Clinical Cancer Research

Supplementary data

Title : Circulating DNA demonstrates convergent evolution and common resistance mechanisms during treatment of colorectal cancer

Α

Gono	Codon	Location	Mutation			
Gene	Codon		iviutation			
		c.35 G>T	G12V			
		c.35 G>A	G12D			
	$\begin{tabular}{ c c c c c } \hline Codon & Lot \\ \hline Codon & Lot \\ \hline C.3 \\ \hline 12 & C.3 \\ \hline 12 & C.3 \\ \hline 13 & C.3 \\ \hline 146 & C.43 \\$	c.34 G>T	G12C			
	12	c.34 G>A	G12S			
KRAS						
KRAS		c.35 G>C	G12A			
	13	c.38 G>A	G13D			
	61	c.183 A>T	Q61H			
	01	c.182 A>G	Mutation G12V G12D G12C G12S G12R G12A G13D Q61H Q61R A146T A146Z G12V G12C G12D G12C G12D G13R Q61L Q61R Q61R Q61R Q61H Q61R Q61R Q61H Q61R			
	146	c.436 G>A	A146T			
	140	c.437 C>T	Mutation G12V G12D G12C G12S G12R G12A G13D Q61H Q61R A146T A146V V600E G12V G12C G12D G13R Q61L Q61R Q61H (AT) S492R			
BRAF	600	c.1799 T>A	V600E			
		c.35 G>T	G12V			
	12	c.34 G>T	G12C			
		c.35 G>1 G12V c.35 G>A G12D c.34 G>T G12C c.34 G>A G12S c.34 G>A G12S c.34 G>C G12R c.35 G>C G12A 3 c.38 G>A G13D c.183 A>T Q61H c.182 A>G Q61R 6 c.436 G>A A146T c.437 C>T A146V 0 c.1799 T>A V600E c.35 G>T G12V 2 c.34 G>T G12C c.35 G>A G12D 3 c.37 G>C G13R c.182 A>T Q61L c.182 A>G Q61R c.182 A>T Q61L c.182 A>G Q61R c.182 A>T Q61H (AT) 2 c.1476 C>A S492R				
NDAC	13	c.37 G>C	G13R			
INKAS		c.182 A>T	Q61L			
	C 1	$\begin{array}{c cccc} Codon & Location & Mutation \\ \hline C.35 \ G>T & G12V \\ \hline c.35 \ G>A & G12D \\ \hline c.34 \ G>T & G12C \\ \hline c.34 \ G>A & G12S \\ \hline c.34 \ G>A & G12S \\ \hline c.34 \ G>C & G12R \\ \hline c.35 \ G>C & G12A \\ \hline 13 & c.38 \ G>A & G13D \\ \hline 61 & c.183 \ A>T & Q61H \\ \hline c.182 \ A>G & Q61R \\ \hline 146 & c.436 \ G>A & A146T \\ \hline c.437 \ C>T & A146V \\ \hline 600 & c.1799 \ T>A & V600E \\ \hline c.35 \ G>T & G12V \\ \hline 12 & c.34 \ G>T & G12V \\ \hline 12 & c.34 \ G>T & G12V \\ \hline 13 & c.37 \ G>C & G13R \\ \hline c.182 \ A>T & Q61L \\ \hline c.182 \ A>G & Q61R \\ \hline c.183 \ A>T & Q61H (AT \\ \hline 2.183 \ A>T & Q61H (AT \\ \hline 2.182 \ A>G & S492R \\ \hline \end{array}$	Q61K			
	61		Q61R			
		c.183 A>T	Q61H (AT)			
EGFR	492	c.1476 C>A	S492R			

	Both methods	Tumor tissue analysis	Plasma analysis
KRAS 12/13	42	42	42
KRAS 19	0	1	0
KRAS 22	0	1	0
KRAS 59	0	1	0
KRAS 61	5	34	6*
KRAS 146	2	12	6*
BRAFV600E	31	31	42
NRAS 12/13	1	16	2**
NRAS 18	0	2	0
NRAS 61	3	16	4***
EGFR S492R	0	0	13 [#]
KRAS 12/13 and BRAFV600E	31	31	42
KRAS 12/13 /61/146	2	11	6
KRAS 12/13/61/146 and NRAS 61	1	6	4
KRAS 12/13/61/146 and NRAS 12/13/61	0	6	2
KRAS 12/13/61/146 and NRAS 61 and BRAF	1	6	4
KRAS 12/13/61/146 and NRAS 12/13/61 and BRAF	0	6	2

Legend Supplemental Table S1 : Point mutations tested by plasma analysis in the KPLEX R study, (A). Comparison of point mutations tested by tumor tissue and plasma analysis, (B). *KRAS exon 12/13* and *BRAFV600E* point mutations were tested in each patients before and during treatments (n=42). * Despite of low volume of plasma samples, extended *KRAS* point mutations were tested only on wild type *KRAS exon 2* and *BRAFV600E* patients in either baseline or during treatment (n=6). ** *NRAS 12/13* point mutations were tested only in patients #23 and #25 and only for the last cycle of FOLFOX/Dasatinib plus Cetuximab treatment (C4) because we had no more plasma volume at baseline.****NRAS* 61 point mutations were tested in a post-blind manner in *KRAS/BRAF* wild type patients in either baseline and during treatments and also in *NRAS 61* mutant patients as determined by tumor tissue analysis (n=4). # EGFR S492R was tested only in patients in rechallenge for Cetuximab targeted therapy (n=13).

