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Theoretical demonstration of the power of pairing

Abstract
We show using mathematical arguments why discordance model can be statistically more

powerful.

1 Introduction
We start with one of the simplest examples and build towards regression all using linear models.
The basic flow would be

1. mean

(a) single group
(b) differences between two groups

i. without pairing
ii. with pairing

2. correlation

(a) without paring
(b) with pairing

3. genetic vs. environmental

2 Mean

2.1 Single group
Let’s look at how mean for a measurement for a single group is estimated from a linear model
point of view.

2.1.1 The model (abstract)

y = β0 + ε, where ε ∈ N (0, σ). (1)

2.1.2 The equations (data)

y1 = β̂0 + ε1, (2)

y2 = β̂0 + ε2, (3)
... (4)

yn = β̂0 + εn. (5)

2.1.3 The solution (empirical)

Since the system is overdetermined (more equations than unknowns) we can pick a “democratic”
solution by just summing the left hand side and the right hand side of the equations as follows

y1 + y2 + · · ·+ yn = nβ̂0 + ε1 + ε2 + · · ·+ εn. (6)

⇒
n∑

i=1

yi = nβ̂0 + 0 ((∵ E(ε) = 0)). (7)

∴ β̂0 =

n∑
i=1

yi

n
. (8)
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Notice that this is the classic “add-and-divide” formula.

2.2 Group differences
2.2.1 The model (abstract)

y = β0 + β1δG1
(x) + β2δG2

(x) + ε, where ε ∈ N (0, σ), (9)

δK(x) =

{
1, if x = K

0, otherwise
. (10)

2.2.2 The equations (data)

Assuming you have n1 samples from group G1 and n2 samples from G2,

y1 = β̂0 + β̂1 · 1 + β̂2 · 0 + ε1,

y2 = β̂0 + β̂1 · 1 + β̂2 · 0 + ε2,

...

yn1
= β̂0 + β̂1 · 1 + β̂2 · 0 + εn1

,

(11)

(12)

(13)

(14)

yn1+1 = β̂0 + β̂1 · 0 + β̂2 · 1 + εn1+1,

...

yn1+n2 = β̂0 + β̂1 · 0 + β̂2 · 1 + εn1+n2 .

(15)

(16)

(17)

2.2.3 The solution (empirical) without pairing

Again since the system is overdetermined (more equations than unknowns) we need a “democratic”
solution again so we just use all pairs of points (n1 × n2). Below we show a couple of pairs so we
can see a pattern.

y1 − yn1+1 = β̂1 − β̂2 + ε1 − εn1+1, (18)

y1 − yn1+2 = β̂1 − β̂2 + ε1 − εn1+2, (19)
... (20)

y1 − yn1+n2
= β̂1 − β̂2 + ε1 − εn1+n2

, (21)
... (22)

yn1 − yn1+1 = β̂1 − β̂2 + εn − εn1+1,
... (23)

yn1
− yn1+n2

= β̂1 − β̂2 + εn − εn1+n2
. (24)

Now by just summing left hand side (LHS) and right hand side (RHS) we get

n2 (y1 + y2 + · · ·+ yn1
)− n1 (yn1+1 + yn1+2 + · · ·+ yn1+n2

) = n1n2

(
β̂1 − β̂2

)
+ 0 (∵ E(ε) = 0).

(25)

∴ β̂1 − β̂2 =

n2
n1∑
i=1

yi − n1
n1+n2∑
i=n1+1

yi

n1n2
, (26)

=

n1∑
i=1

yi

n1
−

n1+n2∑
i=n1+1

yi

n2
. (27)

A key observation is that unless the ys from both groups are significantly separated the numerator
is going to be small due to cancellations (see Fig. 1 (a)). Also notice again that this is just the
classic “add-and-divide” within each group and taking a difference by simple subtraction.
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2.2.4 The solution (empirical) with pairing

