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S 1 Mathematical background

S 1.1 Stochastic differential equations in a nutshell

For readers who are not familiar with the concepts of It6 stochastic differential equations
(SDE), we want to give a very brief overview about how to describe diffusion processes, com-
pute underlying probability distributions and moments from an SDE, and the common dis-
cretization scheme that we used to simulate the trajectories.

S 1.1.1 Stochastic differential equations, moments and probability distributions

Consider a vector-valued random variable x; € R™ that evolves according to an It diffusion,
i.e. it can be described by the It6 SDE

dXt = (Xt, ) t)dt + B(Xt, )th (S-l)

Here, w; € R™ is a vector Brownian motion process with <dwtdeT> = """, ,dt, where 1
denotes the unit matrix in the corresponding dimension and further d;s = 1 if t = s and d;s = 0
otherwise. The deterministic part of Eq. is determined by the drift term a(xq,t)dt with
a vector-valued function a(xy,t), whereas the stochastic part is determined by the diffusion
term B(x,t)dw; with the matrix-valued noise covariance B(xy,t).

The process in Eq. defines a probability distribution p(x;) over the random variable
at each time ¢. In general, the evolution of the probability distribution p(x:) is given by the
Fokker-Planck equation|}

dp(xt) = L'[p(x,)]dt,  with (5-2)
n 82

LT [p(x)] = Z 6i [ai(x¢)p(xy)] + % Z 92,0, [Bi;(x¢)p(x4)] - (S-3)

where LT is called adjoint Fokker-Planck operator [I].

For certain drift and diffusion terms, there exists an analytical solution of Eq. for the
probability distribution p(x;). As an example, let us consider a stochastic process x; with drift
a;(x) = a;(z;) and noise covariance B(x:) = diag(b;(x;)). For this process, the dimensions of
the stochastic process are decoupled and the stationary distribution with dp(x;) = 0 can be
computed from Eq. :

p(Xt) = Hp(.’llt’l) = HZiieXp </x’ a; — 5565;; g )|$' d$/> , (8-4)

=1 =1 -

where Z; denotes the normalization constant in dimension i

1For the sake of readability, we dropped the explicit t-dependence in the arguments. This, however, does

not affect the generality of Eq. (5-2) - (S-6).
2Note that depending on a(x) Eq. (S-4) could for instance be non-normalizable, implying that no stationary
distribution exists for this process.
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From the Fokker-Planck equation, it is possible to derive the evolution of the expectation
of an arbitrary scalar-valued function ¢(x):

dote)) = [ dxiotx) (dp(x)
([ axiotxot i) a

0 1 0?
= <Z ai(xt)ﬂéﬁ(xi) + 3 ZBi,j(Xt)m¢(Xt)>dt
= (L (d(xt)))dL, (S-5)
where
" ) 1 « 02
Llp(xt)] = Zai(xt)%d)(xt) t5 > Bij(xt) 55 —p(xt) (5-6)
i=1 ¢ ij=1 B

L is the Fokker-Planck operator. To sum up, with a given It6 SDE it is possible to set up
equations for the evolution of its underlying probability distribution and for any scalar-valued
function by determining the Fokker-Planck operator and its adjoint.

S 1.1.2 Euler-Maruyama approximation

For numerical simulation of the SDE in Eq. (S-1)) a time-discretization scheme, the so-called
the Euler-Maruyama approximation, can be employed [2] to integrate an Itd SDE for small
time steps 0t = t,, 41 — ty:

Xnt1l = Xp+ a(xn7 tn)at + B(Xna tn)éwn7 (8_7)

where the increment of the Brownian motion process can be sampled from a Gaussian with
zero mean and unit variance, i.e. dw, ~ AN(0,1dt).

The generative model in our manuscript (cf. Eqgs. and (S-12)) directly defines the
Gaussian transition probabilities p(x|x;—s:) of the hidden state variable and the Gaussian
emission probabilities p(dy;|x;) for finite time steps dt, which is called Euler-Maruyama ap-
proximation, [2]:

p(XtIXt,(;) = N(thét + f(Xt,(;t) 6t, ZI (St), (S-S)
p(dyelxs) = J\/(g(xt) 5.3, 5t) (S-9)

The latter corresponds to the likelihood of the observations dy;. Note that just because the
transition and emission probabilities are Gaussian, the marginal probabilities p(x;) and p(y;:)
do not necessarily have to be Gaussians. In fact, the shape of the marginal p(x;) is determined
by the choice of the deterministic drift function f(x) and the noise covariance ¥, such that it
can be arbitrary. This marginal then constitutes the prior over the real-world variable, which
becomes time-invariant if the Fokker-Planck equation has a stationary solution p(x¢,t) = p(x).
The stationary solution of the Fokker-Planck equation for one-dimensional process and state-
independent (additive) noise is given by

el

x

p(xz) o exp(—2 (S-10)

where ¢(x) = — [ f(2')dz’ is the potential evoked by the deterministic drift.

