2.08–1.79 (m, 5H), 1.71–1.57 (m, 5H), 1.00–0.78 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃): $\delta -117.7, -118.1^*$. ¹³C NMR (151 MHz, CDCl₃): $\delta 184.9, 184.8^*, 160.9$ (d, $J_{F-C} = 243$ Hz), 160.8 (d, J_{F-C} = 243 Hz)*, 136.7 (d, J_{F-C} = 3.0 Hz)*, 136.2 (d, J_{F-C} = 3.0 Hz), 129.3 $(d, J_{F-C} = 7.6 \text{ Hz})^*$, 129.1 $(d, J_{F-C} = 7.6 \text{ Hz})$, 114.7 $(d, J_{F-C} = 20 \text{ Hz})$, 114.5 $(d, J_{F-C} = 20 \text{ Hz})$ Hz)*, 82.6, 82.1*, 61.7*, 58.1, 51.6, 47.2*, 34.4, 33.1*, 31.7*, 31.6, 29.4, 28.2*, 25.5*, 25.5*, 25.5, 25.4, 22.8*, 21.9, 9.2, 8.9*, 8.9*, 8.8. HRMS (ESI-TOF) calculated for $C_{18}H_{27}FNOS$ [M+H]: m/z = 324.1792, found 324.1798 (ESI+).

O-(pentan-3-yl) 2-hexylpyrrolidine-1-carbothioate (4e_{mono}). Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), 1-hexene μL, 0.8 mmol. 8 degassed (100)equiv.) in PhCl (0.5)mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give 4emono (8.05 mg, 28%) and 4edi (12.5 mg, 34%) as colourless oils. ¹H NMR (600 MHz, CDCl₃, peaks corresponded to the minor rotamer starred): δ 5.44–5.33 (m, 1H), 4.37–4.29 (m, 0.3 H)*, 4.09–4.02 (m, 0.7 H), 3.79–3.69 (m, 1.4 H),

3.56–3.43 (m, 0.6 H)*, 2.18–1.76 (m, 4H), 1.74–1.63 (m, 3H), 1.40–1.18 (m, 10H), 1.01– 0.82 (m, 10H). ¹³C NMR (151 MHz, CDCl₃): δ 184.7, 184.5*, 82.5, 81.9*, 62.1, 59.0*, 51.6, 47.2*, 32.8, 31.4, 31.2*, 31.0*, 29.6, 28.7*, 28.6, 27.9*, 26.0*, 25.9, 25.5, 25.5, 25.4*, 22.7*, 22.2, 22.1*, 22.1*, 21.9, 13.6, 13.6*, 9.1, 8.9, 8.8*. **HRMS** (ESI-TOF) calculated for C₁₆H₃₂NOS [M+H]: m/z = 286.2199, found 286.2132 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-dihexylpyrrolidine-1-carbothioate (4e_{di}, trans diastereoisomer). ¹H NMR (600 MHz, CDCl₃, 1.5:1 mixture of rotamers, peaks corresponding to minor rotamer starred): δ 5.43 (td, *J* = 6.0, 3.2 Hz, 1H), 4.38 (td, *J* = 7.1, 3.7 Hz, 0.4H)*, 4.19 (ddd, *J* = 9.9, 7.2, 2.3 Hz, 0.6H), 4.08-4.00 (m, 0.4H)*, 3.92 (dd, *J* = 9.6, 6.8 Hz, 0.6H), 2.36-2.15 (m, 1H), 2.09-1.91 (m, 2H), 1.86-1.60 (m, 7H), 1.37-1.17 (m, 20H), 1.01-0.81 (m, 10H). ¹³C NMR (151 MHz, CDCl₃): δ 185.1*, 184.3, 82.0*, 81.8, 62.9*, 62.4, 59.7*, 59.6, 34.8*, 33.2, 32.8*, 31.4, 31.4*, 31.3, 31.3*, 30.6, 29.1, 28.7*, 28.6, 27.6*, 27.4, 26.5*, 26.5, 26.0*, 25.8, 25.8*, 25.5, 25.5*, 25.4, 25.3, 22.2*, 22.1, 13.6*, 13.6, 13.6*, 13.6, 9.2*, 9.1, 9.1, 8.8*, 8.8. HRMS (ESI-TOF) calculated for C₂₂H₄₄NOS [M+H]: m/z = 370.3138, found 370.3143 (ESI+).

O-(pentan-3-yl) 2-(3-cyclopentylpropyl)pyrrolidine-1-carbothioate (4 f_{mono}). Prepared according to general procedure B using *O*-(pentan-3-yl) pyrrolidine-1carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylcyclopentane (112 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give 4 f_{mono} (6.90 mg, 22%) and 4 f_{di} (14.3 mg, 34%) as colourless oils.

¹**H** NMR (600 MHz, CDCl₃, rotamers in 1.8:1 ratio, peaks corresponding to minor rotamer starred): δ 5.43–5.34 (m, 1H), 4.33 (td, J = 7.4, 3.0 Hz, 0.42H)*, 4.05 (ddd, J = 10.5, 6.4, 2.7 Hz, 0.75H), 3.77–3.70 (m, 1.33H), 3.55–3.46 (m, 0.8H)*, 2.14–2.09 (m,

0.42H)*, 1.99–1.86 (m, 3H), 1.80 (ddd, J = 10.1, 4.9, 2.2 Hz, 1H), 1.78–1.65 (m, 7H), 1.62–1.56 (m, 2H), 1.52–1.47 (m, 2H), 1.39–1.22 (m, 6H), 1.12–0.99 (m, 2H), 0.99–0.84 (m, 6H). ¹³**C NMR** (151 MHz, CDCl₃): δ 184.7, 184.5*, 82.5, 81.9*, 62.1*, 59.0, 51.6, 47.2*, 39.6*, 39.5, 35.5, 33.0, 32.3, 32.2*, 32.2, 32.1*, 31.2*, 29.6, 27.9*, 25.5, 25.4*, 25.2*, 25.2, 24.7, 24.7, 22.8*, 21.9, 9.1, 8.9*, 8.8*, 8.8. **HRMS** (ESI-TOF) calculated for C₁₈H₃₄NOS [M+H]: m/z = 312.2356, found 312.2358 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-bis(3-cyclopentylpropyl)pyrrolidine-1-carbothioate (4f_{di})