If we have the a priori knowledge that n1 = n2 and that y1 corresponds to yn1+1 etc. we can
simply subtract the corresponding pairs and the solution would be1

y1 − yn1+1 = β̂1 − β̂2 + ε1 − εn1+1, (28)

y2 − yn1+2 = β̂1 − β̂2 + ε2 − εn1+2, (29)
... (30)

yn1 − yn1+n1 = β̂1 − β̂2 + ε2 − εn1+2. (31)

Again by just summing left and right hand sides we get

β̂1 − β̂2 =

n1∑
i=1

(yi − yn1+i)

n1
. (32)

Now we can observe that the requirement is that not every point in the other group has to be far
from every other point. Just enough number of corresponding points have to be far (see Fig. 1
(b,c)).
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Figure 1: No pairing vs. pairing. We can see that pairing helps enhance the effect
size (“signal”). (a) Distribution of samples along a measure (x). There are two groups colored
differently. A few random samples are shown. The effect size would be proportional to the distance
between the two peaks.(b) By acknowledging the fact that there are dependencies between samples
in the two groups we can look at the distribution of sample-pairs along the differential measure
(∆x). (c) Distribution of sample-pairs along ∆x. The effect size is proportional to the distance of
the peak from 0.

3 Correlation
Now let’s focus on identifying relationships between two measurements (x and y) (correlations)
using linear models.

3.1 Correlation without pairing
3.1.1 The model (abstract)

y = β0 + β1x+ ε where ε ∈ N (0, σ). (33)
1In a fully technical sense the model and the equations are also adjusted to reflect these correspondences and

this simple subtraction is forced on us as the parsimonious approach. A full treatment of the correspondence effect
is demonstrated in section 3 with the regression example.
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3.1.2 The equations (data)

Let us say there are n samples collected in an experiment/study. Then

y1 = β̂0 + β̂1x1 + ε1, (34)

y2 = β̂0 + β̂1x2 + ε2, (35)
... (36)

yn = β̂0 + β̂nx1 + εn. (37)
(38)

3.1.3 The solution (empirical)

We know from “high-school” that to a fit a line (in 2D space) we need two points. Here again we
have many more points than necessary in other words the system of equations is overdetermined.
Hence again we go with the “democratic” solution of using all pairs of points which in this case
would be n(n− 1) = n2 − n = O(n2). Let us see a couple of pairs to see a pattern

y1 − y2 = β̂1(x1 − x2) + ε1 − ε2, (39)

y1 − y3 = β̂1(x1 − x3) + ε1 − ε3, (40)
... (41)

y1 − yn = β̂1(x1 − xn) + ε1 − εn, (42)

y2 − y3 = β̂1(x2 − x3) + ε2 − ε3, (43)
... (44)

yn−1 − yn = β̂1(xn−1 − xn) + εn−1 − εn. (45)

Now simply summing the left and right hand sides again gives us

((n− 1)y1 + (n− 2)y2 + (n− 3)y3 + · · ·+ yn−1)− (y2 + 2y3 + · · ·+ (n− 1)yn) LHS (46)

= β̂1 (((n− 1)x1 + (n− 2)x2 + (n− 3)x3 + · · ·+ xn−1)− (x2 + 2x3 + · · ·+ (n− 1)xn)) RHS.
(47)

∴ β̂1 =

n−1∑
i=1

(n− i)yi −
n−1∑
i=1

iyi+1

n−1∑
i=1

(n− i)xi −
n−1∑
i=1

ixi+1

=

n−1∑
i=1

n∑
j=i+1

(yi − yj)

n−1∑
i=1

n∑
j=i+1

(xi − xj)
. (48)

Again as in the case of mean if every pair of subtraction in the numerator and denominator are not
consistently contributing there would be many cancellations and the value of |β̂1| will be lower and
many data points would not be in the confidence limits of the models. This effect is demonstrated
in Fig. 2 (a). In the interest of brevity we only focus on β̂1 and not include β̂0 but similar
observations and arguments can be made about that as well. In the next section we will see that
by pairing we will relax that requirement to have consistency only among the predetermined pairs
which is the fundamental reason for increase in the statistical power.