S 1.2 Nonlinear filtering in a nutshell

In this section, we will outline the formal solution to the filtering problem and introduce to
approximate solution, which served as a benchmark in our manuscript: the standard particle
filter and the extended Kalman filter.



S 1.2.1 The formal solution to the filtering problem

Recall that the general nonlinear filtering problem is based on the following generative model:

dx; = f(x)dt + 3% dwy, (S-11)
dy; = g(x)dt+ 25/2 dvy. (S-12)

Solving the filtering problem for the generative model given by Egs. and aims
at computing the posterior probability of the hidden state p(x¢|)}), conditioned on the whole
sequence of observations up to time ¢. This problem has already been recognized and tackled
by mathematicians in the 60s and 70s of the last century, providing a formal solution for this
problem in terms of a (stochastic) partial differential equation for the normalized posterior
density, the so-called Kushner equation [3]

dp(x¢|Y:) = LT[p]dt+
T
(dy: = (&6cpievn ) =5 (860) = (B0 i) )P xe[YE),  (8-13)

where (x) denotes the expectation with respect to the posterior probabilit and L[x] denotes
the adjoint Fokker-Planck operator of the hidden process in Eq. (S-11f). The unnormalized
posterior density p(x¢|)) follows the so-called Zakai equation [4]

dp(x¢|Vs) = LT[p] dt+g"S, dys p(xi| D). (5-14)

Equivalently, the solution to the filtering problem is often given in terms of posterior ex-
pectations (¢(x;)) of an arbitrary function ¢(x) rather than in terms of the posterior density
itself.

d(g) = (L[p])dt+cov(p,g")T, " (dy: — (g) dt), (S-15)

where ¢(x) is a twice-differentiable, scalar-valued function and £ is the Fokker-Planck operator
for the hidden dynamics. For example, ¢(x) = x determines the dynamics of the first moment
of the posterior distribution, p, = (x¢):

dp, = (£)dt+cov(xy,g")S, ! (dy: — (g) dt). (S-16)

The formal solution to the filtering problem is, unfortunately, of little use for practical
applications in most cases, because of the so-called closure problem. To illustrate this problem,
consider for instance the evolution of the first moment of one component of a one-dimensional
hidden variable z for the generative function g(x) = x, which we get by plugging ¢(z) = x into
Eq. (S-15). The prefactor of the second term in this equation, the covariance cov(¢(z), g(x)) =
cov(z,z) will then be a second-order moment. In turn, if we want to compute the evolution
of the second moment moment by setting ¢ = 22, we end up with a dependence on an even
higher-order moment and so forth. This problem has been recognized early on and makes
these formal solutions infinite-dimensional. Therefore, in order to solve the filtering problem
in a general setting, we need to introduce suitable approximations.

S 1.3 Filtering methods used for comparison

Here, we summarize the algorithms that were used as benchmark in the main manuscript.

S 1.3.1 (Weighted) Particle Filter

Particle filtering is a numerical technique to take samples from the posterior based on sequential
importance sampling (see for instance [5] or [6] for review and thorough introduction) in general
state-space models. It is easily accessible, because in principle no knowledge of the Fokker-
Planck equation or numerical methods for solving partial differential equations is needed.
Here, we will briefly outline the algorithm, following [5], and clarify how we used it with our
generative model.

3For the sake of readability, in the following we will drop the arguments in the functions f(x¢), g(x:) and
¢(x¢), and unless stated explicitly otherwise, expectations (x) are with respect to the posterior p(x¢|V:).
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In general, one considers a state-space model of the form

xX: ~  p(xe|xe—1), (S-17)
yi ~ p(yelxe), (S-18)

where x; denotes the hidden process following the prior transition probability p(x¢|x;—1), and
Vi = {ys,s € N} is the sequence of observations generated from the emission probability
p(yt|x¢) at each time step.

Usually, samples cannot be taken from the filtering distribution p(x¢|);) directly. Instead,

one takes N samples (commonly referred to as particles) xﬁ” from a proposal distribution

m(x¢|X;i—1, V) conditioned on the whole history of observations ); and all the previous states
X;_1. These samples are weighted according to how well they correspond to the observations

with a set of weights wt(i). The posterior is approximated by

N
pdd) ~ Y wia(x - xiY) (S-19)
=1
N .
with Y w” = 1L (S-20)
=1

In sequential importance sampling, sampling and reweighing is done recursively at each time
step

Xgi) ~ 71—(xt|‘)((§:it)717.))t)v (8_21)
} , D), (o ()1 ()
'IZJ,gZ) _ Ibt(l_)lp(yt|x(i))p((:)(t |Xt—l>7 (8—22)
m(x; [ X1, V)
~(4)
(4) Wy
Zj:l wt(j)

where u?t(l) denotes the unnormalized importance weight of particle ¢ at time t.