¹**H NMR** (600 MHz, CDCl₃, rotamers in 1.2:1 ratio, peaks corresponding to minor rotamer starred): δ 5.47–5.39 (m, 1H), 4.42–4.34 (m, 0.45H)*, 4.19 (ddd, J = 9.9, 7.3, 2.3 Hz, 0.55H), 4.09–4.03 (m, 0.45H)*, 3.93 (td, J = 7.4, 3.6 Hz, 0.55H), 2.34–2.25 (m, 0.55H), 2.24–2.15 (m, 0.45H)*, 2.08–1.93 (m, 2H), 1.86–1.44 (m, 20H), 1.42–1.12 (m, 11H), 1.12–0.99 (m, 4H), 0.99–0.81 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 185.1*, 184.3, 82.0*, 81.8, 62.9*, 62.4, 59.7*, 59.6, 39.7, 39.6*, 39.5, 39.5*, 35.5*, 35.5*, 35.5, 35.4, 35.0*, 33.3*, 33.0, 32.3, 32.2*, 32.2, 32.2*, 30.8, 30.5*, 29.2*, 29.1, 27.6*, 27.5, 25.9, 25.7, 25.7, 25.5, 25.5*, 25.4, 25.3, 25.2*, 25.0*, 24.7, 24.7, 24.7, 9.2, 9.1*, 8.8, 8.8*. **HRMS** (ESI-TOF) calculated for C₂₆H₄₈NOS [M+H]: m/z = 422.3451, found 422.3447 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-bis(3-cyclohexylpropyl)pyrrolidine-1-carbothioate (4g). Prepared according to general procedure B using *O*-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylcyclohexane (124 μ L, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give 4g (23.3 mg, 52%) as colourless oil. ¹H NMR (600 MHz,

CDCl₃, rotamers in 1.1:1 ratio, peaks corresponding to minor rotamer starred): δ 5.43 (p, J = 6.0 Hz, 1H), 4.38 (td, J = 7.0, 3.6 Hz, 0.47H)*, 4.19 (ddd, J = 9.9, 7.2, 2.3 Hz, 0.53H), 4.08–4.00 (m, 0.48H)*, 3.92 (td, J = 7.3, 3.3 Hz, 0.52H), 2.30–2.14 (m, 1H), 2.10–1.91 (m, 2H), 1.82–1.53 (m, 16H), 1.37–1.08 (m, 19H), 1.02–0.78 (m, 10H). ¹³C **NMR** (151 MHz, CDCl₃): δ 185.1*, 184.3, 82.0*, 81.8, 62.9*, 62.4, 59.7*, 59.6, 37.2, 37.2*, 37.0, 36.9*, 36.8, 36.8*, 36.7*, 35.0, 33.4*, 33.1*, 33.0*, 33.0, 33.0*, 32.9, 32.9*, 32.8, 30.8, 29.1, 27.6*, 27.5, 26.3, 26.2, 26.2*, 26.0, 25.9, 25.9*, 25.9, 25.5, 25.5*, 25.4, 25.4*, 23.8, 23.7, 23.3, 23.0, 9.2, 9.1*, 8.8, 8.8. **HRMS** (ESI-TOF) calculated for C₂₈H₅₂NOS [M+H]: m/z = 450.3764, found 450.3768 (ESI+).

O-(pentan-3-yl) (2R,5R)-2,5-bis(3-phenylpropyl)pyrrolidine-1-carbothioate (4h, trans diastereoisomer). Prepared according to general procedure B using O-(pentan-3yl) pyrrolidine–1–carbothioate **3** (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 10 mmol. mol%), allylbenzene (110)μL, 0.8 mmol. 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give 4h (27.1 mg, 62%) as a ¹H NMR (600 MHz, CDCl₃, 1.5:1 mixture of rotamers, peaks colourless oil. corresponding to minor rotamer starred): δ 7.36–6.92 (m, 10H), 5.44–5.35 (m, 1H), 4.49 $(ddd, J = 10.5, 7.2, 3.7 Hz, 0.4H)^*, 4.28 (ddd, J = 9.9, 7.1, 2.3 Hz, 0.6H), 4.14-4.04 (m)$ $(0.4H)^*$, 3.97 (ddd, J = 9.8, 7.2, 2.2 Hz, 0.6H), 2.76 (tdd, J = 13.0, 9.8, 5.6 Hz, 1H), 2.70-2.55 (m, 3H), 2.42–2.19 (m, 1H), 2.06–1.90 (m, 2H), 1.89–1.76 (m, 1H), 1.72–1.43 (m, 10H), 1.37–1.22 (m, 2H), 0.91–0.82 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 185.3*, 184.4, 142.1, 142.1*, 141.5, 141.5*, 127.9, 127.9*, 127.9, 127.9*, 127.9, 127.8*, 127.8, 125.4, 125.4*, 125.2*, 125.2, 82.2*, 81.9, 62.7*, 62.2, 59.6, 59.4, 35.4, 35.4*, 35.3*, 35.3, 34.5*, 33.1*, 32.6, 30.6, 29.2*, 28.5, 28.0*, 27.6*, 27.6*, 27.5, 25.9, 25.4, 25.4*, 25.2*, 25.2, 9.2, 9.1*, 8.8. **HRMS** (ESI-TOF) calculated for $C_{28}H_{40}NOS$ [M+H]: m/z = 438.2825, found 438.2823 (ESI+).