3.2 Correlation with pairing
3.2.1 The model (abstract)

y = β0 + β1x+ β2Id + ε, where ε ∈ N (0, σ). (49)

3.2.2 The equations (data)

Let us say there are 2n samples (n pairs). Then

y1 = β̂0 + β̂1x1 + β̂2Id1 + ε1,

y2 = β̂0 + β̂1x2 + β̂2Id2 + ε2,

...

yn = β̂0 + β̂1xn + β̂2Idn + εn,

(50)

(51)

(52)

(53)

5



1.0 1.5 2.0 2.5 3.0 3.5
x0.00

0.05

0.10

0.15

0.20

0.25

y

(a)

1.0 1.5 2.0 2.5 3.0 3.5
x0.00

0.05

0.10

0.15

0.20

0.25

y

(b)

-1.5 -1.0 -0.5 0.5 1.0 1.5
Δ x

-0.10

-0.05

0.05

0.10

0.15
Δ y

(c)

Figure 2: No pairing vs. pairing. We can see that pairing helps enhance the effect size
(“signal”). Similar to Fig. 1 but for regression. (a) Correlation between two measures (x
and y). The estimation does not take into account the pairwise dependency among the samples.
The effect size would be proportional to the slope being away from 0 and the fit quality (samples
within the 95% confidence band).(b) The pairwise dependencies are captured by the sloped arrows
which capture rate of change of y (i.e. ∆y) with respect x (i.e. ∆x) for each pair of samples. (c)
Linear model between ∆x and ∆y. We can clearly notice the enhancement in the effect size.

yn+1 = β̂0 + β̂1xn+1 + β̂2Id1 + εn+1,

yn+2 = β̂0 + β̂1xn+2 + β̂2Id2 + εn+2,

...

yn+n = β̂0 + β̂1xn+n + β̂2Idn + εn+n.

(54)

(55)

(56)

(57)

3.2.3 The solution (empirical)

Now we fit a “line” (technically a plane) in 3D space since there are three parameters that describe
the linear model. Again the system is overdetermined and we will go with “democratic” solution.
At first thought we would think we need to use all triplets of points to estimate the parameters.
However we can take advantage of the fact that the third variable repeats to reduce the number of
parameters to be estimated. By subtracting out the paired equations on left and right hand sides
we get the following n equations

y1 − yn+1 = β̂1(x1 − xn+1) + ε1 − εn+1, (58)

y2 − yn+2 = β̂1(x2 − xn+2) + ε2 − εn+2, (59)
... (60)

yn − yn+n = β̂1(x2 − xn+2) + ε1 − εn+1. (61)
(62)

Now simply summing the LHS and RHS gives us

β̂1 =

n∑
i=1

(yi − yn+i)

n∑
i=1

(xi − xn+i)
. (63)

Here we simply require that the pairwise differences are consistent. This effect can be seen in Figs.
2 (b,c).

3.3 Genetic vs. environmental
Now that we have seen above how to go from an abstract model to an empirical solution and
how using prior knowledge (in this case pairing) about the data in an experiment can help derive
statistically more confident (less risky) empirical solutions let us see just in the abstract space how
we can tease out the differential effects of environment (e) vs. genetic (g) on outcome variables in
a twin design study. The basic model would be

y = β0 + β1x+ β2Id + ε. (64)
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But let us say we know a priori that

x = α0 + α1g + α2e. (65)

Combining Eqs. (64) and (65) we get

y = β0 + β1(α0 + α1g + α2e) + β2Id + ε, (66)
= (β0 + β1α0) + β1α1g + β1α2e+ β2Id + ε, (67)

= ψ0 + ψ1g + ψ2e+ β2Id + ε. (68)

Now just as we saw in section 3 we can get much better signal with

∆y = ψ1∆g + ψ2∆e, (69)

where ∆ here is the operator that subtracts paired measurements. But for monozygotic twins
the assumption is that ∆g ≈ 0. Therefore we are really estimating the differential effects of
environment on y. We just reaped two benefits (1) enhancing the statistical power by pairing (2)
getting at the environmental effects.