For our generative model in Eqgs. and , choosing the prior transition probability
as the proposal distribution, i.e. 7(x:|X\7 1, V) = p(x¢|x\”,), we find that Eqs. and
are given by the emission and transition probability defined in Egs. and ,
respectively:

xf e pafefy) = N (D + 80 y) o1, D 8t). (5-24)

This method has two disadvantages. The first one is a problem called weight degeneracy:
After a finite number of iterations, all but one of the normalized importance weights are very
close to zero, and only one particle will make a significant contribution to the posterior.

In our case, this is indeed catastrophic, because it implies that the posterior is approxi-
mated by a single independent sample from Eq. , which does not take into account the
observations at all. To avoid this problem, we re-sample the particles in regular intervals with
a probability proportional to their weight whenever the effective number of particles,

(S-26)

is smaller than N/3 and set their respective weights to 1/N accordingly.

The second shortcoming of this method is that it suffers from the curse of dimensionality,
that is an exponential growth of computational complexity as a function of the dimension n
of the state vector x. To avoid this problem, more elaborate particle filters would have to be
used, as is discussed elsewhere (e.g. [7]).
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S 1.3.2 Feedback particle filter

In contrast to weighted particle filtering approaches, the Feedback particle filter (FBPF, [g])
is a particle filter that uses equally weighted particles to approximate the posterior, i.e.:

p(x¢|Vs) == N Z(S X¢ — x75 . (S-27)

Instead, the observations directly enter the particle dynamics, which evolve according to the
It6 SDE (1D model):

dx® = (f( 7)1 o, t)) dt (S-28)
+212dBY + K(2V ) [dy 3 (g< (l))-l—(g})}, (S-29)

where B(i) are uncorrelated vector Brownian motion processes, K (J:,gi),t) is the gain matrix

and (g) = Zz 1 g(act ) denotes the particle estimate of the observation function. The
components of the additional vector-valued drift function Q(xg ), t) are given by [9]

d m
1 aKlk
o §§ :§ Kl ) ). ($-30)

The gain K is the solution of an Euler-Lagrange boundary value (ELBV) problem that
emerges from an optimal control problem. It is chosen such that it minimizes the Kullback-
Leibler divergence between the particle distribution and the posterior filtering distribution
(conditioned on proper initialization). In general, K cannot be solved for in closed form, and
in practical implementations relies on a numerical solution of the ELBV.

In multiple dimensions, naive approaches to the EL-BVP turn out to be computationally
expensive. One way to approach this is to approximate the gain K with a Galerkin approxima-
tion. In particular, choosing the coordinate functions as basis functions, the so-called constant
gain approximation (CG) reads [9, Eq. 20]:

N
Ko = 2 (566" - ) (-31)

In this approximation, the gain is constant with respect to the particle positions, i.e. each
particle has the same gain, but still changes as a function of time. In this approximation, the
additional drift function 2 in Eq. is zero.

We use the FBPF with CG as a benchmark in our multidimensional simulations, because
as a related unweighted approach, it does not suffer from the COD (cf. [10]).

S 2 |Filtering with the Neural Particle Filter|

S 2.1 Limits of small and large observation noise

We want to investigate the limits of small and large observation noise in the NPF and show
that these limits are consistent with a Bayesian computation. For the general nonlinear case,
these cannot be calculated analytically, but it is possible to do so for a linear generative model,
which we would like to outline in the following.

S 2.1.1 The KBF in the limits of small and large observation noise

Before we start analysing the limits of the NPF, let us consider the ground-truth solution
to the filtering problem once more: the Kushner equation (Eq. Intuitively, for large
observation noise the observations become meaningless and the Kushner equation becomes
the Fokker-Planck equation, i.e. the posterior evolves according to the prior. Conversely,
the Kushner equation should be guided entirely by the observation term in the limit of no
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observation noise, and for an invertible generative function g(x)ﬁ the solution should become
a delta function p(x;|V;) ~ 6(dy: — g(x¢)dt). It is tempting to say that of course this is the
case, as the second term in Eq. is governed by X I meaning it should become large for
Yy — 0 and the Fokker-Planck term should be become negligible. However, as ¥, — 0, so do
g — (g(x)) and dy — (g(x))dt and it is difficult to tell just from looking at the equation how
fast these two contributions approach zero as ¥, is reduced.