O–(pentan–3–yl) (2R,5R)-2,5-bis(3-(4-methoxyphenyl)propyl)pyrrolidine-1carbothioate (4i). Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), 4-allylanisole (123 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (95:5 v/v Toluene/Acetone) to give 4i (29.2 mg, 59%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, rotamers in 1.5:1 ratio, peaks corresponding to minor rotamer starred): δ 7.13– 7.09 (m, 2H), 7.08–7.01 (m, 2H), 6.85–6.77 (m, 4H), 5.45–5.34 (m, 1H), 4.44 (ddt, J =10.5, 7.2, 3.5 Hz, 0.4H)*, 4.23 (ddd, J = 9.9, 7.1, 2.3 Hz, 0.6H), 4.04 (dt, J = 8.6, 4.4 Hz, $(0.4H)^*$, 3.92 (ddd, J = 9.9, 7.3, 2.2 Hz, 0.6H), 3.79 (s, 3H), 3.78 (s, 3H), 2.73–2.63 (m, 2.61 - 2.473H), 2.39-2.19 1H), (m, 1H), (m, 2.04–1.92 (m, 2H), 1.88–1.75 (m, 1H), 1.73–1.45 (m, 10H), 1.37–1.21 (m, 2H), 0.91–0.83 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 185.3*, 184.4, 157.4, 157.3*, 157.2*, 157.2, 134.2, 134.2*, 133.6*, 133.6, 128.8*, 128.7, 128.7, 113.3, 113.3*, 113.2, 82.1*, 81.9, 62.7*, 62.2, 59.7*, 59.5, 54.8, 34.5, 34.4*, 34.4, 34.3, 33.0*, 32.5, 30.5, 29.2*, 28.7, 28.7, 28.3*, 27.8*, 27.6*, 27.5, 25.9, 25.4, 25.4*, 25.2*, 25.2, 9.1, 9.1*, 8.8. **HRMS** (ESI-TOF) calculated for $C_{30}H_{44}NO_3S$ [M+H]: m/z = 498.3036, found 498.3035 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-bis(3-(4-fluorophenyl)propyl)pyrrolidine-1carbothioate (4j). Prepared according to general procedure B using *O*-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), 1-allyl-4-fluorobenzene (108 μL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give **4j** (45.4 mg, 96%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, 1.5:1 mixture of rotamers, peaks corresponding to minor rotamer starred): δ 7.19–7.07 (m, 4H), 7.02–6.91 (m, 4H), 5.47–5.30 (m, 1H), 4.44 (ddt, J = 10.6, 7.1, 3.5 Hz, 0.4H)*, 4.23 (ddd, J = 9.9, 7.2, 2.3 Hz, 0.6H), 4.10–3.99 (m, 0.4H)*, 3.92 (ddd, J = 9.9, 7.2, 2.1 Hz, 0.6H), 2.69 (dtd, J = 17.0, 11.5, 10.7, 5.7 Hz, 1H), 2.64–2.40 (m, 3H), 2.40–2.16 (m, 1H), 2.08–1.93 (m, 2H), 1.85–1.73 (m, 1H), 1.72–1.55 (m, 7H), 1.53–1.42 (m, 2H), 1.38–1.24 (m, 3H), 0.95–0.81 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃): δ –118.0, –118.4*. ¹³C NMR (151 MHz, CDCl₃): δ 185.4*, 184.4, 160.8 (d, $J_{F-C} = 243$ Hz), 160.7 (d, $J_{F-C} = 243$ Hz), 137.6 (d, $J_{F-C} = 3.0$ Hz), 137.0 (d, $J_{F-C} = 3.0$ Hz), 129.2 (d, $J_{F-C} = 7.0$ Hz), 114.7 (d, $J_{F-C} = 21$ Hz), 114.4 (d, $J_{F-C} = 21$ Hz), 82.2*, 81.9, 62.7*, 62.1, 59.6*, 59.4, 34.5, 34.5*, 34.5*, 34.4*, 34.3*, 32.9*, 32.4, 31.5*, 30.8*, 30.4, 29.2, 29.2*, 28.9*, 28.6, 28.1*, 27.7*, 27.7*, 27.5, 25.9, 25.4, 25.4*, 25.2*, 25.2, 9.1, 9.1*, 8.7. HRMS (ESI-TOF) calculated for C₂₈H₃₈F₂NOS [M+H]: m/z = 474.2637, found 474.2631 (ESI+).

(2R,5R)-2,5-bis(3-(4-bromophenyl)propyl)pyrrolidine (4k). Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), 1-allyl-4-bromobenzene (158 mg. 0.8 mmol. 8 equiv.) in degassed PhCl (0.5)mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v Toluene/Acetone) to give the desired di-alkylated product which co-eluted with 1-allyl-4bromobenzene. The mixture was subjected to treatment with 75% TFA in H₂O for 2 h to give, after column chromatography (9:1 v/v CH₂Cl₂: MeOH), 4k (28.8 mg, 62%) as a colourless oil.

¹**H** NMR (600 MHz, Acetone– d_6): δ 7.43 (d, J = 8.3 Hz, 4H), 7.23–7.08 (m, 4H), 3.08 (td, J = 6.3, 3.1 Hz, 1H), 2.98 (ddt, J = 6.7, 4.9, 2.1 Hz, 1H), 2.59 (td, J = 7.4, 1.4 Hz, 4H), 1.89 (ddd, J = 5.4, 3.0, 1.2 Hz, 1H), 1.78 (tt, J = 5.0, 2.2 Hz, 1H), 1.72–1.55

(m, 4H), 1.46–1.33 (m, 4H), 1.25–1.16 (m, 2H). ¹³C NMR (151 MHz, Acetone– d_{6} , 4 ¹³C signals are overlapping): δ 141.7, 130.7, 130.0, 118.3, 58.1, 57.3, 36.0, 35.9, 34.6, 34.6, 32.1, 30.6, 29.2, 29.0. **HRMS** (ESI-TOF) calculated for C₂₂H₂₈Br₂N [M+H]: m/z = 464.0583, found 464.0578 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-bis(3-cyanopropyl)pyrrolidine-1-carbothioate (4l). Prepared according to general procedure B using *O*-(pentan-3-yl) pyrrolidine-1carbothioate **3** (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allyl cyanide (65 μL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (9:1 v/v Toluene/Acetone) to give **41** (14.0 mg, 40%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, rotamers in 4:1 ratio, peaks corresponding to minor rotamer starred): δ 5.42 (p, *J* = 6.1 Hz, 1H), 4.47 (td, *J* = 10.6, 9.7, 4.2 Hz, 0.2H)*, 4.22 (ddd, *J* = 9.9, 7.5, 2.0 Hz, 0.8H), 4.12 (ddd, *J* = 12.5, 8.8, 5.1 Hz, 0.2H)*, 3.99 (ddd, *J* = 9.9, 7.6, 2.2 Hz, 0.8H), 2.50 (ddd, *J* = 16.9, 7.4, 5.6 Hz, 1H), 2.44–2.33 (m, 4H), 2.29–1.89 (m, 3H), 1.83–1.61 (m, 10H), 1.53–1.34 (m, 2H), 0.92 (dt, *J* = 21.1, 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 186.3*, 184.9, 119.2*, 118.6, 83.0*, 82.8, 61.9*, 61.3, 58.7*, 58.4, 34.0*, 33.0*, 32.0, 30.2, 29.3*, 28.0*, 27.6, 26.1, 25.5, 25.5, 25.4*, 22.7, 22.6, 22.2*, 21.9*, 16.8*, 16.8, 16.7*, 16.5, 9.3, 9.3*, 8.9. HRMS (ESI-TOF) calculated for C₁₈H₃₀N₃OS [M+H]: m/z = 336.2104, found 336.2107 (ESI+).