3.3.1 Inference about the role(s) (α2, ψ2) of non-shared environmental differences (∆e)

First, we would like to note that the models described in here and used in our real experiments are
correlation models and not causal/conditional models. The inference according to these models
would be as follows. The non-shared environmental factors (∆e) are correlated with both ∆x
(measure of anxiety discordance, in our real experiments) as well as ∆y (measure of uncinate
fasciculus (UF) discordance, in our real experiments). We can see that algebraically as (assuming
∆g ≈ 0),

∆x = α2∆e, from Eq. (65) and (70)
∆y = ψ2∆e, from Eq. (69). (71)

(72)

But since we do not directly measure ∆e in our studies, our equations in real experiments are
derived from the model

∆y = ψ2

(
∆x

α2

)
, (73)

= β1α2

(
∆x

α2

)
, (74)

= β1∆x. (75)

That is we can only estimate the role of non-shared environmental differences indirectly (via β1)
as the association between anxiety differences and UF differences, since we cannot estimate either
α2 or ψ2. We would like to make a final note that these models represent phenomenological
ansatz and based on further investigations and studies might have to adapted to include non-linear
relationships between environmental factors and anxiety and white matter. �
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Discussion on FA and AD vs. MD and RD

Abstract

We present material that elucidates differences and dependencies among the four commonly
used DTI measures viz. fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity
(MD) and radial diffusivity (RD).

1 Introduction
Our starting point for this discussion is the diffusion tensor (D) which represents the diffusion
(rate of area-of-spread1) of water molecules in the three standard orthogonal planes (with origin
at the center of a voxel). It can be represented using a two dimensional matrix (also known as
rank-2 tensor) as

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (1)

where Dij refers to the diffusion in the plane spanned by orthogonal axes {i, j}. If i = j, then it
refers to the square of the diffusion length along the axis i. Since the MR signal measured is not
sensitive which side of the plane the water is diffusing, the matrix is symmetric i.e. Dij = Dji.

We will now,

1. dissect it and understand the commonly used DTI measures and

2. visualize to derive qualitative biological interpretations.

1.1 Dissecting the diffusion tensor
One could work directly with D if the goal was only getting at diffusivities in the standard planes.
In fact if one were only interested in the average diffusivity known commonly as mean diffusivity

(MD) or apparent diffusion coefficient (ADC), we can just read it off D as
Dxx +Dyy +Dzz

3
due

to a linear algebraic2 fact that the trace of a matrix is equal to the sum of the eigenvalues of the
matrix. Eigenvalues and eigenvectors capture one of the most basic symmetries3 in vector spaces
under linear transformations.

But one of the main goals of diffusion imaging is to reveal tissue microstructure including its
orientation. Hence we need to extract which direction D is oriented in. A key linear algebraic tool
that allows us to extract this is through eigen factorization (decomposition, dissection)4 of D,

D =

 | | |
v1 v2 v3

| | |

λ1 0 0
0 λ2 0
0 0 λ3

 | | |
v1 v2 v3

| | |

−1

. (2)

1As a reference to the physical units, in a typical MRI scan, the observed diffusion in biological tissue without
hindrance or restriction is on the order of 3 µm2·ms−1.

2Linear algebra is the study of vector spaces under linear transformations. The notion of treating matrices as
collections of vectors is a powerful convenience that allows us to glean patterns much more effectively compared to
treating them just as a collection of numbers.

3Finding the set of v, λs that satisfy the equation Av = λv is essentially asking to find the vectors that remain
the same (i.e. symmetric (invariant), upto scaling) under the transformation A.

4Another, now well known tool, called principal component analysis (PCA) which extracts the primary orientation
of the spread of data fundamentally relies on the eigen decomposition of a covariance matrix.
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Where v1,v2,v3 are the three main (orthonormal5) directions (in R3) of spread and the λ1, λ2, λ3
are the extent of spread in those directions. Without loss of generality we can order the vs and λs
such that λ1 ≥ λ2 ≥ λ3. The dissections of a sample diffusion tensor are shown in Fig. 1.