Let us therefore consider an illustrative example of a linear, 1-dimensional systenﬂ

de = axdt+/Z,dw, (S-32)
dy = bxdt+\/3,dv. (S-33)

The well-known solution of this problem is a Gaussian with mean p and variance Y, whose
dynamics is given by the Kalman-Bucy filter [I1]:

X
dp = apdt+ Z—b(dy —budt), (S-34)
Yy
b2
v = —2—22 dt +2aX dt + 3, dt. (S-35)
Y

Equation ([S-35) is independent of the innovations process and thus has a well-defined fixed
point X*:

aXy
b2

For ¥, — 0, we find that £* approaches zero with X* o< 1/%,. Using this relation, we find
that the second term in Eq. scales with \/271,71 and thus dominates the dynamics of p.
Effectively, due to this very large prefactor the time scale of this dynamics 7 o \/Ziy approaches
zero, such that ¢ can almost be seen as a constant, and u relaxes towards p = /b almost
instantaneously. So in the deterministic limit, the solution is indeed p(x¢|V;) ~ 6(dy; — bz dt).

On the other hand, in the limit of large observation noise, we find ¥* = —%, which
corresponds to the variance of the prior probability distribution p(z) determined by Eq. (S-52).
Because it is independent of ¥, the second term in Eq. (S-34) vanishes and the dynamics of
the mean are identical to that of the mean of Eq. herefore, in the limit of large
observation noise, the posterior distribution is identical to the prior probability distribution

(x| Vr) = p(ay).

. 1
o= Ly bﬁ\/zy(zﬂzz +a2%,). (S-36)

S 2.1.2 The NPF in the limits of small and large observation noise

For the empirical version of the NPF with W = bX% 1 the analysis works analogous to the
Kalman-Bucy case. For our example, we find:

Y

dp = apdt+ Z—b(dy —budt), (S-37)
y

2b?

v = Y2 dt + 2aX dt + X, dt. (S-38)

Yy

Note the factor of 2 that shows up in front of the quadratic term in Eq. , which seriously

affects the steady-state variance ¥*:

E G/Ey

- 2p2

However, it does not affect the solutions in the deterministic and zero-information limit, re-

spectively, nor the proportionality with \/ZTJ when letting ¥, go to zero. Thus, the same

reasoning as in the previous sections applies and accordingly, the approximated posterior is
the same as the real posterior.

For a nonlinear model, we cannot offer a closed-form solution. However, if we expand the

nonlinearities f and ¢g around the mean, which is justified for small observation noise, we
obtain equations analogous to Egs. 1)1} which gives us the same scaling with ¥, in

4A fact that we will assume in the following analysis.

5The number of dimensions does not affect the scaling with ¥, which is why it readily generalizes to more
dimensions

SFor instance, the gain can be approximated via: W; = cov(ag(:v))E;l =~ g’(,u)EEgjl

1
+5 VI (225, +a2,). (S-39)
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Figure S-1: Performance and estimation of posterior variance. (a) The posterior
variance 3 on average exhibits a bias Bias(fl) =3 — Ypp when compared to that of the PF.
Here, solid (dashed) lines refer to simulations with only the visual (auditory) channel. (b), (c)
Performance in terms of time-averaged M SE = ((x; —2;)?); for toy model with only visual (b)
or auditory (c) cue, i.e. a generative model with Egs. and or 7 respectively. The
gain in the NPF is tuned according to W; = cov(xy,g(x;)")%, ! and according to a gradient
ascent on the log likelihood (‘ML’), respectively For benchmarking, we use a standard PF.
The performance of the NPF is nearly indistinguishable to that of the PF. In addition, we

compare the performance of an EKF.

the deterministic limit.

S 2.2 Approximation of higher-order moments

Our discussion in the main manuscript assesses the filtering performance of the NPF in terms
of it’s MSE, which actually measures how close the first moment of the posterior density is
to the ground-truth hidden state. However, the we can use the samples to also approximate
higher-order moments of the posterior density, or in fact any nonlinear function of hidden
state. Even though these approximated moments are not exact (for instance Fig. for the
second moment), the overall posterior shape is still captured to a considerable extent. For
some nonlinearities, our proposed model is thus superior to models that are relying on an
approximation of just the first two moments of the distribution such as the Extended Kalman
Filter (EKF).

For our example from the main manuscript, with a bimodal prior density, the EKF fails to
reproduce the features of the (bimodal) posterior, because it is by definition uni-modal. For
larger observation noise, the state estimate of the EKF becomes even worse because it evolves
to one of the fixed points of f(x) and remains there, irrespective of the real hidden state. This
explains why the predictive performance of the EKF in terms of its mean-squared error (MSE)
is fairly poor compared to that of the NPF (Fig. ,c).
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Figure S-2: MSE as a function of the number of particles N in d = 5 (solid line) and d = 1
(dashed line) hidden dimensions, respectively. Here, the MSE is normalized by the trace of
the prior variance to make the error dimension-free. Note that, while the PF and the NPF
(with empirical gain) fail completely for a single particle, the NPF with a gain determined by
ML has a close-to-optimal performance even for a single particle.