O-(pentan-3-yl) (2*R*,5*R*)-2,5-bis(5-oxohexyl)pyrrolidine-1-carbothioate (4m). Prepared according to general procedure B using *O*-(pentan-3-yl) pyrrolidine-1-carbothioate **3** (20.2 mg, 0.1 mmol, 1 equiv.), $[Ir(cod)_2]OTf$ (5.7 mg, 0.01 mmol, 10 mol%), allylacetone (95 μ L, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (2:1 v/v

Hexanes/EtOAc) to give **4m** (29.0 mg, 73%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, rotamers in 1.8:1 ratio, peaks corresponding to minor rotamer starred): δ 5.46–5.30 (m, 1H), 4.36 (tt, J = 7.1, 3.7 Hz, 0.35H)*, 4.17 (ddd, J = 10.2, 7.4, 2.3 Hz, 0.65H), 4.07–4.01 (m, 0.35H)*, 3.92 (ddd, J = 9.9, 7.3, 2.1 Hz, 0.65H), 2.54–2.38 (m, 4H), 2.34–2.18 (m, 1H), 2.13–2.11 (m, 6H), 2.06–1.93 (m, 2H), 1.82–1.51 (m, 11H), 1.39–1.08 (m, 6H), 0.91 (dt, J = 22.0, 7.5 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 208.8, 208.7*, 208.2*, 208.1, 185.3*, 184.4, 82.2*, 82.0, 62.6*, 62.1, 59.5*, 59.3, 43.1, 43.0, 34.6*, 32.7*, 32.6, 30.1, 29.5, 29.5*, 29.4, 29.1*, 27.6*, 27.5, 26.0, 25.9, 25.8*, 25.5, 25.5*, 25.4*, 25.4, 25.3, 23.1*, 23.1, 23.0*, 22.9, 9.2, 9.1*, 8.8, 8.8*. HRMS (ESI-TOF) calculated for C₂₂H₄₀NO₃S [M+H]: m/z = 398.2723, found 398.2719 (ESI+).

(2S,5S)-2,5-bis(3-(phenylsulfonyl)propyl)pyrrolidine-1-*O*–(pentan–3–vl) carbothioate (4n). Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allyl phenyl sulfone (122 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (1:1 v/v Hexanes/EtOAc) to give **4n** (31.1 mg, 55%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, rotamers in 1.8:1 ratio, peaks corresponding to minor rotamer starred): δ 7.92– 7.81 (m, 4H), 7.72–7.64 (m, 2H), 7.62–7.51 (m, 4H), 5.40–5.28 (m, 1H), 4.32 (td, J =7.0, 3.8 Hz, 0.35H, 4.09 (ddd, J = 9.9, 7.4, 2.0 Hz, 0.65H), 4.01 (t, J = 7.6 Hz, 0.35H)*, 3.86 (ddd, J = 9.9, 7.8, 1.8 Hz, 0.65H), 3.33–3.18 (m, 1H), 3.16–2.95 (m, 3H), 2.36–2.13 (m, 1H), 2.11-1.89 (m, 2H), 1.88-1.66 (m, 7H), 1.65-1.51 (m, 4H), 1.45-1.28 (m, 2H),0.83 (dt, J = 9.9, 7.4 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 186.0*, 184.6, 138.7, 138.7*, 138.6*, 138.5, 133.4, 133.4, 133.2*, 128.9, 128.8, 127.6*, 127.6, 127.5, 127.5*, 82.7*, 82.5, 61.9*, 61.3, 59.0*, 58.6, 55.5*, 55.4, 55.3*, 55.2, 33.5*, 31.9*, 31.6, 29.2, 29.1*, 27.7*, 27.5, 25.9, 25.4, 25.4, 25.4, 25.3*, 19.7, 19.4*, 19.1, 9.2, 9.2*, 8.8, 8.8*. **HRMS** (ESI-TOF) calculated for $C_{28}H_{40}NO_5S_3$ [M+H]: m/z = 566.2063, found 566.2058 (ESI+).

O-(pentan-3-yl) (2R,5R)-2,5-bis(3-(1,3-dioxoisoindolin-2-yl)propyl)pyrrolidine-1-carbothioate (40). Prepared according to general procedure B using O-(pentan-3-yl) pyrrolidine-1-carbothioate 3 (20.2 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), 2-allylisoindoline-1,3-dione (150 mg, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (1:1 v/v Hexanes/EtOAc) to give 40 (40.2 mg, 70%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, rotamers in 1.8:1 ratio, peaks corresponding to minor rotamer starred): δ 7.86–7.80 (m, 4H), 7.76–7.65 (m, 4H), 5.37–5.27 (m, 1H), 4.42 (ddt, J = 10.8, 7.4, 3.7Hz, $(0.35H)^*$, (4.20) (ddd, J = 9.8, 7.1, 2.3 Hz, (0.65H), 4.04 (tt, J = 8.1, 4.6 Hz, $(0.35H)^*$, $3.91 \text{ (ddd, } J = 9.8, 7.2, 2.1 \text{ Hz}, 0.65\text{H}), 3.79-3.72 \text{ (m, 1H)}, 3.71-3.62 \text{ (m, 3H)}, 2.40-2.23 \text{ (m, 2H)}, 3.71-3.62 \text{$ (m, 1H), 2.01 (tdt, J = 14.1, 11.9, 7.0 Hz, 2H), 1.91–1.50 (m, 10H), 1.44 (ddd, J = 13.9, 7.5, 6.3 Hz, 1H), 1.38–1.23 (m, 2H), 0.89–0.69 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 185.7*, 184.6, 167.9, 167.9*, 167.8*, 167.8, 133.5, 133.4, 131.8*, 131.7, 131.6, 131.6*, 122.8, 122.7*, 122.7, 82.3*, 82.0, 62.3*, 61.7, 59.3*, 59.0, 37.4*, 37.3, 37.2, 32.1*, 30.4*, 30.3, 29.2*, 28.0, 27.6*, 27.6, 25.9, 25.7, 25.5, 25.3, 25.2, 25.2*, 25.1*, 25.0*, 9.1, 9.0*, 8.7. HRMS (ESI-TOF) calculated for $C_{32}H_{38}N_3O_5S$ [M+H]: m/z = 576.2527, found 576.2530 (ESI+).