Α

			Tumor	-tissue analysis			
	KRAS	Mutant	Mutant WT Sensitivity		Specifcity	Accuracy	
cfDNA analysis	Mutant	20	11				
cfDNA analysis cfDNA analysis	WT	1	10	95%	48%	71%	
	Total	21	21				
	BRAF	Mutant	WT	Sensitivity	Specifcity	Accuracy	
cfDNA analysis	Mutant	2	1				
	WT	0	28	100%	97%	97%	
	Total	2	29				
KRAS indicates co	dons 12. 13: BR	AF indicates V	/600E				

Concordance between tumor-tissue analysis and cfDNA analysis before treatments n=42

В

Concordance between tumor-tissue analysis and cfDNA analysis before Folfox/Dasatinib treatment (cohort 1, n=21)

	Tumor-tissue analysis									
	KRAS	Mutant	WT	Sensitivity	Accuracy					
cfDNA analysis	Mutant	20	0							
IDINA alialysis	WT	1	0	95%	95%					
	Total	21	0							
KRAS indicates co	dons 12, 13									

С

Concordance between tumor-tissue analysis and cfDNA analysis before Folfox/Dasatinib + Cetuximab treatment (cohort 2, n=21)

	KRAS	Mutant	WT	Speci	ifcity	Accuracy
cfDNA analysis	Mutant	0	11			
	WT	0	10	48	%	48%
	Total	0	21			
	BRAF	Mutant	WT	Sensitivity	Specifcity	Accuracy
cfDNA analysis	Mutant	2	1			
	WT	0	18	100%	95%	95%
	Total	2	19			
KRAS indicates co	dons 12, 13; BR	RAF indicates V	/600E			

Concordance between tumor-tissue analysis and cfDNA analysis before FOLFOX/Dasatinib plus Cetuximab treatment (cohort 2, n=5)

	Tumor-tissue analysis									
	KRAS 61	Mutant	WT	Specifcity	Accuracy					
cfDNA analysis	Mutant	Mutant 0								
	WT	0	4	80%	80%					
	Total	0	5							

Ε

Concordance between tumor-tissue analysis and cfDNA analysis before FOLFOX/Dasatinib plus Cetuximab treatment (cohort 2, n=2)

	Tumor-tissue analysis									
	KRAS 146	Mutant	WT	Specifcity	Accuracy					
cfDNA analysis	Mutant	0	0							
	WT	0	2	100%	100%					
	Total	0	2							

F

Concordance between tumor-tissue analysis and cfDNA analysis before FOLFOX/Dasatinib plus Cetuximab treatment (cohort 2, n=3)

		Tumor-tissue analysis									
	Sensitivity	Accuracy									
cfDNA analysis	Mutant	2	1								
	WT	0	0	100%	67%						
	Total	2	1								

Legend Supplemental Table S2: Concordance between tumor-tissue analysis and cfDNA analysis before treatments. Concordance of *KRAS/BRAF* mutant status between tumor-tissue analysis and cfDNA analysis before treatments when considering both cohorts, A. Concordance of *KRAS* mutant status between tumor-tissue analysis and cfDNA analysis before treatments when considering cohort 1, B. Concordance of *KRAS/BRAF* mutant status between tumor-tissue analysis and cfDNA analysis and cfDNA analysis before treatments when considering cohort 2, C. Concordance of *KRAS* codon *61* mutant status between tumor-tissue analysis before treatments when considering cohort 2, D. Concordance of *KRAS* codon *146* mutant status between tumor-tissue analysis and cfDNA analysis before treatments when considering cohort 2, E. Concordance of *NRAS* codon *61* mutant status between tumor-tissue analysis and cfDNA analysis before treatments when considering cohort 2, F. WT, wild type.

Α

Acc #	cohort	Tissue specific point mutation	Plasma specific point mutation	Specific point mutation accuracy (red)	mA% at baseline
#4		KRAS G12V	KRAS G12V and G13D	Yes	NQ
#10		KRAS G13D	KRAS G13D	Yes	0.009
#21		KRAS G13D	KRAS G13D and G12A	Yes	0.08
#14		KRAS G12D	KRAS G12D	Yes	0.28
#3		KRAS G12V	KRAS G12V	Yes	0.62
#20		KRAS G12D	KRAS G12D	Yes	0.67
#18	1	KRAS G12V	KRAS G12V and G13D	Yes	0.72
#5		KRAS G12D	KRAS G12D	Yes	4.27
#17		KRAS G12D	KRAS G12D	Yes	4.3
#13		KRAS G12V	KRAS G12V	Yes	5.44
#7		KRAS G12V	KRAS G12V and G13D	Yes	9.9
#12		KRAS G12D	KRAS G13D and G12D	Yes	10.86
#8		KRAS G12A	KRAS G12A and G13D	Yes	13.18
#11		KRAS G12S	KRAS G13D and G12S	Yes	31.83
#32	2	NRAS Q61R	NRAS Q61R	Yes	0.76
#38		NRAS Q61K	NRAS Q61K	Yes	18.87
#22	2	BRAF V600E	BRAF V600E	Yes	4.51
#33		BRAF V600E	BRAF V600E	Yes	15.57

NQ: Scored positive but non quantified

Legend Supplemental Table S3: Mutation load at baseline in mutant patients with the equivalent type of mutation as determined by tumor tissue and plasma analysis are heterogneous from 31.83% to 0.009%, (A). Percentage of mutation load found at baseline in mutant patients with the equivalent type of mutation as determined by tumor tissue and plasma analysis according range, (B). NQ, scored positive but non quantifiable.

L	7
-	

	Mutation load (mA%)										
				Tin	nepoint treatm	ent					
Patients ID	Cohort	Mutation	Baseline	Cycle 4	Cycle 8	Cycle 12	Cycle 16				
#2		BRAF V600E	ND	ND	2.27						
#7		KRAS G12A	ND	0.09		-					
#7		KRAS G12C	ND	0.09							
#9		KRAS G12D	ND	0.15							
#11	2	KRAS G12A	ND	0.24							
#11	2	BRAF V600E	ND	0.07							
#13		KRAS G13D	ND	0.3							
#17		KRAS G12A	ND	0.05							
#19		BRAF V600E	ND	3.96		_					
#20		KRAS G12A	ND	0.26	0.12						
		KRAS G13D	ND	ND	ND	0.05	0.03				
#31		KRAS G12D	ND	ND	ND	ND	0.01				
		KRAS G12V	ND	ND	ND	ND	0.11				
#36	1	KRAS G12S	ND	ND	0.02						
#39	-	KRAS G12A	ND	0.16							
#37		BRAF V600E	ND	1.4							
#29		KRAS A146T	ND	NQ							
#38		KRAS Q61H	ND	NQ							
ND: Non dete	ected: NO: So	ored positive bu	it non quanfi	fied							

В

Legend Supplemental Table S4: Mutation load values of emerging mutant subclones during treatments for both cohorts are reported in (A). Most emerging mutant subclones appears with a mutation load below 0.5% including down to 0.1%, (B). Sensitive methods is needed to track emergence of mutant subclones during targeted therapies. ND, non detected; NQ, scored positive but non quantified.

