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Supplementary Information
We are glad to public the MSERg code for testing by others. This code can be located at https://github.com/lynli/MSERg.

Methods
Notation
Let X0 be the fixed image and X1 be the moving image. XT represents the transformed moving image XT = T (X1), where T
refers to the transformation applied to X1. X0 = (C, f ) in which C is an n dimensional grid image scene and f (c) is the intensity
value at location c ∈C. f t

j,κ(c) represents the corresponding texture values at c ∈C after applying a textural operation on
the image scene C and where j ∈ {1,2,3....,P} represents the jth texture features extracted and κ is the corresponding filter
length scale size, κ ∈ {3,5,7,9,11,13,15,17}. f ICA

m,κ (c), where m ∈ {1,2, ....M}, represents the mth ICA vector derived from
the texture features extracted at scale κ . f SE

s,κ (c), where s ∈ {1,2, ....S}, represents the sth spectral embedding vector based on
the ICs extracted at scale κ . More specific notational descriptions are shown in Table 1.

SE representation Construction
MSERg comprises two main modules. The first module involves constructing representations of the SE spaces and the second
module involves multi-scale registration using the SE vectors. The module on SE representation construction involves feature
extraction, ICA and SE at each individual length scale. (see Table 2 )

Feature Extraction
The procedure involves spatially concatenating X0 and X1. Let F t

κ(c) = [ f t
1,κ(c), f t

2,κ(c), . . . , f t
P,κ(c)] where f t

1,κ , f t
2,κ , . . . , f t

P,κ

comprise a set of P features at scale κ from the concatenated X0 and X1. Our features include Gabor filters1 with 10 orientations
(θ = iπ

10 , i ∈ {1,2, ...10}) and 13 Haralick features2 for each scale κ ∈ {3,5,7,9,11,13,15,17}. Gabor features are multi-scale
steerable filters which capture the gradient responses across multiple different orientations3 and Haralick features extract the
information about the co-occurrence of signal intensities within the image4. These two classes of texture features are thus able
to provide alternative image representations for multi-modal co-registration.

Independent Component Analysis
Let F ICA

κ (c) = [ f ICA
1,κ (c), f ICA

2,κ (c), . . . , f ICA
M,κ (c)] where f ICA

1,κ , f ICA
2,κ , . . . , f ICA

M,κ denote a set of M independent components of each
scale κ . Our approach uses the JADE-ICA algorithm5, 6 to extract ICs from the Gabor and Haralick features at each scale κ .
X0 and X1 have already been spatially concatenated, so texture feature extraction and ICA are performed on both X0 and X1
simultaneously, in turn, ensuring that the F ICA

κ is linked to X0 and X1.

Spectral Embedding
The aim of SE is to project data from M dimensions to S dimensions, where S < M. This creates a non-linear embedding
from which the first S most important features can be identified for subsequent use in α-MI based multi-modal co-registration.
SE allows the content of the final S components to be optimized by finding a mixture of all the M ICs. This yields FSE

κ (c) =
[ f SE

1,κ(c), f SE
2,κ(c), . . . , f SE

S,κ(c)]. Note that f SE
1,κ , f SE

2,κ , . . . , f SE
S,κ denote a set of S SE vectors at scale κ . The SE of scale κ , FSE

κ , can
be obtained by solving,

FSE
κ = arg min

(
∑l ∑r

∥∥FSE
κ (r)−FSE

κ (l)
∥∥ωrl

∑r FSE
κ (r)2d(r)

)
, (1)

where ωrl , the edge weights between pairwise observations r and l. Each location (r, l) within the weight matrix W = [ωrl ] ∈

R|C|×|C|, r, l ∈ C, where ωrl = exp(
−
∥∥∥ f ICA

r,κ − f ICA
l,κ

∥∥∥2

2
δ 2 ). Here δ is a scale parameter, and d(r) = ∑l ωrl . The minimization of

Equation (1) reduces this to an eigenvalue decomposition problem,

(D−W )FSE
κ = λDFSE

κ , (2)

where D is a diagonal matrix, Drr = ∑l Wrl and λ represents the eigenvalues. In this work we decided to choose the top 3
embedding vectors from SE for each scale κ . Hence FSE

κ (c) = [ f SE
1,κ(c), f SE

2,κ(c), f SE
3,κ(c)], where c ∈ C, associated with the

smallest eigenvalues λ1, λ2, λ3 are selected as the new image representations to be used during registration step. Thus each
individual scale SE representation consists of 3 SE vectors for both the moving and the fixed images.
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Table 1. Symbols Description.

Symbols Description Symbols Description
X0 fixed image X1 moving image
Ω0 fixed image field Ω1 moving image field
XT transformed moving image C image scene
c image grids in C κ scale index
M0 ROI annotation mask of X0 M1 ROI annotation mask of X1
MT transformed ROI annotation mask of X1 f intensity representation
f t textural representation F t set of textural representations
f ICA ICA representation F ICA set of ICA representations
f SE SE representation FSE set of SE representations
j texture feature index m ICs index
s SE vector index θ orientation in Gabor feature
W weight matrix ω elements of weight matrix W
r, l coordinate locations in W d(r) sum of weight elements at location r
µ transformation parameters ζ registration cost function
T transformation matrix Γ sum of k nearest neighborhood distance
Ψ registration dimensions α an α-MI constant
q number of scales used in MSERg p the index of the nearest neighborhood pixel
γ an α-MI constant A region of interest in DSC computation
ρ number of pixels of X0∩X1 E entropy
β the pixel index of landmark on the images k the landmark index

Table 2. Algorithm 1: SE Representation.