O-(pentan-3-yl) 2-methyl-5-(5-oxohexyl)pyrrolidine-1-carbothioate (6a). Prepared according to general procedure B using *O*-(pentan-3-yl) 2-methylpyrrolidine-1-carbothioate **5a** (21.5 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylacetone (95 μ L, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (9:1 v/v Toluene/Acetone) to give **6a** (23.8 mg, 76%) as a colourless oil. ¹H NMR (600 MHz,

CDCl₃, mixture of rotamers and 1.2:1 inseparable mixture of diastereomers): δ 5.41 (td, *J* = 6.0, 4.1 Hz, 1H), 4.58–4.31 (m, 0.75H), 4.27–4.09 (m, 1H), 4.08–3.88 (m, 0.5H), 2.59–2.38 (m, 2H), 2.33–1.85 (m, 6H), 1.85–1.41 (m, 8H), 1.41–1.13 (m, 6H), 1.08–0.76 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 208.8, 208.8, 208.2, 208.1, 185.2, 185.1, 184.6, 184.5, 82.2, 82.1, 82.0, 62.8, 62.3, 59.6, 59.4, 58.5, 57.6, 55.3, 54.7, 43.1, 43.0, 34.7, 32.7, 32.6, 31.4, 30.3, 30.2, 30.1, 29.5, 29.5, 29.4, 29.1, 28.8, 27.5, 27.3, 26.0, 25.8, 25.6, 25.5, 25.4, 25.4, 25.4, 25.4, 25.3, 23.1, 23.1, 23.0, 22.9, 21.2, 19.5, 19.4, 17.5, 9.2, 9.2, 9.1, 9.1, 8.8, 8.8 **HRMS** (ESI-TOF) calculated for C₁₇H₃₂NO₂S [M+H]: m/z = 314.2148, found 314.2143 (ESI+).

O-(pentan-3-yl) 2-(5-oxohexyl)-5-phenylpyrrolidine-1-carbothioate (6b). Prepared according procedure В to general using *O*-(pentan-3-yl) 2-phenylpyrrolidine-1-carbothioate **5b** (27.7 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylacetone (95 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (9:1 v/v Toluene/Acetone) to give **6b** (25.5 mg, 68%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, mixture of rotamers and 1:1 inseparable mixture of diastereomers): δ 7.33–7.13 (m, 3H), 7.08–7.00 (m, 2H), 5.51 (d, J = 8.3 Hz, 0.22H), 5.40 (t, J = 6.0 Hz, 0.21H), 5.24-5.05 (m, 1.4H), 4.88 (t, J = 7.9 Hz, 0.12H), 4.52 (ddd, J = 9.9, 7.8, 2.4 Hz, 0.75H), 4.25 (ddd, J = 10.2, 7.9, 2.1 Hz, 0.17H), 2.61–2.33 (m, 4H), 2.20–1.91 (m, 4H), 1.85– 1.64 (m, 4H), 1.54–1.30 (m, 5H), 1.13–0.90 (m, 3H), 0.80 (t, J = 7.4 Hz, 3H), 0.27 (dt, J = 46.4, 7.4 Hz, 2H). ¹³C NMR (151 MHz, CDCl₃): δ 208.8, 208.1, 185.8, 185.0, 143.3, 142.1, 128.0, 127.9, 127.8, 126.3, 126.1, 125.0, 124.9, 124.5, 82.8, 82.5, 82.3, 65.5, 64.3, 63.7, 62.8, 60.2, 43.1, 43.1, 43.1, 34.5, 32.9, 32.3, 31.2, 30.6, 29.5, 29.5, 29.2, 26.5, 26.1, 25.9, 25.9, 25.6, 25.5, 25.2, 24.9, 24.6, 23.1, 22.9, 9.3, 8.9, 8.7, 8.7, 8.0. HRMS (ESI-TOF) calculated for $C_{22}H_{34}NO_2S$ [M+H]: m/z = 376.2305, found 376.2300 (ESI+).

4-((tert-butoxycarbonyl)amino)-2-(5-oxohexyl)pyrrolidine-1-*O*–(pentan–3–vl) carbothioate (6c). Prepared according to general procedure B using O-(pentan-3-yl) 3-((*tert*-butoxycarbonyl)amino)pyrrolidine-1-carbothioate 5c (31.7 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylacetone (95 μL, 0.8 mmol, 8 degassed PhCl (0.5)equiv.) in mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (9:1 v/v Toluene/Acetone) to give 6c (12.4 mg, 30%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, mixture of rotamers and 1.3:1 inseparable mixture of diastereomers): δ 5.55–5.25 (m, 1H), 4.58–4.49 (m, 0.6H), 4.38 (td, J = 15.6, 12.8, 7.8Hz, 1.4H), 4.22–4.11 (q, J = 9.0, 7.8 Hz, 0.8H), 4.03 (dd, J = 12.6, 7.5 Hz, 0.6H), 3.83 (dd, J = 12.5, 7.0 Hz, 0.3H), 3.60 (dd, J = 12.7, 7.5 Hz, 0.35H), 3.39 (dd, J = 12.7, 7.1)Hz, 0.45H), 2.65–2.37 (m, 2H), 2.16 (t, J = 2.7 Hz, 4H), 1.99–1.84 (m, 1H), 1.79–1.62 (m, 6H), 1.54–1.44 (m, 9H), 1.38–1.24 (m, 4H), 1.04–0.82 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 208.5, 208.0, 185.4, 185.4, 154.8, 154.6, 83.1, 82.5, 60.2, 57.7, 56.2, 52.8, 48.3, 47.3, 42.9, 42.9, 36.5, 34.8, 33.1, 31.1, 30.5, 29.5, 29.5, 29.5, 27.9, 27.9, 25.5, 25.5, 25.5, 25.4, 25.3, 25.2, 25.0, 22.9, 22.8, 9.1, 8.9, 8.9, 8.8, 8.8. **HRMS** (ESI-TOF) calculated for $C_{21}H_{39}N_2O_4S$ [M+H]: m/z = 415.2625, found 415.2630 (ESI+).

