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Supplementary Materials and Methods 

Specimen procurement and pre-processing 

All participants underwent bowel preparation with Miralax prior to the 

colonoscopy. Patients did not take any other laxatives, probiotics or proton pump 

inhibitors for at least one week prior to the colonoscopy (verified by EV and NB on three 

separate occasions prior to the colonoscopy). Study personnel collected the colonic 

lavage samples (EV, MT, NB). For each sample region, approximately 30ml of sterile 

water was endoscopically flushed on the mucosal surface and recollected via aspiration. 

Samples were obtained from the cecum and the sigmoid colon regions. Samples were 

kept on ice for the duration of the pre-processing immediately following their collection. 

Samples were subsequently centrifuged at 4,000 x g for 10 minutes at 4°C. The 

supernatant was aliquoted into two 50-ml tubes with equal volumes and frozen at -80°C 

for future proteomic analyses. The pellets were resuspended in 2 ml of RNAprotect 

Bacteria Reagent (Qiagen, Valenica, CA, USA), aliquoted into 2 separate 15-ml conical 

tubes, centrifuged at 4,000 x g for 10 minutes at 4°C, separated from the supernatant and 

frozen at -80°C. 

 

16S rRNA gene sequencing and microbial composition analysis 

High-throughput sequencing analysis of bacterial rRNA genes was performed 

using extracted genomic DNA as templates. The PCR primers targeted the portion of the 

16S rRNA gene containing the hypervariable V4 region. De-multiplexing, quality 

control, and operational taxonomic unit (OTU) binning were performed using 

quantitative insights into microbial ecology (MACQIIME v1.9.0).[1] Low quality 
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sequences were removed using the following parameters: (i) Q20, minimum number of 

consecutive high-quality base calls = 100 bp; (ii) maximum number of N characters 

allowed = 1; (iii) maximum number of consecutive low quality base calls allowed before 

truncating a read = 3. The remaining reads were subsequently used to select OTUs from 

the GreenGenes reference database (May 20, 2013), which automatically bins OTUs at 

97% identify. Prior to the analysis, the species level OTUs that were observed fewer than 

two times were discarded. 16S rRNA sequence data will be deposited in Database of 

Genotypes and Phenotypes (dBGaP). 

 

Statistical and bioinformatics analyses 

Rarefraction and diversity analysis 

After selection of the OTUs from GreenGenes database, microbal OTUs were 

rarified down to 15,000 reads per sample using MACQIIME. To compare the microbial 

communities of SSc versus control samples, alpha and beta diversity were analyzed. 

Alpha diversity, which represents the complexity of composition within members of a 

group, was calculated using the metrics of phylogenetic diversity, Chao1, observed 

species, and Shannon index. The comparison of alpha diversity between the two groups 

was performed using the two-sided student t-test at a depth of 15000.  

Beta diversity represents the between-subject similarity of microbial composition 

and enables the identification of differences between samples within a group.[2] Beta 

diversity was performed in MACQIIME and utilized both unweighted and weighted 

UniFrac distances to estimate sample distributions. Analysis of variance using distance 

matrices (Adonis) significance analysis was performed for each pairwise comparison of 
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sample groups using the Adonis function from the R package. Principal coordinate 

analysis (PCoA) was performed to visualize the resulting UniFrac distance matrix.  

 

Microbial composition analysis 

Association between SSc disease state and bacterial phylotypes  

To identify differentially abundant bacterial phylotypes in SSc and control 

samples, we performed a Kruskal-Wallis analysis and subsequently performed a Linear 

Discriminant Analysis Effect Size (LEfSe) analysis [3] to determine the effect size for the 

association of differentially abundant taxa with disease status. We were mainly interested 

in genus level differences because although alterations in the abundance of broad 

bacterial groups, such as entire phyla, can be associated with GIT dysfunction, small 

introductions of pathogenic strains at lower taxonomic levels can may have a greater 

impact on diseases.[4] Per convention, the log Linear Discriminant Analysis (LDA) score 

threshold was set at 2.   

 

Relationship between microbes and SSc GIT symptoms 

Differential expression analysis for sequence count data (DESeq2) [5] was used to 

compare differential abundance of bacterial species between patients with none to mild 

GIT 2.0 symptoms versus patients with moderate to severe GIT 2.0 symptoms as 

previously defined by Khanna et al. [6] We performed these analyses using the total GIT 

2.0 scores, as well as GIT 2.0 scores for the following individual domains reflecting 

lower GIT dysfunction: Distention/Bloating, Diarrhea, and Constipation. 

 



 4 

Imputation of microbial gene content and metagenomes 

Phylogenetic investigation of communities by reconstruction of unobserved states 

(PICRUSt) was used to predict the functional composition of microbial communities.[7] 

Specifically, this computational approach combines 16S data and the gene content of 

reference genomes to model the abundance of metagenes in samples based on microbial 

composition. Metagene abundances for the individual healthy and SSc samples were 

imputed using the KEGG database. Metagenes were also grouped by KEGG pathway to 

yield pathway abundances. Variation in the metagenome across samples was calculated 

using Bray-Curtis distances and visualized by PCoA.  Pair-wise comparisons between 

healthy and SSc subjects were calculated using the Kruskal-Wallis test (with adjustment 

for multiple hypothesis testing [q<0.1]), to identify imputed KEGG pathways and 

metagenes with differential abundance in SSc. LefSe analysis was used to compute the 

effect sizes of each pathway and genes. The significant threshold was set at q-values 

lower than 0.1 to identify imputed KEGG pathways and genes with differential 

abundances in SSc.  
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