Figure 1: The dissected diffusion tensor. The three eigenvalues (λ1, λ2, λ3), eigenvectors
(v1,v2,v3) and the three main planes of diffusion with the corresponding sections of the elli-
posoids (in red, green and blue) are shown.

1.2 Understanding the dissected material (λs and vs)
i) Axial diffusivity (AD). Let’s first start with understanding the largest (max) of them all

which is λ1. This indicates the diffusivity in the direction of v1 which we can interpret as
the primary orientation of the fiber in that voxel.

ii) Radial diffusivity (RD). If we just focus on diffusivity in the plane perpendicular to the
main fiber orientation (v1), i.e. the plane spanned by v2 and v3), we have the two eigenvalues

λ2, λ3 and their mean is
λ2 + λ3

2
which is called the radial diffusivity (RD).

iii) Mean diffusivity (MD). Now let us focus on all the three eigenvalues (λs) jointly. If we
have a collection of numbers and want to "understand" them we can start by computing their

average (mean) (µ) which in this case is known as the mean diffusivity (MD)=
λ1 + λ2 + λ3

3
.

iv) Fractional anisotropy (FA). Similarly we can also compute the (second order) variability
in these measures (variance) (σ2)

σ2 =
(λ1 − µ)2 + (λ2 − µ)2 + (λ3 − µ)2

3
. (3)

Now if we want to normalize σ2 such that its range is between 0 and 1, we would simply
need to apply the following linear transformation,

σ2
norm =

σ2 −min(σ2)

max(σ2)−min(σ2)
. (4)

√
σ2

norm is the FA. min(σ2) = 0 since variance is always positive. Now let us calculate
5In general they are just required to be orthogonal but without loss of generality we can normalize them to be

unit vectors.
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max(σ2) as this will reveal a few things about FA.

σ2 =
(λ21 − 2λ1µ+ µ2) + (λ22 − 2λ2µ+ µ2) + (λ23 − 2λ3µ+ µ2)

3
, (5)

=
λ21 + λ22 + λ23 − 2µ · (λ1 + λ2 + λ3) + 3µ2

3
, (6)

=
λ21 + λ22 + λ23 − 2µ · 3µ+ 3µ2

3
, (7)

=
λ21 + λ22 + λ23 − 3µ2

3
, (8)

=
λ21 + λ22 + λ23

3
−
(
λ1 + λ2 + λ3

3

)2

,

[
∵ µ =

λ1 + λ2 + λ3
3

]
(9)

=
3 · (λ21 + λ22 + λ23)

3 · 3
−
(
λ21 + λ22 + λ23 + 2λ1λ2 + 2λ1λ3 + 2λ2λ3

9

)
, (10)[

∵ (a+ b+ c)2 = a2 + b2 + c2 + 2ab+ 2ac+ 2bc
]

(11)

=
2(λ21 + λ22 + λ23)− 2(λ1λ2 + λ1λ3 + λ2λ3)

9
. (12)

Now σ2 is maximum when the numerator is maximum and that will happen when we do not
subtract anything from 2(λ21 + λ22 + λ23). That gives us,

max(σ2) =
2(λ21 + λ22 + λ23)

9
. (13)

∴ σ2
norm =

σ2

2(λ2
1+λ

2
2+λ

2
3)

9

, (14)

=
(λ1 − µ)2 + (λ2 − µ)2 + (λ3 − µ)2

3 · 2(λ
2
1+λ

2
2+λ

2
3)

9

, [using Eq.(3)] (15)

=
3(λ1 − µ)2 + (λ2 − µ)2 + (λ3 − µ)2

2(λ21 + λ22 + λ23)
. (16)

∴ FA6 ≡
√
σ2

norm =

√
3

2

√
(λ1 − µ)2 + (λ2 − µ)2 + (λ3 − µ)2

(λ21 + λ22 + λ23)
. (17)

Now let us actually see when FA actually hits the maximum value. This will happen when

λ1λ2 + λ1λ3 + λ2λ3 = 0, (18)

such that
λ21 + λ22 + λ23 > 0. (19)