(3aS,6aR)-1-(3-phenylpropyl)hexahydrocyclopenta[c]pyrrole-*O*–(pentan–3–vl) 2(1H)-carbothioate (6d). Prepared according to general procedure B using O-(pentan-3-yl) hexahydrocyclopenta[c]pyrrole-2(1H)-carbothioate 5d (24.1 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylbenzene (110)uL. 0.8 mmol, 8 equiv.) in degassed PhCl (0.5)mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (100:1 v/v

Toluene/Acetone) to give **6d** (14.3 mg, 42%) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, rotamers in 2:1 ratio, peaks corresponding to minor rotamer starred): δ 7.31–7.23 (m, 2H), 7.23–7.10 (m, 3H), 5.42–5.33 (m, 1H), 4.34 (ddd, J = 10.0, 3.9, 1.7 Hz, 0.35H)*, 3.97 (ddd, J = 9.3, 3.4, 1.5 Hz, 0.7H), 3.78 (d, J = 7.2 Hz, 1.4H), 3.52 (qd, J = 12.8, 6.6 Hz, 0.7H)*, 2.77–2.65 (m, 1H), 2.65–2.54 (m, 2H), 2.44–2.29 (m, 1H), 2.03 (dddd, J = 12.8, 11.0, 5.5, 3.7 Hz, 0.39H)*, 1.92–1.76 (m, 2H), 1.73–1.37 (m, 12H), 0.96–0.80 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 184.6, 142.1*, 141.5, 127.9*, 127.9, 127.9*, 125.4*, 125.2*, 82.5*, 82.0*, 68.6*, 65.4*, 57.5*, 52.8*, 48.7*, 47.0*, 41.1*, 39.8*, 35.4*, 35.4*, 33.6*, 32.5*, 32.3*, 32.1*, 31.9*, 27.6*, 27.5*, 25.6*, 25.6*, 25.5*, 25.4*, 25.3*, 25.0*, 9.1*, 8.9*, 8.8* HRMS (ESI-TOF) calculated for C₂₂H₃₄NOS [M+H]: m/z = 360.2356, found 360.2362 (ESI+).

Benzvl 6-(5-oxohexyl)-7-((pentan-3-yloxy)carbonothioyl)-2,7diazaspiro[4.4]nonane-2-carboxylate (6e). Prepared according to general procedure B using benzyl 7-((pentan-3-yloxy)carbonothioyl)-2,7-diazaspiro[4.4]nonane-2-carboxylate 5e (39.0 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), HBF₄.Et₂O (1.4 µl, 0.01 mmol), allylacetone (95 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative TLC (9:1 v/v Toluene/Acetone) to give 6e (20.5 mg, 40%) as a colourless oil. ¹H NMR (600 MHz, Acetone– d_6 , rotamers in 2.6:1 ratio, rotameric peaks overlapping): δ 7.52–7.12 (m, 5H), 5.46–5.28 (m, 1H), 5.19–4.96 (m, 2H), 4.35–3.82 (m, 2H), 3.61–3.09 (m, 5H), 2.47 (dd, J = 8.4, 6.2 Hz, 2H), 2.40-2.19 (m, 1H), 2.09-2.06 (m, 3H), 2.02-1.78 (m, 3H),1.75–1.47 (m, 8H), 1.30 (dt, J = 9.1, 6.2 Hz, 3H), 0.99–0.78 (m, 6H). ¹³C NMR (151 MHz, CDCl₃, peaks corresponding to minor rotamer starred): δ 208.6*, 208.0, 185.8*, 185.7, 154.3, 136.3, 128.0*, 128.0, 127.6, 127.5*, 127.5, 83.2, 82.4*, 66.5*, 66.4, 60.9, 58.3, 56.3*, 55.5*, 54.8, 54.2*, 47.4*, 46.5, 45.6*, 45.0, 44.6*, 44.3, 42.9, 40.6*, 40.0*, 39.0, 35.8*, 34.9, 34.2*, 33.8, 29.5, 29.3*, 25.6, 25.3*, 25.0, 24.7*, 23.1*, 22.9, 9.1, 9.0, 8.9*, 8.8*. **HRMS** (ESI-TOF) calculated for $C_{27}H_{41}N_2O_4S$ [M+H]: m/z = 489.2782,

Ethyl (2S,5R)-1-((pentan-3-yloxy)carbonothioyl)-5-(3-phenylpropyl)pyrrolidine-**2-carboxylate (6f)**. Prepared according to general procedure B using ethyl ((pentan-3yloxy)carbonothioyl)-L-prolinate 5f (27.3 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), allylbenzene (110 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 6 h. The reaction was purified by preparative HPLC (20-100% MeCN over 40 min) to give **6f** (18.8 mg, 48%, major diastereomer) as a colourless oil. ¹H NMR (600 MHz, CDCl₃, 1.5:1 mixture of rotamers, peaks corresponding to minor rotamer starred, *trans*-diastereomer): δ 7.39–7.08 (m, 5H), 5.37 (dt, J = 7.8, 6.0 Hz, 1H), 4.78 (*app.* d, J = 9.0 Hz, 0.45H), 4.50 (ddd, J = 10.6, 7.9, 2.6 Hz, 0.3H)*, 4.48–4.45 (m, 0.3H)*, 4.25–4.19 (m, 2H), 4.18–4.09 (m, 0.45H), 2.82–2.59 (m, 2H), 2.39–2.12 (m, 2H), 2.09–1.95 (m, 2H), 1.87–1.62 (m, 9H), 1.44–1.24 (m, 6H), 1.02–0.83 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 186.5, 185.2*, 171.0*, 170.9, 141.9*, 141.4, 127.9, 127.9*, 127.9, 127.8*, 125.5, 125.3*, 83.2, 82.7*, 63.8, 62.7*, 60.7*, 60.6, 60.0*, 59.7, 35.3, 35.2*, 32.7, 30.9*, 30.5, 29.2, 28.3*, 28.2*, 28.1, 26.9, 26.3*, 25.5, 25.3*, 13.7, 13.6*, 9.1, 9.0*, 8.8, 8.8*. **HRMS** (ESI-TOF) calculated for $C_{22}H_{34}NO_3S$ [M+H]: m/z = 392.2254, found 392.2258 (ESI+).