Supplemental Table S5 :

	RefA					total mA		4 - 4 - 1 A			1-1-1-1 10/	4-4-1 8 0/	1 - 1 - 1 1 AV	A - A - I A O/	A
Patient ID	Baseline	RefA C4	RefA C8	RefA C12	RefA C16	Baseline	total mA	total mA	total mA	total mA	total mA%	total mA%	total mA%	total mA%	total mA%
	(ng/ml)					(ng/ml)	C4	C8	C12	C16	Baseline	C4	C8	C12	C16
1	11 35					0.99					8 72				
2	16.61	11.29	14.91			0.2	ND	0.14			1.2	ND	0.94		
3	13.18					0.08					0.62				
4	0.05					NQ					NQ				
5	29.84					1.27					4.27				
6	13.97					0.41					2.93				
7	37.97	52.19				3.82	4.76				10.6	9.12			
8	90.04	111.55				11.99	19.06				13.32	17.09			
9	6,0	37.13				0.036	0.068				0.6	0.18			
10	34.35	27.98				0.003	0.01				0.009	0.03			
11	51.31	54.36				16.43	32.94				32.02	60.6			
12	53.99					5.95					11.02				
13	13.46	17.95				0.73	1.16				5.42	6.46			
14	4.77	18.25				0.01	0.02				0.28	0.17			
15	32.53					0.03					0.09				
16	14.56					0.11					0.76				
17	22.61	33.2				0.97	0.56				4.29	1.69			
18	16.62					0.14					0.84				
19	2.46	6.89				ND	0.12				ND	3.96			
20	27.46	31.02	9.66			0.19	0.08	0.02			0.69	0.26	0.21		
21	17.48					0.04					0.23				
22	8.02	39.53				0.29	0.55				4.51	3.77			
23	7.7	22.79				3	5.08				56,00	22.29			
24	11.81					0.09					0.72				
25	6.31	31.42				ND	ND				ND	ND			
26	11.1	25.17				0.07	0.7				0.64	2.78			
27	12.12	13.34	21.25			0.34	0.07	ND			2.81	0.52			
28	2.15	7.44		23.28		NQ	0.11		0.45		NQ	1.48		1.93	
29	14.92	33.55				ND	NQ				ND	NQ			
30	9.55	26.27	45.04	47.45	25.0.40	NQ	0.02	0.045	0.400	0.050	NU	0.44	0.02		0.05
31	116.29	26.27	45.01	47.45	350.48	0.052	0.03	0.015	0.192	0.868	0.04	0.11	0.03	0.4	0.25
32	27.68	19.62				0.46	0.43				0.76	3.4			
33	94.78					19.58					15.5/				
25	2.46					0.25 NO					U.25				
35	2.40	41.26	101.2			0.10	2.67	4.69			0.27	9 90	2.45		
35	12 70	41.20	191.3			0.19 ND	0.15	4.68			U.27	0.89	2.45		
37	5.42	0.10				0.95	2.04				10.07	19.74			
30	14.0	27.45				0.85 ND	0.04				10.07 ND	0.16			
40	8.7	13.49				0.05	0.04				0.58	0.28			
41	106.37	95.17				NO	ND				NO	ND			
42	11.24	33.17				0.15					1.33				
42	11.24					0.15					1.33				

Patient ID	CEA level Baseline (ng/mL)	CEA level C4	CEA level C8	CEA level C12	CEA level C16	Imaging Baseline	imaging %change C4	imaging %change C8	imaging %change C12	imaging %change C16	Response before C4	Response C4	Response C8	Response C12	Response C16	Reason Off Study
1	36.7					CV					TE					AE
2	2.4	2.1	3			CV	-10	14	44			SD	SD	PD		PD
3	59.9					CV					TE					Clinical PD
4	12.2					CV	37					PD				PD
5	522.6					CV					SD					AE
6	296.7					CV					W/D CONSENT					AE
7	7.7	34.8				CV	4	22				SD	PD			PD
8	174.4	4.1				CV	48					PD				PD
9	6	10.9				CV	-16	new lesion				SD	PD			PD
10	20.9	40.1				CV	20					PD				PD
11	4788	7640				CV	new lesion					PD				PD
12	583.9					CV	new lesion				PD					PD
13	121.3	140.8				CV	32					PD				PD
14	43.7	63.1				CV	34					PD				PD
15	70.3					CV					TE					WD
16	435.2					CV					TE					PD
17	68.2	318.5				CV	29					PD				PD
18	156.3	161.3				CV	30					PD				PD
19	39.2	43.7				CV	35					PD				PD
20	8.8	12.3	10.5			CV	-8	26				SD	PD			PD
21	2513					CV					W/D CONSENT					N/A
22	98.7	154.4				CV	-23					SD	Deceased			Deceased
23	20.4	30.6				CV	41					PD				PD
24	3.5	18.3				CV	20					PD				AE/PD
25	99.8	352.2				CV	28					PD				PD
26	1.8	7.9				CV	ND					PD				PD
27	146.6	146.6	168			CV	-7	27				SD	PD			PD
28	4.2	22.9	20.5	35.4		CV	12	0	new lesion			SD	SD	PD		PD
29	11.3	18.2				CV	57.3					PD				PD
30	15.2					CV					W/D CONSENT					W/D
31	2254	245.7	313.3	732.3	2463	CV	-36	4	7	74		PR	SD	SD	PD	PD
32	49.9	193.6				CV	72					PD				PD
33	311.8					CV					TE					PD
34	23.2					CV					TE					PD
35	6.1					CV					W/D CONSENT					N/A
36	132.9	99.3	404.7			CV	5	37				SD	PD			PD
37	52.8	32.2				CV	15.6					PD				PD
38	122.3	512.8				CV	ND									PD
39	7.2	17.3				CV	ND									PD
40	48.3	48.6				CV	ND									PD
41	207.8	402.3				CV	ND									PD
42	36.3					CV										W/D