Input: [X0,X1],κ
Output: [FSE

X0,κ
,FSE

X1,κ
]

For all scale κ do
[F t

X0,κ
,F t

X1,κ
] = Texture([X0,X1],κ);

[F ICA
X0,κ

,F ICA
X1,κ

] = ICA([F t
X0,κ

,F t
X1,κ

]);
For i = 1:number of ICs do

M(:, i) = vectorize([F ICA(i)
X0,κ

,F ICA(i)
X1,κ

]);
Endfor;

Calculate distance matrix W of M;

[FSE
X0,κ

,FSE
X1,κ

] = arg min
(

∑l ∑r‖FSE
κ (r)−FSE

κ (l)‖ωrl

∑r FSE
κ (r)2d(r)

)
;

wrl is the element of W at location (r, l) and FSE
κ = [FSE

X0,κ
,FSE

X1,κ
].

Endfor
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Table 3. Algorithm 2: Multi-scale registration.

Input: FSE
X0,κ

,FSE
X1,κ

,X0,X1,M0,M1

Output: MT ,XT
For all scale κ do

µ = arg minµ αMI(Tµ : FSE
X1,κ
→ FSE

X0,κ
);

MTκ
= Tµ(M1);

XTκ
= Tµ(X1);

CRκ =CR(X0,XTκ
);

DSCκ = DSC(M0,MTκ
);

Endfor
Select the best performing individual scales l,n, p :
l,n, p = arg max(CRκ ,DSCκ);
Fixed representation Ff ix = [FSE

X0,l
,FSE

X0,n,F
SE
X0,p]

Moving representation Fmove = [FSE
X1,l

,FSE
X1,n,F

SE
X1,p];

µ = arg minµ αMI(Tµ : Fmove→ Ff ix);
MT = Tµ(M1); XT = Tµ(X1);

Multi-scale Registration
Optimal Scale Selection
On the learning set, we conducted single-scale SERg which means that the transformation of moving image XT is driven by SE
vectors obtained over texture features extracted at a single fixed scale. The top 3 individual scales were identified in terms of
DSC and CR measures on the learning set. In this work, we limited our new representation spaces to 3-scale combinations,
though the approach could be extended to invoking more than 3 scales as well. We stack the 3 SE vectors and employed the
vectors for α-MI based registration. Once the optimal scales and representations were identified on the learning set, the same
set of scales and representations are then used via MSERg for the cases on the testing set. (see Table 3 )

α-MI Registration
In MSERg, we performed Ψ-dimensional registration with Ψ = 3q, where q denotes the number of scales used in multi-scale
registration. The registration process involves alignment of a Ψ-dimension moving image X1 : Ω1 ⊂ RΨ→ R to a fixed image
X0 : Ω0 ⊂ RΨ→ R can be formulated as an optimization problem:

µ̂ = arg minµ ζ (Tµ : Ω1→Ω0), (3)

with µ being the vector of transformation parameters Tµ : Ω1→ Ω0 and ζ being a suitable cost function (here α-MI). Let
FSE

X0,κ
(c) be the fixed image feature vector in image at location c of scale κ and FSE

XT ,κ
(c) be the corresponding moving feature

vector at location c of scale κ . Let FSE
κ (c) = [FSE

X0,κ
(c),FSE

XT ,κ
(c)] be the concatenation of the two feature vectors. To eliminate

the limitation of histogram entropy estimation, we applied the graph-based entropy estimation by constructing three kNNG in
FSE

X0,κ
, FSE

XT ,κ
and FSE

κ . The total Euclidean distance of a feature vector to its k nearest neighbors can be calculated as described
below:

Γ
0
c =

k

∑
p

∥∥FSE
X0,κ

(c)−FSE
X0,κ

(cp)
∥∥ , (4)

Γ
T
c =

k

∑
p

∥∥FSE
XT ,κ

(c)−FSE
XT ,κ

(cp)
∥∥ , (5)

Γ
0T
c =

k

∑
p

∥∥FSE
κ (c)−FSE

κ (cp)
∥∥ , (6)

where cp denotes the location of pth nearest neighbor within kNNG of location c ∈ C, where p ∈ {1,2,3, . . . ,k}. So a
graph-based mutual information can be formulated as following:

αMI(µ;FSE
X0,κ

,FSE
XT ,κ

,FSE
κ ) =

1
α−1

log(
1
|C|α

|C|

∑
c=1

(
Γ0T

c√
Γ0

cΓT
c
)2γ), (7)
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with γ = Ψ(1−α) and α ∈ (0,1).

Multi-attribute combined mutual information (MACMI) registration
MACMI selects the texture features that maximize the combined mutual information (CMI)7. CMI is calculated by equation
(8). F t1F t2 . . .F tn represents the texture feature ensemble and E denotes the entropy.

CMI(X0,XtF t1F t2 . . .F tn) = E(X0)+E(XtF t1F t2 . . .F tn)−E(X0XtF t1 F t2 . . .F tn) (8)

The features that maximize CMI and hence the E(XtF t1F t2 . . .F tn) are selected. In our implementation of MACMI, we selected
five features because ensembles of more than five features will result in sparse gray level histograms, making it near impossible
to accurately estimate the joint entropy.
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