Ethyl

(2S,4R,5R)-4-hydroxy-1-((((1R,2S,5R)-2-isopropyl-5methylcyclohexyl)oxy)carbonothioyl)-5-(3-phenylpropyl)pyrrolidine-2carboxylate (6g). Prepared according to general procedure B using ethyl (2S,4R)-4hydroxy-1-((((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)carbonothioyl) pyrrolidine-2-carboxylate **5g** (35.7 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), HBF₄.Et₂O (1.4 μ l, 0.01 mmol), allylbenzene (110 μ L, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 24 h. The reaction was purified by preparative HPLC (20-100% MeCN over 40 min) to give **6g** (16.6 mg, 35%, major diastereomer) as a colourless oil.

¹**H NMR** (600 MHz, CDCl₃, 1.5:1 mixture of rotamers, peaks corresponding to minor rotamer starred, major, *trans*-diastereomer): δ 7.33–7.29 (m, 2H), 7.25–7.11 (m, 3H), 5.30 (td, J = 10.8, 4.6 Hz, 0.4H)*, 5.26–5.21 (m, 0.6H), 4.92–4.86 (m, 0.4H)*, 4.59 (dd, J = 10.2, 7.6 Hz, 0.6H), 4.48–4.44 (m, 0.4H)*, 4.28–4.18 (m, 2.4H), 4.16–4.08 (m, 0.4H), 2.83–2.59 (m, 2H), 2.36 (dddd, J = 13.9, 9.6, 7.9, 1.5 Hz, 1H), 2.30–2.14 (m, 2H), 1.99–1.68 (m, 6H), 1.49–1.37 (m, 3H), 1.33–1.26 (m, 6H), 1.18–1.08 (m, 1H), 0.98–0.88 (m, 12H). ¹³**C NMR** (151 MHz, CDCl₃): δ 187.0*, 185.5, 171.4, 171.0*, 141.8, 141.4*, 128.0*, 127.9, 127.9*, 127.8, 125.5*, 125.3, 80.9, 80.9*, 73.6*, 72.4, 71.9, 68.4*, 62.2, 60.8, 60.7*, 59.0, 47.2*, 47.0, 40.5*, 40.0, 36.4, 35.8*, 35.5*, 35.3, 33.9, 33.8*, 32.0*, 30.8*, 30.7, 30.2, 29.3*, 28.1, 25.9, 25.6*, 23.0, 22.5*, 21.6, 20.6*, 16.4, 16.0*, 13.7, 13.6*. **HRMS** (ESI-TOF) calculated for C₂₇H₄₂NO₄S [M+H]: m/z = 476.2829, found 476.2821 (ESI+).

3-(1-((pentan-3-yloxy)carbonothioyl)piperidin-2-yl)propanoate Ethyl (6h). Prepared according to general procedure B using O-(pentan-3-yl) piperidine-1carbothioate **5h** (21.5 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), HBF₄.Et₂O (1.4 µl, 0.01 mmol), ethyl acrylate (80 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 24 h. The reaction was purified by TLC (2:1)preparative v/vHexanes/EtOAc) to give 6h (9.50 mg, 30%) as colourless oil. ¹H NMR (600 MHz, CDCl₃, 1:1 mixture of rotamers): δ 5.56–5.39 (m, 1H), 5.16 (dd, J = 13.4, 3.9 Hz, 0.5H), 4.87–4.80 (m, 0.5H), 4.61–4.46 (m, 0.5H), 4.21-4.08 (m, 2H), 3.15-3.01 (m, 0.6H), 2.87 (t, J = 13.7 Hz, 0.6H), 2.53-2.41 (m, 0.5H), 2.24 (ddtd, J = 45.0, 24.4, 9.9, 5.4 Hz, 2H), 1.94–1.55 (m, 10H), 1.27 (t, J = 7.1 Hz, 3H), 1.05–0.85 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 187.2, 187.2, 172.9, 172.5, 83.3, 83.0, 60.1, 60.0, 55.5, 51.6, 48.4, 44.4, 39.9, 30.6, 30.5, 28.7, 27.6, 27.1, 25.6, 25.5, 25.4, 25.4, 25.3, 24.7, 24.6, 24.5, 24.1, 18.6, 18.5, 13.7, 13.7, 10.8, 9.1, 9.0,

8.9, 8.9. **HRMS** (ESI-TOF) calculated for $C_{16}H_{30}NO_3S$ [M+H]: m/z = 316.1941, found 316.1946 (ESI+).

Ethvl 3-(2-((pentan-3-vloxy)carbonothioyl)-1,2,3,4-tetrahydroisoquinolin-3yl)propanoate (6i). Prepared according to general procedure B using O-(pentan-3-yl) 3,4-dihydroisoquinoline-2(1H)-carbothioate 5i (26.3 mg, 0.1 mmol, 1 equiv.), [Ir(cod)₂]OTf (5.7 mg, 0.01 mmol, 10 mol%), HBF₄.Et₂O (1.4 µl, 0.01 mmol), ethyl acrylate (80 µL, 0.8 mmol, 8 equiv.) in degassed PhCl (0.5 mL) at 80 °C under Ar for 24 h. The reaction was purified by preparative TLC (2:1 v/v Hexanes/EtOAc) to give 6i (12.7 mg, 30%) as colourless oil. ¹H NMR (600 MHz, CDCl₃, 1.3:1 mixture of rotamers, peaks corresponding to minor rotamer starred): δ 7.24–7.08 (m, 4H), 5.70 (dtd, J = 8.4, 6.0, 2.0 Hz, 0.40H)*, 5.61 (d, J = 17.7 Hz, 0.47H), 5.55–5.48 (m, 1H), 5.17 (d, J = 17.7Hz, 0.4H)*, 5.05 (ddt, J = 9.2, 6.0, 2.9 Hz, 0.47H), 4.58 (d, J = 17.7 Hz, 0.48H), 4.38 (d, $J = 17.7 \text{ Hz}, 0.42 \text{H}^{*}, 4.15 - 4.00 \text{ (m, 2H)}, 3.18 \text{ (dd, } J = 16.1, 5.5 \text{ Hz}, 0.44 \text{H}^{*}, 3.07 \text{ (dd, } J$ = 16.0, 5.5 Hz, 0.55H), 2.74 (dt, J = 16.1, 1.7 Hz, 1H), 2.47–2.20 (m, 2H), 1.94–1.58 (m, 6H), 1.22 (td, J = 7.1, 1.6 Hz, 3H), 1.01–0.88 (m, 6H). ¹³C NMR (151 MHz, CDCl₃): δ 187.6*, 187.2, 172.5*, 172.2, 131.9*, 131.7, 131.1, 130.9*, 128.8*, 128.4, 126.6*, 126.4, 126.2, 126.0*, 125.8, 125.5*, 83.5, 60.1, 60.0*, 53.8*, 50.5, 48.4, 43.9*, 32.8, 32.1*, 30.7*, 30.5, 26.5, 26.1*, 25.5*, 25.5, 25.4, 13.7, 13.7*, 9.2, 9.0*, 9.0*, 8.9. HRMS (ESI-TOF) calculated for $C_{20}H_{30}NO_3S$ [M+H]: m/z = 364.1941, found 364.1941 (ESI+). **D.** Deprotection of Auxiliary