S 2.3 A single-particle estimator

As an interesting side remark we would like to add that the NPF with a gain factor W, that
is learned with ML, can be used as a single-particle estimator. In particular, this filter is able
to solve the filtering task with a single particle almost as good as with more particles, as we
illustrate in an example in Fig. By contrast, the NPF with empirically determined gain
factor (i.e. relying on a particle distribution to determine the gain) as well as the standard PF
(relying on a particle distribution to determine the particle weights) unsurprisingly exhibit an
MSE that corresponds to a single independent trajectory of the prior, and thus an MSE of
2 * dim(x). Of course, this applies only to the filtering performance as measured by how well
the first moment is matched (such as the MSE), and we would like to stress that a single-
particle scenario lacks behind in estimation problems that require higher-order moments of
the posterior density.

S 3 |Parameter learning]

S 3.1 The Log Likelihood Function

S 3.1.1 The likelihood function for stochastic processes

Here, we want to outline the derivation of the log likelihood function by Moura & Mitter [12],
which we use as a (negative) cost function for parameter learning.

Consider being given a sequence of observations ); that may have been generated by two
different diffusion processes, which, in turn, induce two different probability measures P and
Q, respectively. In order to decide which of these processes is more likely to have generated the
sequence, a likelihood ratio between these models can be computed, which corresponds to the
so-called Radon-Nikodym derivative between the induced probability measures [13, p. 282]:

dQ(r)
M) = FE (8-40)
Loosely speaking, a large value of A();) provides evidence for the diffusion model inducing Q
and vice versa.

In our model, we have to consider that these observations ); have been generated by a
latent process x; following Eq. . Here we introduce the innovations process n;, following
the dynamics

dnt = dYt - <g(Xt)>P9(Xt|yt)dt' (8_41)
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The innovations process is a Yy-adapted Brownian motion [I4], p. 33] under the original measure
Qp (or rather to a family of measures parametrized by 6), which is induced by Eqgs. (S-11|) and

(S-12) with parameters § and X, = I. By rearranging Eq. (S-41)), i.e.
dyt = (8(Xt)) p(x, |y, dt + dng, (S-42)

we thus obtain an Itd6 SDE for the observations process y; under the original measure Qq (X, ),
which additionally is completely independent of the latent process x;, leaving us merely with
a measure over the observations Qg()). The objective is now to maximize the likelihood that
this process (Eq. generated the observations with respect to the parameters 6.

In order to determine how likely the observations were generated from the model in Eq. ,
we compute the Radon-Nikodym derivative of Qg with respect to the Wiener measure P, a
measure under which y; is a Brownian motion process independent of hidden variables as
well as parametersm The corresponding Radon-Nikodym derivative can be computed with
Girsanov’s theorem [I4] cf. Eq. 3.18 on p. 52]:

d 4 d
Ag(V) = (;%9((33;) = Ep [%U‘}Y] (S-43)
1

= exp (/Ot<g(xt)>T dy — §<g(xs)>T<g(Xt)> dS)- (S-44)

Equivalently, instead of maximizing this likelihood function, we consider the logarithm of the
likelihood:

L0) = [ ) dy. = G ex)) (ex) ds (5-45)

Note that we had to rescale Eq. (S-12) such that it has unit variance. Hence in Eq. (S-45))
we have to replace gy(x;) — Zt_l/Qgg and dy; — Ey_l/Qdyt, in order to arrive at (Eq. @D in

main manuscript):

Lofline(gy — / (go (%)) S, dys — %<g9(xs>>§2; Hgo (xs))o ds, (S-46)
0

where expectations are taken with respect to the filtering distribution at time s, pg(xs|Vs)-
Note that parameter dependence enters via explicit dependence on the parameters 6 of the
generative function gy and via implicit dependence on theta of the conditional expectation
(.

In a discrete-time approximation, Eq. immediately suggests an online maximization
scheme. Instead of maximizing the cost function at a time ¢ for the whole observation sequence
Y, implying we would have to run the filter all over again each time we change the parameters,
we just perform a gradient ascent with respect to the parameters 6 on the last contribution to
the integral, i.e. to

. _ 1 _
L;)nlme(e) _ <g9(xt)>gzy 1 dy: — §<g9(Xt)>gEy 1<g0(xt)>0 dt, (8-47)
where expectations are with respect to the filtering distribution at time ¢, pg(x¢|Vs).

