Water Multilayers on TiO₂ (101) Anatase Surface: Assessment of a DFTB-Based Method

Daniele Selli,¹ Gianluca Fazio,^{1,2} Gotthard Seifert,² Cristiana Di Valentin^{1*}

¹Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Milano Italy ²Technische Universität Dresden, Institut für Theoretische Chemie, D-01062 Dresden, Germany

SUPPORTING INFORMATION

^{*} Corresponding author: cristiana.divalentin@mater.unimib.it

Figure S1. Comparison of the oxygen-oxygen (O_w - O_w , **a**) and hydrogen-hydrogen (H_w - H_w , **b**) radial distribution functions (RDF): dashed black line, experimental measurement; red line, DFTB-MATORG+HBD with the modified γ function for the H-bond; green line, DFTB-MATORG+HBD with the inclusion of the Grimme's D3 dispersion correction.

Figure S2. Comparison of the oxygen (blue, solid line) and hydrogen (red, solid line) velocity autocorrelation function (C_{vv}) calculated with DFTB-MATORG+HBD, with the oxygen (blue, dashed line) and hydrogen (red, dashed line) ones calculated with CPMD from Ref. 1.

Figure S3. Definition of the bond angle α between the water molecule and the (101) anatase slab.

Figure S4. Molecular, H_2O (a) and dissociated, OH, H (b) equilibrium structure in the full water coverage regime, $\theta = 1$. Values of bond distances are reported in the **Table S1**.

Table S1. Relevant interatomic distances (in Å) of the equilibrium structures of H₂O (*Molecular Adsorption*, top panel) and OH, H (*Dissociative Adsorption*, bottom panel) on the (101) TiO₂ anatase slab, in the *full coverage regime* ($\theta = 1$) as obtained with DFTB and DFT methods. H is the hydrogen atom of the OH group bound to the Ti atom, whereas H* is the hydrogen atom bound to the bridging O_{2c} atom. These geometrical parameters are graphically defined in **Figure S3** and **Figure S4**. The absolute error reported in parenthesis for DFTB data is calculated with respect to the PBE value.

Molecular Adsorption				
Method	$\begin{array}{c} \text{Ti}_{5c} - \text{OH}_2 \\ \text{A} (\text{\AA}) \end{array}$	HO _{2c} B (Å)	HO _{2c} C (Å)	α (°)
DFTB-MATSCI	2.46 (+0.08)	2.11 (-0.89)	2.11 (-0.23)	104.8°
DFTB-MATORG+HBD	2.41 (+0.03)	2.14 (-0.86)	2.15 (-0.19)	105.2°
DFT-PBE	2.38	3.00	2.34	93.0°
Dissociative Adsorption				
Method	$Ti_{5c} - OH$	HO _{2c}	H*OH	
	$A_{d}(A)$	B _d (Å)	C_{d} (Å)	
DFTB-MATSCI	1.91 (+0.05)	3.48 (+0.18)	2.65 (-0.06)	
DFTB-MATORG+HBD	1.92 (+0.06)	3.94 (+0.64)	3.10 (+0.39)	
DFT-PBE	1.86	3.30	2.71	

Figure S5. MATORG+HBD and DFT/PBE distribution p(d) and time evolution d(t) of the Ti – O Euclidean distances between the water molecule (O atoms) of the monolayer and the titania surface (Ti_{5c} atoms). The DFT Car-Parrinello corresponding distribution p(d) in cyan diamonds is obtained adapting the data from ref. 2 with trigonometric transformations, assuming that the α angle, as defined in **Figure S1**, is on average that of the static PBE calculations.

Figure S6. MATORG+HBD and DFT/PBE (101) anatase slab with a single water molecule in the same position as the second layer water molecules of the BL2 bilayer. Relevant H-bond distances are also given. The strength of the H-bond has been estimated with single-point calculations of these structure and the isolated systems.

Figure S7. MATSCI ML Distribution p(z) and time evolution z(t) of the perpendicular distances between the water molecule (O atoms) of the water monolayer and the titania surface (Ti_{5c} atoms). The DFT Car-Parrinello corresponding distribution p(z) is reported in cyan diamonds.²

Figure S8. MATSCI BL1 and BL2 distribution p(z) and time evolution z(t) of the perpendicular distances between the water molecule (O atoms) and the titania surface (Ti_{5c} atoms). The DFT (PBE) Car-Parrinello corresponding distribution p(z) is reported in cyan diamonds.²

Figure S9. MATSCI TL1 and TL2 Distribution p(z) and time evolution z(t) of the perpendicular distances between the water molecule (O atoms) and the titania surface (Ti_{5c} atoms). The DFT Car-Parrinello corresponding distribution p(z) is reported in cyan diamonds.²

Figure S10. DFTB optimized structure of the transition state for the process of water dissociation (coverage $\theta = 0.25$). Values of bond distances are reported in the Table S2.

Table S2. Geometrical parameters, as defined graphically in **Figure S10**, for the transition state structure of water dissociation on the (101) anatase slab model with the DFTB methods and in the DFT reference.^{3,4}

	Α	В	С
MATSCI	1.34	1.44	2.27
MATORG+HBD	1.15	1.48	2.25
DFT-B3LYP-D*	1.18	1.35	2.06

¹ Kühne, T. D.; Krack, M.; Parrinello M. Static and Dynamical Properties of Liquid Water from First Principles by a Novel Car-Parrinello-like Approach *J. Chem. Theory Comput.* **2009**, *5*, 235–241.

² Tilocca, A.; Selloni, A. J. Phys. Chem. C 2012, 116, 9114–9121.

³ Ferrighi, L.; Datteo, M.; Fazio, G.; Di Valentin, C. J. Am. Chem. Soc. **2016**, 138, 7365 – 7376.

⁴ These values have been calculated using the methods and the procedures employed in Ref. 3 to determine the transition structure of a similar reaction barrier.