(9*H*-fluoren-9-yl)methyl (2*R*,5*R*)-2,5-bis(5-oxohexyl)pyrrolidine-1-carboxylate (7) 4m (120 mg, 0.3 mmol) was dissolved in 75% TFA in H_2O (vol/vol, 3 mL) and the reaction was heated to 75 °C for 2 h. At this point, solvent was removed in vacuo to give the crude amine intermediate as a trifluoroacetate salt. This amine was immediately suspended into a 1:1 (vol/vol) mixture of dioxane and H₂O (1 mL). Saturated aqueous NaHCO₃ solution (0.8 mL) along with solid NaHCO₃ were added to the above reaction mixture until pH > 7. The reaction mixture was allowed to stir at room temperature for 16 h. At this point, water (20 mL) was added and the reaction was extracted into EtOAc (40 mL). The organic layer was washed with brine and dried over anhydrous Na₂SO₄ to give a crude intermediate that was purified by column chromatography to give 7 as a colourless oil (100 mg, 68% over two steps).

¹**H NMR** (600 MHz, CDCl₃): δ 7.76 (dd, J = 7.4, 1.2 Hz, 2H), 7.59 (ddd, J = 7.6, 3.4, 1.0 Hz, 2H), 7.44–7.36 (m, 2H), 7.31 (tt, J = 7.4, 1.5 Hz, 2H), 4.63–4.45 (m, 2H), 4.24–4.18 (m, 1H), 3.78–3.68 (m, 1H), 3.50–3.42 (m, 1H), 2.46–2.30 (m, 4H), 2.12 (s, 3H), 2.10 (s, 3H), 1.89–1.80 (m, 2H), 1.62–1.53 (m, 4H), 1.47–1.33 (m, 3H), 1.27–0.95 (m, 6H). ¹³**C NMR** (151 MHz, CDCl₃): δ 208.6, 208.3, 155.0, 153.8, 143.8, 143.7, 141.0, 140.9, 140.9, 127.1, 126.6, 126.5, 126.5, 124.3, 119.4, 119.4, 65.4, 57.4, 57.0, 47.1, 43.2, 43.2, 43.1, 32.9, 31.6, 29.4, 26.8, 26.0, 25.8, 25.6, 23.3, 23.2. **HRMS** (ESI-TOF) calculated for C₃₁H₄₀NO₄ [M+H]: m/z = 490.2952, found 490.2956 (ESI+).

3. References

1. K. Tsuchikama, M. Kasagawa, K. Endo, T. Shibata, Org. Lett. 2009, 11, 1821.

4. NMR spectra

¹H NMR spectrum of compound **3**

¹³C NMR spectrum of compound **5**c

¹³C NMR spectrum of compound **5**e

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{5f}$

 $^{13}\mathrm{C}$ NMR spectrum of compound $\mathbf{5f}$

¹³C NMR spectrum of compound **5**g

 $^1\mathrm{H}$ NMR spectrum of compound $\mathbf{5h}$

¹³C NMR spectrum of compound **5**i

¹H NMR spectrum of compound $4a_{mono}$

 13 C NMR spectrum of compound $4a_{mono}$

¹H NMR spectrum of compound $4a_{di}$

 13 C NMR spectrum of compound $4a_{di}$

¹H NMR spectrum of compound $4c_{mono}$

 ^{13}C NMR spectrum of compound $4c_{mono}$

 1 H NMR spectrum of compound $4c_{di}$

 13 C NMR spectrum of compound $4c_{di}$

¹H NMR spectrum of compound **4d**

¹³C NMR spectrum of compound **4d**

¹⁹F NMR spectrum of compound **4d**

 ^{13}C NMR spectrum of compound $4e_{mono}$

 13 C NMR spectrum of compound $4e_{di}$

¹H NMR spectrum of compound $4f_{mono}$

^{13}C NMR spectrum of compound $4f_{mono}$

 $^1\mathrm{H}$ NMR spectrum of compound $4f_{di}$

 ^{13}C NMR spectrum of compound $4f_{di}$

 ^{13}C NMR spectrum of compound 4g

47

¹³C NMR spectrum of compound **4h**

48

¹H NMR spectrum of compound **4**j

¹³C NMR spectrum of compound **4j**

¹⁹F NMR spectrum of compound **4**j

 $^1\mathrm{H}$ NMR spectrum of compound 4k

¹³C NMR spectrum of compound **4**k

¹³C NMR spectrum of compound **4**I

 1 H NMR spectrum of compound **4m**

¹³C NMR spectrum of compound **4m**

¹H NMR spectrum of compound **4n**

¹³C NMR spectrum of compound **4n**

¹H NMR spectrum of compound **40**

¹³C NMR spectrum of compound **40**

¹H NMR spectrum of compound **6a**

¹³C NMR spectrum of compound **6a**

¹H NMR spectrum of compound **6b**

¹³C NMR spectrum of compound **6b**

57

¹H NMR spectrum of compound 6c

¹³C NMR spectrum of compound **6c**

¹³C NMR spectrum of compound **6d**

¹H NMR spectrum of compound **6e**

¹³C NMR spectrum of compound **6e**

¹H NMR spectrum of compound **6f**

¹³C NMR spectrum of compound **6f**

 1 H NMR spectrum of compound **6**g

¹³C NMR spectrum of compound **6g**

¹³C NMR spectrum of compound **6h**

¹H NMR spectrum of compound **6i**

¹³C NMR spectrum of compound **6i**

¹³C NMR spectrum of compound 7