S 3.1.2 An intuitive derivation of the likelihood ratio

We want to give a less formal justification in discrete time and some intuition and further
motivation for the objective function in Eq. .

The overall objective for parameter learning is the maximization of the likelihood of the
observation sequence ). Cousider again the innovations process dn; (Eq. , which, con-
ditioned on the whole sequence of observations ); up to time ¢, is a Brownian motion process.

"Here, the Wiener measure as a choice of reference is advantageous because the Radon-Nikodym derivative
is straightforward to compute.
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In discrete time, at each (infinitely small) time step the increment dy; is thus distributed
according to a Gaussian with mean (g(x¢))p(x,|y,)dt and variance dt:

(V) = []rldyslYs) (S-48)
s=0
N teX _ (dys — (g(xs))dt)? $-49)
31;[0 p( 2dt ) (

(dys — (g(xs))dt)
2dt

2
+ const(dt). (S-50)

N

= log p(Jr)
s=0

Considering again the continuous-time limit, the sum in log p();) becomes an integral.

To ensure Eq. to be finite, any scaling with dt™,m < 1 is undesirable. However,
dy?/dt is of order dt'. This term as well as the constant is eliminated by considering instead
the logarithm of the likelihood ratio between p();) and ¢():), where ¢()%) is the probability
distribution of paths generated by a Brownian motion process with mean 0 and variance dt

o) = (dys — (g(x)d)? -~ dy?
Le=lg 5y = T 2t +§ 2t
=+ [ tex) Ty = 5 (ex) (el (s-51)

Note, that taking this ratio does not affect the maximization of Eq. , because the de-
nominator is independent of the model parameters as well as the hidden process x;.

Another, and probably more intuitive, way to look at the objective is the following: Equa-
tion actually corresponds to a prediction error, i.e. the difference between the actual
observation dy; and its predicted value evaluated from the model parameters and the filtering
distribution (g(x¢))p(x,|y,)dt-

S 3.1.3 Bias in the likelihood function for the particle estimate due to approxi-
mated posterior

In our model, the fact that we are using approzimations of the posterior instead of the
real posterior p(x¢|);), which we don’t have access to, in general introduces a bias into
the posterior estimation of any function (¢(x;)). In the following, we will use the notation
b = E[¢(x¢)| V] for the true posterior estimate (which we in general cannot calculate) and

(p(z))e~ + 0, (b(zéi)) for the posterior estimate approximated by the particle positions.

In the general, nonlinear model, the bias BIAS((¢)) = <5—\¢> = (¢) — ¢ is not analytically
accessible. Moreover, this bias not only affects estimation, but also parameter learning, because
the likelihood function also depends on posterior estimation and is a random variable even for
offline 1earningﬂ Consequently, the gradient of the log likelihood that is used for parameter
learning is biased as well.

Let us illustrate this for a simple, 1-dimensional generative model, which we attempt to
solve with an SDE similar to the NPF and for which the bias in the log likelihood can be
computed analytically:

dry = axydt+ /2zdwy, (S-52)
dyt = bl’t dt + 4/ Zydl/t. (8—53)

The well-known optimal solution of this problem is a Gaussian with mean u; = & and variance
%+, whose dynamics is given by the Kalman-Bucy filter [11].
Assuming stationary of the posterior, there exists a sampler of the form

dzt? = az{" dt + bdy, + édw, (S-54)

8Note that for offline learning with the true posterior and for a fixed observation sequence, the log likelihood
is deterministic.
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which exactly resembles the posterioxﬂ because of the structural resemblance to the Kalman-
Bucy filter (KBF). Consequently, there exists a choice of the gain W; in the equation of the
NPF, such that the first moment of the posterior is matched with the first moment of the
KBF. We can compute the bias of the first moment of the single-particle estimatoﬂ

a2 = a2V dt + W(dy, — b2 dt) + opdwy, (S-55)
=d(z" -2 = (a—wb) (=" = 2D)dt + o,duw,. (S-56)
The first moment of the random process described by Eq. (S-56|) is equal to the bias of the

single-particle estimator, the second moment is equal to the variance of the estimator. Since
Eq. (S-56) is an Ornstein-Uhlenbeck process, the stationary solution is given by:

o —

BIAS((z™)) = 1lim 2" —2{" =, (S-57)
t—inf
— 2
(4) _ : (@) _ 5(y2 _ Oz ~
VAR((=")) i (=7 = 27 2(Wb—a)’ (5-58)

The bias in the single-particle estimator can be used to compute the bias of the log likelihood
L for a limited number of samples. The bias of the log likelihood is given by