Since we already have the order λ1 ≥ λ2 ≥ λ3 ≥ 0, this will happen only when λ1 > 0
and λ2 = λ3 = 0 (i.e. fully restricted diffusion in the direction perpendicular to the fiber
orientation). In fact it is precisely the ordering of the λs that imposes dependency (co-
variability) between FA and AD. In some other words this dependency is by design, that is
standard deviations (FA) of a set of numbers (eigenvalues) is driven higher by large values
and by definition the large (eigen) values are called axial diffusivities. We also show this
relationship using contour plots in Fig. 2 so that we can easily see that FA gets higher when
λ1 (largest eigenvalue i.e. AD) is higher (and crosses) for fixed MD and RD.

1.3 Plausible biological interpretations
While pinning down biological interpretations of DTI measures definitively from in vivo data is
quite difficult, we can provide some qualitative discussions of plausible changes to fibers when
effects on FA and AD are detected but those on MD and RD are harder to detect. The biggest
tool we have for this exercise is visualization of the DTI ellipsoids as a function of the eigenvalues

6This shows us clearly where the
√

3

2
factor is coming from, in the popular definition of the FA.
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Figure 2: Contour plots (five contours are shown) of MD and RD as a function of FA and AD.
We can notice from both the plots that for fixed values of MD and RD there is quite a bit of
co-variability in FA and AD. More strongly so for contours of RD compared to those of MD, since
λ1 does not contribute to RD thus not saturating FA to its maximum as rapidly. More over nor
these dependencies are linear nor monotonic (see for e.g. RD contour=2).

(λs). For this we need to pick a set of eigenvalues (λs) for which we have fixed MD and RD values,
in other words we need to get the λs for MD and RD contours. Fig. 3 shows these contours. Note
that while Fig. 2 shows the contours as a function of FA and AD, for visualization we need those
as a function of the λs.
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Figure 3: Contour plots of MD and RD as a function of λs. We enforce the λ1 ≥ λ2 ≥ λ3 ≥ 0.
Five contours are shown. For MD we have contour surfaces, while for RD we have contour lines.

Fig. 4 (tob box) shows the shapes of the diffusion tensors for the MD contour at 1.5 and
those for the RD contour at 0.5 are shown in Fig. 4 (bottom box). These would be the examples
of cases where one would be able to detect the effects on FA and AD but neither on MD nor on
RD.
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(a) AD=1.7, FA=0.11 (b) AD=1.9, FA=0.24 (c) AD=2.0, FA=0.28 (d) AD=2.5, FA=0.53

(e) AD=1.7, FA=0.17 (f) AD=1.9, FA=0.30 (g) AD=2.0, FA=0.33 (h) AD=2.5, FA=0.61

(i) AD=2.0, FA=0.39 (j) AD=2.5, FA=0.66

(k) AD=0.5, FA=0.02 (l) AD=1.0, FA=0.41 (m) AD=1.5, FA=0.60 (n) AD=2.0, FA=0.71

(o) AD=1.0, FA=0.48 (p) AD=1.5, FA=0.63 (q) AD=2.0, FA=0.72

(r) AD=1.0, FA=0.63 (s) AD=1.5, FA=0.70 (t) AD=2.0, FA=0.75

Figure 4: Sample shapes of the diffusion tensors along MD and RD contours. The corresponding
AD and FA values are listed below the corresponding tensors. Top box. All the ellipsoids have
same MD value of 1.5 µm2·ms−1. We can notice the “elongation” of tensors as AD increases and
also increase in FA. The decrease in AD (and FA) as the anxiety measure increases could perhaps
be related to some sort of “shrinkage” in the tract in a voxel. Bottom box. All the ellipsoids have
same RD value of 0.5 µm2·ms−1. You can see that biologically the fiber can be in qualitatively
quite different conditions. As AD and FA increases we can see a “squishing” effect along one of
the directions perpendicular (here we are showing squishing in the direction of v3) to that of fiber
orientation. The decrease in such an effect could perhaps be related to some sort of “unbinding”
of the fibers in a voxel.
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