Legend Supplemental table S5 : Compilation of cfDNA data, CEA level and imaging for both cohorts before and during treatments. SD, Stable Disease; PD, Progressive Disease; PR, Partial Response; TE, Treatment Effects; AE, Adverse Events, W/D consent, Without Doctor consent; CEA, carcinoembryonic antigen (ng/mL); CV, control value; RefA, concentration of total cfDNA (ng/mL of plasma); total mA, addition of the concentration of all point mutations found in an same sample (ng/mL of plasma); mA%; total mA%, total mutation load calculated as ((total mA/RefA)x100).

Α

Cohort 2

Concordance of mutational status between tumor-tissue analysis and cirDNA analysis before Folfox/Dasatinib + Cetuximab treatment in patients with primary tumor in place when patients entering in the study (cohort 2, n=13)

			Tumor-t	issue analysis				
	KRAS/BRAF	Mutant	WT	Sensitivity	Specifcity	Accuracy		
cirDNA analysis	Mutant	1	6			54%		
,	WT	0	6	100%	50%			
	Total	1	12					
KRAS indicates codons 12 and 13; BRAF indicates V600E								

Concordance of mutational status between tumor-tissue analysis and cirDNA analysis before Folfox/Dasatinib + Cetuximab treatment in patients with primary tumor not in place when patients entering in the study (cohort 2, n=7)

			Tumor-t	issue analysis					
	KRAS/BRAF	Mutant	WT	Sensitivity	Specifcity	Accuracy			
cirDNA analysis	Mutant	1	4						
	WT	0	2	100%	33%	43%			
	Total	1	6						
KRAS indicates cod	KRAS indicates codons 12 and 13; BRAF indicates V600E								

В

Cohorts 1 and 2

Concordance of mutational status between tumor-tissue analysis and cirDNA analysis before Folfox/Dasatinib + Cetuximab treatment in patients with primary tumor in place when patients entering in the study (cohorts 1 and 2, n= 19)

			Tumor	-tissue analysis						
	KRAS/BRAF	Mutant	WT	Sensitivity	Specifcity	Accuracy				
cirDNA analysis	Mutant	7	6							
	WT	0	6	100%	50%	68%				
	Total	7	12							
KRAS indicates cod	KRAS indicates codons 12 and 13; BRAF indicates V600E									

Concordance of mutational status between tumor-tissue analysis and cirDNA analysis before Folfox/Dasatinib + Cetuximab treatment in patients with primary tumor not in place when patients entering in the study (cohorts 1 and 2, n=11)

			Tumor	tissue analysis				
	KRAS/BRAF	Mutant	WT	Sensitivity	Specifcity	Accuracy		
cirDNA analysis	Mutant	5	4					
	WT	0	2	100%	33%	64%		
	Total	5	6					
KRAS indicates codons 12 and 13; BRAF indicates V600E								

Legend Supplemental Table S6: Concordance between tumor-tissue analysis and cfDNA analysis before treatments when considering if patients having primary tumor in place or not in place when entering in the study.

Supplemental Table S7:

Α

	Threshold	1>1%				Thres	hold >0.5%	
Cohort	Patients	Mutation	Baseline		Cohort	Patients	Mutation	Baseline
conore	ID	Watation	Dasenne		conore	ID	Watation	Dasenne
	#3	KRAS G12V	0.62			#4	KRAS G13D	NQ
	#4	KRAS G13D	NQ				KRAS G12V	NQ
		KRAS G12V	NQ			#6	KRAS G13D	0.3
	#6	KRAS G13D	0.3				KRAS G12D	2.66
		KRAS G12D	2.66			#7	KRAS G13D	0.15
	#7	KRAS G13D	0.15				KRAS G12V	9.9
		KRAS G12V	9.9			#8	KRAS G13D	0.13
	#8	KRAS G13D	0.13			#40	KRAS G12A	13.18
		KRAS GIZA	13.18			#10 #11	KRAS G13D	0.009
	#9	KRAS G13D	0.6				KRAS G12S	31.83
	#10	KRAS GI3D	0.009				KRAS G13D	0.2
1	#11	KRAS G12S	31.83		1	#12	KRAS G12D	10.86
		KRAS GI3D	10.80			#1.4	KRAS GI3D	0.16
	#12	KRAS G12D	10.80			#14	KRAS GIZD	0.28
	#1.4	KRAS GISD	0.10			#15	KRAS GIZA	0.09
	#14	KRAS GIZD	0.28			#16	KRAS GISD	0.1
	#15	KRAS GIZA	0.09			#10	KRAS GIZD	0.45
	#16	KRAS GISD	0.1				KRAS G12C	0.2
	#10	KRAS G12D	0.45			#18	KRAS GISU	0.12
		KRAS G13D	0.2			#20	KRAS G12V	0.72
	#18	KRAS G12V	0.12			#20	KRAS G120	0.07
	#20	KRAS G120	0.72			#21	KRAS G13D	0.15
	1120	KRAS G12A	0.07			11113 0130	0.00	
	#21	KRAS G13D	0.15			#31	KRAS G12A	0.04
		10000100	0.00			#28	KRAS G12A	NO
	#31	KRAS G12A	0.04				KRAS G12A	0.97
	#28	KRAS G12A	NQ			#27	KRAS G12V	0.21
		KRAS G12A	0.97				KRAS G12A	0.05
	#27	KRAS G12V	0.21			#36	KRAS G13D	0.22
		KRAS G12A	0.05				KRAS G12A	1.09
	#36	KRAS G13D	0.22		2	#42	KRAS G12V	0.24
	#26	KRAS G12A	0.64			#35	KRAS G12R	NQ
	#40	KRAS G12A	0.58			#20	KRAS G12R	NQ
, 1	#42	KRAS G12A	1.09			#30	KRAS G12D	NQ
4	#42	KRAS G12V	0.24			#24	KRAS G13D	0.03
	#35	KRAS G12R	NQ			#34	BRAF V600E	0.16
	#81	KRAS G12R	0.72			#41	KRAS Q61H	NQ
	#20	KRAS G12R	NQ					
	#50	KRAS G12D	NQ					
		10040.0400	0.02					
	#24	KRAS G13D	0.05					
	#34	BRAF V600E	0.03					
	#34 #41	KRAS G13D BRAF V600E KRAS Q61H	0.03 0.16 NQ					