BIAS(L); = Lt — L, (S-59)

where

t
L, = / bxsdys—sz 2ds, (S-60)
i = /b Jdys — fb2<>d

(@) (i) () -
/ Zz dys — 2N2 2. zgds, (S-61)

are the true log likelihood and the log likelihood estimated from taking N samples, respectively.
With Egs. (5-57) and (S-58) it is straightforward to compute L;:

= Ly , b2 o2 N
- DN 20 gy s )20 )
Ly /0 N ;zs dys N ). (2(Wb ) 0ij + 2, % )ds (S-62)
152 o2
- -2 % .
" 2N2Wh—a) (5-63)

The second term denotes the bias of the estimated log likelihood. This bias is always negative,
i.e. with a finite number of particles we systematically underestimate the true log likelihood,
and asymptotically vanishes with increasing number of particles.

This example suggests that gradients for parameter learning should always be taken with
respect to the bias-corrected log likelihood. However, this bias cannot be estimated with a
nonlinear model, because the true posterior estimated cannot be computed analytically. Thus
we have to accept that this bias introduces an error in our parameter estimation that is hard
to control. As long as we can be sure that our approximation is asymptotically correct, i.e. in
the limit of a large number of particles N — oo or an infinitely small binsize §, — 0 in the
sampler, respectively, which is correct in the linear case, this bias vanishes asymptotically.

S 3.2 Learning rules

Performing a gradient ascent on Eq. (S-47) with respect to 6 gives rise to the online learning
rules in Eq. in the main manuscript:

700 = (55 6x0) 55 v~ ) ).

9unpublished work in our group, see also [15]
10The single-particle estimator denotes an estimator for the first moment of the posterior created by taking
a single sample from the sampling equation.
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In our model, we make use of the approximated posterior dynamics in order to derive
dynamics of the filter derivative for parameter learning. Equation can be approximated
by taking N samples from the NPF equation in order to express the posterior estimates:

N
1 k
) ~ > 8@, (5-64)
k=1
9 Lo~ (98, 0 N
70 8()) & N; (aa(zt )+ Gz ), | (5-65)
L~ (98,0 (k)
k k
= w2 (G - ouel?) (5-66)
*®) . 99i ( () . . . (k) _ 02"
where G;;(z'") := 52+ (2'")) denotes the Jacobian of the generative function and ey ; = =55

denotes the filter derivative that takes into account the infinitesimal change in the position of
sample z(¥) with respect to the change in parameter value 6.
The single particle filter derivative, a(gkt) , cannot be computed directly. However, based on

Eq. ( . it is possible to compute its dynamlcs
(k) 0 (o (k)
d ( Gy t) = 89 (d ) (8'67)

Note that every single parameter that is learned has N accompanying filter derivatives of this
form. The resulting algorithm is outlined in algorithm

Algorithm S-1 Parameter learning

1: procedure ONLINEML(6;_s;, {agft)fdt}fcvzl, {sz“)}{j:l, 0y+)

2: for k=1to N do

3: Propagate filter derivatives > dynamics for filter derivative are derived from
particle dynamics

d
agft) = agft)fét + %(dzﬁ)&) (S-68)
: end for
5: Compute
L
k
(&) = 2 s@) (S-69)
k=1
d(g) Lo~ (98, (k) - (k)
R _ k k k
o= = w2 (el v aehel) (570
6: Update parameter
0 = 65 +n0(8)s %, Oy — (g)01) (S-71)

7. return (9t7{a(k)}k 1)
8: end procedure

S 3.2.1 Learning rules for W and J

In this work we are interested in learning the decoding weight matrix W; and, for a linear
observation dynamics g(x) = Jx, in learning the generative matrix J, respectively. The
resulting learning rules for the components of the decoding weight matrix with learning rate
nw are given by

AWy = o () TS (dye — (g(x)de) (5-72)



with filter derivative dynamics

az(k) L i 8Z(k) X
d| =t = (FEM) - waEM)) Z—at + [dy, — g(zM)dt] e;,  (S-73)
(awij ( t t )awij [dy: —gla "),

where Fj;(z®)) = %(z(k)) denotes the Jacobian of the nonlinear hidden dynamics and e;
denotes the unit vector in the i-th direction. This implies that, when we take W; to be a
plastic decoding weight matrix that is learned as observations become available, at least three
equations are needed to infer the hidden state at each time step: First, Eq. to evolve the
states of the filter neurons, and second, Egs. and to update the weights in the
filter equation.

