Bacterial Foraging Optimization –Genetic Algorithm for Multiple Sequence Alignment with Multi-Objectives

P.Manikandan¹, Dr. D. Ramyachitra², ¹Research Scholar, ²Assistant Professor, Department of Computer Science, Bharathiar University, Coimbatore-641 046, India. manimkn89@gmail.com¹, jaichitra1@yahoo.co.in.

<u>Performance Measures of Optimization Algorithms and Phylogenetic Tree</u> <u>Construction</u>

The Supplementary Table 1-2 shows the comparison of performance measures such as the Sumof-Pairs (SP) and Total Column Score (TCS) for the proposed and existing algorithms (GA, ACO, ABC, PSO) and also with various online MSA tools such as T-Coffee, Muscle, K-Align, MAFFT and Clustal Omega. From these results, it is inferred that the proposed BFO-GA algorithm provides better results than the existing methods and tools. Also the Supplementary Fig. 1 shows the small tree containing a part of Operational Taxonomic Unit (OTUs) for the proposed and existing algorithms with respect to RV3 reference family in BaliBASE database.

Table.1 : Comparisons of Sum of Pairs (SP) scores for the existing and the proposed algorithm for the MSA datasets										
Database	T- Coffee	Clustal Omega	Kalign	MUSCLE	MAFFT	GA	ACO	ABC	PSO	BFO-GA
Balibase	54	55	55	59	61	63	70	80	83	90
Sabmark	57	58	59	61	62	64	74	82	82	90
Prefab	57	52	51	55	59	60	65	80	76	88
Oxbench	50	49	51	55	58	61	74	83	86	90

Table.2 : Comparisons of Total Column Score (TCS) scores for the existing and the proposed algorithm for the MSA datasets										
Database	T- Coffee	Clustal Omega	Kalign	MUSCLE	MAFFT	GA	ACO	ABC	PSO	BFO-GA
Balibase	42	43	45	49	53	58	58	56	67	77
Sabmark	43	48	52	53	55	57	56	61	55	79
Prefab	51	49	50	53	54	56	59	64	59	75
Oxbench	48	46	50	52	54	56	59	67	56	75

1o20 A 0.4309 DHAB SCHPO 0.42721 DHAB ARATH 0.44699 FEAB_ECOLI 0.44503 1a4s_A 0.42704 DHAG_HUMAN 0.42251 XYLC_PSEPU 0.44255 1a4z A 0.43621 YF19 SCHPO 0.43208 DHAL_ECOLI 0.4448 DHAL_ENCBU 0.44265 SYP BORBU 0.44782 DHAL_ALTAL 0.43783 ALDA ECOLI 0.44068 DHA2 HUMAN 0.45082 DHAM LEITA 0.43721 ROCA_BACSU 0.43779 1ad3_A 0.45235 DHAB_AMAHP 0.44225 ARGD_SYNY3 0.44135 DMPC_PSEUF 0.44825 1ky8_A 0.44152 DHAL_BACST 0.44083 1uzb_A 0.43175 ROCA OCEIH 0.43373 ROCA_BACAN 0.43052 ROC1_BACHD 0.43389 DHAL_AGABI 0.44135 DHA6 YEAST 0.44397 SYG_YEAST 0.42303 SYG_SCHPO 0.42153

ABC

1o20_A 0.43242 SYG MYCPN 0.43187 SYP_METTH 0.45309 AAT_SYNY3 0.45754 1ky8_A 0.43585 1h4q_A 0.44209 SYP_BORBU 0.44025 **SYP MYCLE 0.43922** SYP_CLOST 0 44739 1evk A 0.44447 1ohv_A 0.44373 P5CS_ACTCH 0.44666 DMPC_PSEUF 0.4443 P5CS_VIGAC 0.4463 DHAY_YEAST 0.44725 PROA_THET2 0.42911 ARGD RHILO 0.43321 SYG_HUMAN 0.4512 PROA_XANAC 0.43438 HIS8_METTH 0.4378 PROA_SYNPX 0.42352 PROA PROMM 0.42741 DHAM LEITA 0.43694 AAT THEMA 0.43422 SYG_CAEEL 0.45268 GATA_USTMA 0.45422 P5CS_CAEEL 0.4579 ALDB ECOLI 0.43266 1gbn_A 0.43691 1uzb A 0.42724 ROC2_BACSU 0.43185 ROCA_BACSU 0.4336 ROCA_STAAM 0.42356 ROCA_BACAN 0.42033 ROCA_OCEIH 0.437 ROC1 BACHD 0.43424 PUT2_EMENI 0.45423

1o20 A 0.44294 SYG_METKA 0.43831 PROA_BIFLO 0.41662 PROA_CAUCR 0.41447 PROA_PSEPK 0.41869 PROA MYCLE 0.41661 PROA_CHRVO 0.42035 PROA NITEU 0.42103 PROA_RALSO 0.44333 PROA_RHILO 0.41567 PROA_XYLFA 0.41663 PROA_LISIN 0.41343 PROA_BACHD 0.41373 PROA AGRT5 0.43538 PROA_COREF 0.42763 PROA_HAEIN 0.42866 PROA_OCEIH 0.42712 PROA_RHOBA 0.42381 PROA BRAJA 0.41315 PROA_SHEON 0.41401 PROA ECO57 0.42119 PROA_DEIRA 0.41713 PROA RHIME 0.43709 DHAM_LEITA 0.44203 PROA_MEIRU 0.41781 PROA STRAW 0.41655 PROA_BACSU 0.41051 PROA_SERMA 0.40894 PROA SYNEL 0.43388 PROA SYNPX 0.42037 PROA_PROMA 0.42619 PROA_BRUME 0.41857 PROA_SYNY3 0.4232 PROA_PROMM 0.42454 PROA_PROMP 0.42926

1o20_A 0.43414 1euh_A 0.43447 DHAB_ARATH 0.41871 DHAB_HORVU 0.41839 P5CS_MESCR 0.4374 DHAL ALTAL 0.43638 P5CS_ACTCH 0.44964 YDCW_ECOLI 0.43587 ARUC PSEAE 0.43318 1ky8_A 0.43872 DHAG_HUMAN 0.44035 P5CS_VIGAC 0.44071 P5C1 ARATH 0.44418 DHAM_LEITA 0.44414 DHAB_RHIME 0.43959 DMPC_PSEUF 0.43244 ALDB_ECOLI 0.43598 1uzb_A 0.43631 YF19_SCHPO 0.44207 PUT2_EMENI 0.44721 ALDA_ECOLI 0.45087 DHA2_HUMAN 0.44517 OAT_EMENI 0.45138 ROCA_OCEIH 0.44312 XYLC PSEPU 0.44 DHA1 BACSU 0.44732 ROCA BACSU 0.42135 ROC1 BACHD 0.42418 DHA6_HUMAN 0.4376 DHAL_ASPNG 0.43794 DHAL_ENCBU 0.43672 DHAL BACST 0.45189 ROCA_BACAN 0.4397 ROC2_BACSU 0.4403 DHA6 YEAST 0.44978

Fig. 1: Phylogenetic Trees of RV 3 reference family in BaliBASE 3.0 Dataset