	Thres	hold >0.1%				
Cohort	Patients ID	Mutation	Baseline			
	#4	KRAS G13D	NQ			
	#4	KRAS G12V	NQ			
	#10	KRAS G13D	0.009			
	#15	KRAS G12A	0.09			
1	1 #16	KRAS G13D	0.1			
		KRAS G12D	0.45			
		KRAS G12C	0.2			
	#71	#21 KRAS G12A				
	#21	KRAS G13D	0.08			
	#31	KRAS G12A	0.04			
	#28	KRAS G12A	NQ			
	#26	KRAS G12A	0.05			
	#30	KRAS G13D	0.22			
,	#35	KRAS G12R	NQ			
2	#20	KRAS G12R	NQ			
	#30	KRAS G12D	NQ			
	#24	KRAS G13D	0.03			
	#34	BRAF V600E	0.16			
	#41	KRAS Q61H	NQ			

В

		Muta	tion load (n	nA%) thres	nold		
	Thresh	nold >1%	Thresho	ld >0.5%	Threshold >0.1%		
	%	n	%	n	%	n	
Patient no determined as mutant	52,4	<mark>22</mark> /42	31,0	<mark>13</mark> /42	19,0	<mark>8</mark> /42	
Point mutation no detected	71	37/52	54	28/52	27	14/52	

Legend Supplemental Table S7: Mutant patients and point mutations determined at baseline with different mA% thresholds. At baseline, patients with at least one point mutation with a mutation load below 1%, 0.5% and 0.1% were represented in (A). In red patients with all mutations found at baseline with a mutation load below thresholds and no determined as mutant. In blue point mutations with mutation load below thresholds and no determined. The proportions point mutations no detected and patients no determined as mutants with mA% thresholds at 1%, 0.5% and 0.1% were reported in B. Non quantifiable (NQ) mutation load were considered as mA% below 0.1%. NQ, scored positive but non quantifiable.

Supplementary Table S8

			Baseline	
Patient ID	Mutation detected on plasma analysis	cohort	mA% detected in plasma	Mutation detected on tumor tissue analysis
4	KRAS G13D	1	<0,01%	KRAS G12V
4	KRAS G12V	1	<0,01%	KRAS G12V
28	KRAS G12A	2	<0,01%	WT
30	KRAS G12R	2	<0,01%	WT
30	KRAS G12D	2	<0,01%	WT
35	KRAS G12R	2	<0,01%	WT
41	KRAS Q61H	2	<0,01%	WT
10	KRAS G13D	1	0,009	KRAS G13D
34	KRAS G13D	2	0,03	WT
31	KRAS G12A	2	0,04	WT
36	KRAS G12A	2	0,05	WT
21	KRAS G13D	1	0,08	KRAS G13D
15	KRAS G12A	1	0,09	KRAS G13D
16	KRAS G13D	1	0,1	KRAS G12A
18	KRAS G13D	1	0,12	KRAS G12V
8	KRAS G13D	1	0,13	KRAS G12A
7	KRAS G13D	1	0,15	KRAS G12V
12	KRAS G13D	1	0,16	KRAS G12D
34	BRAF V600E	2	0,16	WT
21	KRAS G12A	1	0,19	KRAS G13D
11	KRAS G13D	1	0,2	KRAS G12S
16	KRAS G12C	1	0,2	KRAS G12A
27	KRAS G12V	2	0,21	WT
36	KRAS G13D	2	0,22	WT
42	KRSA G12V	2	0.24	WT
14	KRAS G12D	1	0,28	KRAS G12D
6	KRAS G13D	1	0,3	KRAS G12A
16	KRAS G12D	1	0,45	KRAS G12A
40	KRAS G12A	2	0,58	WT
9	KRAS G13D	1	0,6	KRAS 12/13 *
3	KRAS G12V	1	0,62	KRAS G12V
26	KRAS G12A	2	0,64	WT
20	KRAS G12D	1	0,67	KRAS G12D
18	KRAS G12V	1	0,72	KRAS G12V
24	KRAS G12R	2	0,72	WT
32	NRAS Q61R	2	0,76	NRAS Q61R
27	KRAS G12A	2	0,97	WT
2	KRAS G12C	1	1,03	KRAS G13D
42	KRAS G12A	2	1,09	WT
1	KRAS G13D	1	1,28	KRAS 12/13 *
6	KRAS G12D	1	2,66	KRAS G12A
5	KRAS G12D	1	4,27	KRAS G12D
17	KRAS G12D	1	4,3	KRAS G12D
22	BRAF V600E	2	4,51	BRAFV600E
13	KRAS G12V	1	5,44	KRAS G12V
1	KRAS G12R	1	7.42	KRAS 12/13 *
7	KRAS G12V	1	9,9	KRAS G12V
12	KRAS G12D	1	10.86	KRAS G12D
8	KRAS G12A	1	13.18	KRAS G12A
33	BRAF V600F	2	15 57	BRAEV600F
38	NRAS O61K	2	18.87	NRAS O61K
11	KRAS G12S	1	31.83	KRAS G12S
23	NRAS O612	2	56	WT
		~	50	

* KRAS 12/13 mutant patient but the point mutation is non determined

WT: Wild Type

Legend supplemental table S8: Description of all point mutations found from plasma analysis at baseline according to increasing allelic frequencies and the mutational status as determined with tumor tissue analysis. Note, several patients may appear more than once because of multiple point mutations. WT: Wild Type; *: *KRAS 12/13* mutant patient but the specific point mutation is non-determined.