Analogously, learning rules for the components of the generative matrix for linear observa-
tion dynamics g(x) = Jx read

)

T
agy = m[(%i?) Ty = ) dt) + (2 (dy = TGx) dt) ) )

](.8—74)
In addition to a term proportional to the filter derivative, the learning rule contains a second
term that emerges from an explicit dependence of the likelihood in the generative weight.
Filter derivatives are given by

3z(k) & az(k) .
A\ S = (F@®)-wr) Tt -l Wedt. (S-75)
ij i

S 3.3 Approximation for small observation noise: Hebbian learning

The learning rules we obtain for the decoding weights W; and the generative weights J are
not local, implying that the weights can only be computed when knowing the state of each
filter neuron at each time. However, for small observation noise the learning rule for the
generative weight J can be approximated by a local learning rule with a Hebbian structure.
First, we can neglect the filter derivative, which decays to zero very fast because in this limit,
the decoding weight W; is generally large (cf. Eq. 7 and thus the first term in Eq.
vanishes. Second, because in this limit the posterior will approach a d-distribution around the
true hidden state x, as does the approximated posterior, we can approximate the learning rule
for J by:

nytdJ o (dys — J(x) dt)(x)" =~ ((dy: — Jxi)x] ), (S-76)

which takes the form of a local Hebbian learning rule.

For numerical illustration, we use our example model from the main manuscript with only
a visual cue, i.e. a generative model with Egs. and Values of the estimator .J learned
with ML, i.e. the learned value of the generative factor, tend to exhibit a slight negative
bias, but for an observation noise of up to £, = 0.1 still stay in a 2%-region below the true
generative weight. Hebbian learning leads to an estimator J for the generative weight J that
is also slightly negatively biased for small observation noise and that becomes less accurate
for large observation noise (Fig.|S-3h). However, this bias does not seem to affect the filtering
performance as measured by the MSE (Fig. [S-3)).

S 4 Details on numerical experiments

For our simulations, we use a nonlinear hidden dynamics, that was chosen to have a bimodal
stationary distribution:

dry = axi(b—2?)dt + opdw;. (S-77)

The parameters a > 0 and b > 0 can be used to tune the shape of the bimodal distribution,
whereby the positions of the two modes is determined by +b and a defines how sharply the
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Figure S-3: Bias of the parameter estimation obtained with a Hebbian learning
rule in the limit of small observation noise. Simulations shown here correspond to the
example model with only a visual cue, i.e. a generative model with Egs. and . As
benchmark, we use a weighted PF with the true model parameters. (a) Bias of estimated
generative weight J for maximum likelihood and Hebbian learning, respectively. (b) The
filtering performance is not affected by the bias of J.

distribution is peaked around the modes. Unless stated otherwise, parameters for the deter-
ministic dynamics were ¢ = 3 and b = 1, resulting in a bimodal distribution with distinct, but
not too sharp peeks at +1, such that it is possible for the hidden state to switch from one
mode to the other.

In our example simulations in Fig. |3] we employ both linear and sigmoid observation dy-
namics g(x), thereby simulating multisensory integration with our model (cf. Egs. [14]and .
For the plots in Figs. we use only one sensory modality per subfigure. The observation
noise o, and o, is varied between 10~% and 300.

In the multidimensional simulations in Fig. [, we use both linear and nonlinear hidden
dynamics. We consider the hidden dynamics within each dimension to be independent of the
other dimensions, i.e. fi(x) = f(x;), where f(z) = —x for the linear and f(z) = —3z(1 — 2?)
for the nonlinear hidden dynamics, respectively. ¥, = I in both cases. The linear generative
function is given by g(x) =2I-x and ¥, = L.

For the linear model model, the optimal MSE can be computed analytically by a Kalman-
Bucy filter in the stationary limit (MSE®®* = 0.5 - dim(x)). For the nonlinear model, the
stationary prior is a multimodal distribution with 2% peaks. We determined the optimal
performance numerically as the limit of a very large number of particles of the weighted
particle method MSE®P' ~ 0.42 - dim,. The optimal performance is used to compare model
performance of the NPF, the FBPF and the PF for a limited number of particles.

Mean-squared errors (MSE) and biases of estimated quantities or parameters 0 were com-
puted by

T
1 2
MSE = T;\Xt—<x>|7 (S-78)
. 1<
Bias(0) = TZet—at, (S-79)

t=1

where 6, denotes the true or benchmark (weighted PF) value. Unless stated otherwise, MSEs
are normalized with respect to the trace of the stationary prior variance ..., to make per-
formance comparable and, if needed, independent of the number of hidden dimensions.

Other simulation parameters comprise the time step size, which was set to dt = 0.005
throughout all simulations. All simulations were run for at least 500’000 time steps, corre-
sponding to 2500 time units. Unless stated otherwise, MSEs and biases were averaged over
the last 1000 time units, equaling 200’000 time steps. For the multidimensional simulations,
MSEs were determined as an average over the last 5000 time units.
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