Dationt		Point mutation found at baseline and during	Total mA%	Imaging	Total mA%	Posponso	Total mA%	Posnonso	Total mA%	Posponso	Total mA%	Posnonso	Peason Off
	Cohort	etudu	Deceline	Deceline	Cuele 4	Cuele 4	Cuele 8	Cuele R	Cuelo 12	Cuelo 12	Cuelo 16	Cuelo 1C	Chudu
U		study	baseline	Daseline	Cycle 4	Cycle 4	Cycle 8	Cycle 8	Cycle 12	Cycle 12	Cycle 16	Cycle 16	Sludy
19	1	BRAF V600E	ND	CV	3.96	PD							PD
4	1	KRAS G13D and KRAS G12V	<0.01%	CV		PD							PD
10	1	KRAS G13D	0.009	CV	0.03	PD							PD
15	1	KRAS G12A	0.09	CV									WD
21	1	KRAS G12A and KRAS G13D	0.23	CV									N/A
14	1	KRAS G12D	0.28	CV	0.17	PD							PD
9	1	KRAS G13D and KRAS G12D	0.6	CV	0.18	SD		PD					PD
3	1	KRAS G12V	0.62	CV									PD
20	1	KRAS G12D and KRAS G12A	0.69	CV	0.26	SD	0.21	PD					PD
16	1	KRAS G13D. KRAS G12D and KRAS G12C	0.76	cv									PD
18	1	KRAS G13D and KRAS G12V	0.84	CV		PD							PD
2	1	KRAS G12C and BRAFV600E	1.2	CV	ND	SD	0.94	SD		PD			PD
6	1	KRAS G13D and KRAS G12D	2.93	CV									AE
5	1	KRAS G12D	4.27	CV									AE
17	1	KRAS G12D and KRAS G12A	4.29	cv	1.69	PD							PD
13	1	KRAS G12V and KRAS G13D	5.42	CV	6.46	PD							PD
1	1	KRAS G12R and KRAS G13D	8.72	cv									AE
7	1	KRAS G13D. KRAS G12V. KRAS G12A and KRAS 12C	10.06	CV	9.72	SD		PD					PD
12	1	KRAS G12D and KRAS G13D	11.02	CV									PD
8	1	KRAS G13D and KRAS G12A	13.32	cv	17.09	PD							PD
11	1	KRAS G12S. KRAS G13D. KRAS G12A and BRAF V600E	32.02	CV	60.6	PD							PD
25	2	WT	WT	cv	WT	PD							PD
29	2	KRAS A146T	ND	CV	<0.01%	PD							PD
37	2	BRAF V600E	ND	CV	1.4	PD							PD
39	2	KRAS G12A	ND	cv	0.16								PD
28	2	KRAS G12A	<0.01%	CV	1.48	SD		SD	1.93	PD			PD
30	2	KRAS G12R and KRAS G12D	<0.01%	CV									W/D
35	2	KRAS G12R	<0.01%	CV									N/A
41	2	KRAS Q61H	<0.01%	CV	ND								PD
31	2	KRAS G12A. KRAS G13D. KRAS G12D and KRAS G12V	0.04	CV	0.11	PR	0.03	SD	0.4	SD	0.25	PD	PD
34	2	KRAS G13D and BRAF V600E	0.23	CV									PD
36	2	KRAS G12A. KRAS G13D and KRAS G12S	0.27	CV	8.89	SD	2.45	PD					PD
40	2	KRAS G12A	0.58	CV	0.28								PD
26	2	KRAS G12A	0.64	CV	2.78	PD							PD
24	2	KRAS G12R	0.72	CV		PD							AE/PD
32	2	NRAS Q61R	0.76	CV CV	3.4	PD							PD
42	2	KKAS G12A and KRAS G12V	1.33	CV CV	0.50	65							w/b
27	2	KRAS G12A and KRAS G12V	2.81	CV	0.52	SD		PD					PD
22	2	BRAF V600E	4.51	CV CV	3.//	SD							Deceased
33	2	BKAF VOUL	15.57		10.74								09
38	2	KKAS QOIM ANA WAS QOIK	18.87	CV CV	18.74								PD
23	2	NKAS Q61K	56,00	U U	22,29	20							PD - 20

Supplementary Table S9

⊳

ND: No mutation detected; WT: Wild type for mutations tested; PR: Partial Response; SD: Stable Disease; PD: Progressive Disease; CV: Control Value; TE: Treatment Effects; AE: Adverse Events; Total mA%: total mutation load; W/D: Without clinician consent; WD: With clinician consent; N/A: data missing

Patient ID	Cohort	Point mutation found at baseline and during study	Total mA Baseline (ng/mL)	Imaging Baseline	Total mA Cycle 4	Response Cycle 4	Total mA Cycle 8	Response Cycle 8	Total mA Cycle 12	Response Cycle 12	Total mA Cycle 16	Response Cycle 16	Reason Off Study
19	1	BRAF V600E	ND	CV	0.12	PD							PD
4	1	KRAS G13D and KRAS G12V	NQ	cv		PD							PD
10	1	KRAS G13D	0.003	cv	0.01	PD							PD
14	1	KRAS G12D	0.01	cv	0.02	PD							PD
15	1	KRAS G12A	0.03	cv									WD
9	1	KRAS G13D and KRAS G12D	0.036	cv	0.068	SD		PD					PD
21	1	KRAS G12A and KRAS G13D	0.04	CV									N/A
3	1	KRAS G12V	0.08	CV									PD
16	1	KRAS G13D. KRAS G12D and KRAS G12C	0.11	CV									PD
18	1	KRAS G13D and KRAS G12V	0.14	CV		PD							PD
20	1	KRAS G12D and KRAS G12A	0.19	CV	0.08	SD	0.02	PD					PD
2	1	KRAS G12C and BRAFV600E	0.2	cv	ND	SD	0.14	SD		PD			PD
6	1	KRAS G13D and KRAS G12D	0.41	CV									AE
13	1	KRAS G12V and KRAS G13D	0.73	cv	1.16	PD							PD
17	1	KRAS G12D and KRAS G12A	0.97	CV	0.56	PD							PD
1	1	KRAS G12R and KRAS G13D	0.99	cv									AE
5	1	KRAS G12D	1.27	cv									AE
7	1	KRAS G13D. KRAS G12V. KRAS G12A and KRAS 12C	3.82	cv	4.76	SD		PD					PD
12	1	KRAS G12D and KRAS G13D	5.95	CV									PD
8	1	KRAS G13D and KRAS G12A	11.99	CV	19.06	PD							PD
11	1	KRAS G12S. KRAS G13D. KRAS G12A and BRAF V600E	16.43	cv	32.94	PD							PD
25	2	WT	WT	CV	WT	PD	1	1			1		PD
29	2	KRAS A146T	ND	CV	NO	PD							PD
37	2	BRAE V600E	ND	CV CV	0.15	PD							PD
20	2	KRAS G12A	ND	CV	0.15	10							PD
29	2	KRAS G12A	NO	CV	0.04	SD		SD	0.45	PD			PD
20	2	KRAS G12A	NQ	CV CV	0.11	30	-	30	0.45	FD			FD W/D
30	2	KRAS GIZK UNU KRAS GIZD	NQ	CV CV			-						N/A
35	2	KRAS GIZK	NQ	CV CV	ND								
41	2	KRAS QBIH	NQ	CV CV	ND 0.04								PD
40	2		0.05	CV	0.04		0.045	60	0.402	60	0.050		PD
31	2	KRAS G12A. KRAS G13D. KRAS G12D and KRAS G12V	0.052	CV GV	0.03	PK	0.015	SD	0.192	SD	0.868	PD	PD
26	2	KRAS G12A	0.07	CV	0.7	PD							PD
24	2	KRAS G12R	0.09	CV		PD							AE/PD
42	2	KRAS G12A and KRAS G12V	0.15	CV									W/D
36	2	KRAS G12A. KRAS G13D and KRAS G12S	0.19	cv	3.67	SD	4.68	PD					PD
34	2	KRAS G13D and BRAF V600E	0.25	cv									PD
22	2	BRAF V600E	0.29	cv	0.55	SD							Deceased
27	2	KRAS G12A and KRAS G12V	0.34	cv	0.07	SD	ND	PD					PD
32	2	NRAS Q61R	0.46	cv	0.43	PD							PD
38	2	KRAS Q61H and NRAS Q61K	0.85	cv	3.94								PD
23	2	NRAS Q61R	3	cv	5.08	PD							PD
33	2	BRAF V600E	19.58	cv									PD

ND: No mutation detected; NQ: Scored positive bu non quantified; WT: Wild type for mutations tested; PR: Partial Response; SD: Stable Disease; PD: Progressive Disease; CV: Control Value;
TE: Treatment Effects; AE: Adverse Events; Total mA: total concentration of mutant cirDNA; W/D: Without clinician consent; WD: With clinician consent; N/A: data missing

Β

Legend Supplementary Table S9: Evolution of increasing mA% from baseline to end of treatment, A. Evolution of mA from baseline to the end of treatment, B. ND: No mutation detected; WT: Wild type for the mutations tested; PR: Partial Response; SD: Stable Disease; PD; Progressive Disease; CV; Control Value; TE: Treatment Effects; AE: Adverse Events; Total mA%: total mutation load; Total mA: total of mutant ctDNA; W/D: Without clinician consent; WD: With clinician consent; N/A: Data missing

Supplemental Figure S1: Patient's Flow chart

Supplemental Figure S2 :

Α

В

Legend Supplemental Figure S2 : Time lag between tumor tissue collection and blood drawing. Time lag between tumor tissue collection and blood drawing is significant between cohorts 1 and 2 (p.value 0.0380) (A), and also between true and false positive patients (p.value: 0.0163), (B).

Supplemental Figure S3:

Legend Supplemental Figure S3A: Total concentration of cfDNA (RefA) at baseline as determined by targeting *BRAF* and *KRAS* wild type sequence. Before treatments and for both cohorts, total concentration of circulating DNA when targeting short wild type sequence of *KRAS* and *BRAF* genes seems similar. Data are expressed in logarithm and show the robustness of the method.

Legend Supplemental Figure S3B: KRAS/BRAF ratio before treatment as determined by targeting BRAF and KRAS wild type sequence. KRAS/BRAF ratio before initiation of treatments (n=41). At baseline KRAS/BRAF ratio when targeting short wild type sequences are near 1. Data show the reliability of the method for follow-up of patients during treatments.

Table Analyzed	RefA values at baseline
Column A	Cohorte 2
VS	VS
Column B	Cohort 1
Mann Whitney test	
P value	0,3585
Exact or approximate P value?	Gaussian Approximation
P value summary	ns
Are medians signif. different? (P < 0.05)	No
One- or two-tailed P value?	Two-tailed
Sum of ranks in column A,B	414.5 , 488.5
Mann-Whitney U	183,5

Supplemental Figure S5: RefA values do not differ at baseline between patients stopped treatment before C4 and others

Table Analyzed Column A vs Column B

Mann Whitney test P value Exact or approximate P value? P value summary Are medians signif. different? (P < 0.05) One- or two-tailed P value? Sum of ranks in column A,B Mann-Whitney U RefA values Stopped treatment before C4 vs Treated at least until C4

0,7559 Gaussian Approximation ns No Two-tailed 356.5 , 546.5 195,5 Supplemental Figure S6: Concentrations of mutant cfDNA do not differ at baseline between cohorts 1 and 2

Supplemental Figure S7: Concentration of mutant cfDNA do not differ at baseline between patients stopped treatment before C4 and others

Table Analyzed Column A vs Column B

Mann Whitney test P value Exact or approximate P value? P value summary Are medians signif. different? (P < 0.05) One- or two-tailed P value? Sum of ranks in column A,B Mann-Whitney U Concentration of mutant allele (mA) (ng/mL of plasma) Sopped before C4 vs Treated at least until C4

0,1828 Gaussian Approximation ns No Two-tailed 456 , 625 203,0

Supplementary Figure S9:

Legend supplementary Figure S9: Validation of point mutation detection/quantification under the Poisson law. To confirm the validity of our assay in these samples with a mutation found at low concentration we designed a set of experiments to determine whether these findings were due to non-specificity of primers set or if point mutation detection was occurring by a Poisson law distribution due to the low concentration. After extraction of cfDNA from a patient with a *KRAS G12V* mutation, we created samples with serial dilutions from 10 pg/µL to 0.1pg/µL. For each dilution we created samples with a total volume of 50µL. These serial dilutions were placed in 10 wells, 5µL of sample in each well. We performed the Q-PCR with two thermocyclers, LC480 (Roche) (A) and CFX96 (Bio-Rad) (B). Our findings show that IntPlex can detect *KRAS G12V* mutant fragments in 100% of cases (10/10) in dilutions 10pg/µl to 3 pg/µL. Theoretically, presence of one targeted sequence copy in all wells would correspond to 1.5 pg/mL DNA, and consequently concentrations below this concentration obey to Poisson law distribution. At concentrations below 1 pg/ µL, 70% (7/10) of mutations could be detected and at concentrations of 0.1pg/µL, 10% (1/10) of mutations could be detected and at concentrations of 0.1pg/µL, 10% (1/10) of mutations could be detected and at concentrations of 0.1pg/µL, 10% (1/10) of mutations could be detected and at concentrations of 0.1pg/µL, 10% (1/10) of mutations could be detected and at concentrations of 0.1pg/µL, 10% (1/10) of mutations could be detected and at concentrations of 0.1pg/µL, 10% (1/10) of mutations could be detection of low frequency mutations and that our findings are not due to primer non-specificity.

Supplemental Figure S10: Illustration of point mutation detection at very low frequency with IntPlex ASB QPCR method in mCRC patients in the study.

Melt curves analysis

Legend:

Blue peaks: Short KRAS amplification (quantification of total concentration of cirDNA)

Green peaks: No template control (DNase free water) for the point mutation tested in sample

Red peak: Positive control amplification (cell lines or synthetic DNA) for the point mutation tested in sample

Black peaks: Point mutation amplification in sample

1/ Case of a discordant patient with lowest mA% calculated (0.03%):

Patient #34 at baseline: KRAS G13D detection by IntPlex method

This patient was scored mutant at baseline in plasma analysis with an allele frequency at 0.03%

This patient was scored wild type in tumor tissue analysis

Blue peaks: Short KRAS amplification (quantification of total concentration of cirDNA)

Green peaks: No template control (DNase free water) for the point mutation tested in sample

Red peak: Positive control amplification (H3E5 cell line) for the point mutation tested in sample

Black peaks: KRAS G13D amplification in patient #34 at baseline

Melt curve analysis:

Tm (°C) of positive control H3E5 cell line: 77.8°C

Tm (°C) of KRAS G13D amplification in patient #34 at baseline: 77.6°C

Patient #34 at baseline: *BRAFV600E* detection by IntPlex method

This patient was scored mutant at baseline in plasma analysis with an allele frequency at 0.16%

This patient was scored wild type in tumor tissue analysis

Blue peaks: Short BRAF amplification

Green peaks: No template control (DNase free water) for the point mutation tested in sample

Red peak: Positive control amplification (HT 29 cell line) for the point mutation tested in sample

Black peaks: *BRAFV600E* amplification in patient #34 at baseline

Melt curve analysis:

Tm (°C) of positive control HT 29 cell line: 79.4°C

Tm (°C) of *BRAFV600*E amplification in patient #34 at baseline: 79.4°C

2/ Case of concordant patients with lowest allelic frequency (0.009% and 0.08%):

A/ Patient #10 at baseline: KRAS G13D detection by IntPlex method

This patient was scored mutant at baseline in plasma analysis with an allele frequency at 0.009%

Melt Peak 2500 2000 -d(RFU)/dT 1500 1000 500 0 65 70 75 80 85 90 95 Temperature, Celsius

This patient was scored mutant KRAS G13D in tumor tissue analysis

Blue peaks: Short KRAS amplification (quantification of total concentration of cirDNA)

Green peaks: No template control (DNase free water) for the point mutation tested in sample

Red peak: Positive control amplification (H3E5 cell line) for the point mutation tested in sample

Black peaks: KRAS G13D amplification in patient #10 at baseline

Melt curve analysis:

Tm (°C) of positive control H3E5 cell line: 77.8°C

Tm (°C) of KRAS G13D amplification in patient #10 at baseline: 77.4°C

B/ Patient #21 at baseline: *KRAS G13D* detection by IntPlex method

This patient was scored mutant at baseline in plasma analysis with an allele frequency at 0.08%

This patient was scored mutant *KRAS G13D* in tumor tissue analysis

Blue peaks: Short KRAS amplification (quantification of total concentration of cirDNA)

Green peaks: No template control (DNase free water) for the point mutation tested in sample

Red peak: Positive control amplification (H3E5 cell line) for the point mutation tested in sample

Black peaks: KRAS G13D amplification in patient #21 at baseline

Melt curve analysis:

Tm (°C) of positive control HT 29 cell line: 77.8°C

Tm (°C) of KRAS G13D amplification in patient #21 at baseline: 77.6°C