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Figure S1. PKC-3 (D386V) causes a temperature sensitive polarity phenotype distinct from reduction in PKC-3 levels, Related to Figure 1

(A) Embryo extract blots at the indicated conditions showing PKC-3 and α-tubulin (loading control). Intensity of PKC-3 (loading-corrected) in 
pkc-3(ts)(D386V) and pkc-3(RNAi) embryos quantified relative to their corresponding wild type temperature condition (mean±SEM). pkc-3(RNAi) was 
performed at 25ºC. Note that pkc-3(ts) at the restrictive and permissive temperatures show similar reduction in PKC-3 protein amounts compared to 
controls. pkc-3(ts) 25ºC (n=5), pkc-3(ts) 15ºC (n=3), pkc-3(RNAi) (n= 4).

(B) Quantification of zygote PKC-3 cortical intensity determined by confocal immunofluorescence. PKC-3 cortex intensity of pkc-3(ts) embryos are plotted 
relative to PKC-3 cortical levels of control zygotes (mean±SEM). Control (TY3558) and pkc-3(ts) (WM150) zygotes were processed on the same slide to 
facilitate direct comparisons, with control zygotes identifiable by expression of GFP fusions to histone and β-tubulin. Embryos subjected to pkc-3(RNAi) 
were mounted on a separate slide but processed in parallel and imaged under identical conditions.  Note that the results are broadly similar to what is 
seen in western blots. wt 25ºC (n=23), pkc-3(ts) 25ºC (n=31), pkc-3(ts) 15ºC (n=25), pkc-3(RNAi) (n= 10) and wt 15ºC (n=27).

(C) Representative midsection confocal images of wild type, pkc-3(RNAi) and pkc-3(ts) metaphase zygotes, immunostained for PAR-2, PAR-3 and 
PKC-3. Note that although PKC-3 levels are similar in pkc-3(ts) at 15ºC and 25ºC (A and B), only pkc-3(ts) at 25ºC shows a clear polarity defect. pkc-3(ts) 
at 15ºC appears very similar to the phenotype observed under a weak knock down of PKC-3 (pkc-3(RNAi) 25%), including the appearance of a small, 
transient anterior PAR-2 domain during the establishment phase (data not shown). Scale bar: 10μm.
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Figure S2. CRT0103390 inhibits atypical PKC without affecting PAR-1, Related to Figure 1

(A) Structure of CRT0103390 and key enzymatic data.  Kinase selectivity represents the percent of kinases out of a panel of 442 diverse kinases inhibited 
by >90%.  

(B) CRT0103390 inhibits LLGL2 phosphorylation in HEK-293 cells, co-transfected with LLGL2-FLAG and PKCι, after 1 hr of treatment as assayed by 
immunoblot analysis. 

(C) IC50 curve of LLGL2 phosphorylation by CRT0103390 measured by ELISA. 

(D) The diffusive state of MEX-5 along the antero-posterior zygote axis is regulated by PAR-1, which is epistatic to PKC-3.  In pkc-3(RNAi) embryos, 
PAR-1 is uniformly active, resulting in uniform, fast diffusion of MEX-5.  Conversely, in par-1(RNAi) or par-1/pkc-3(RNAi) embryos, MEX-5 is uniformly 
slow (Griffin et al., 2011).  If CRT90 inhibited both PAR-1 and PKC-3, we would expect uniform slow MEX-5, which we do not observe in (E) and (F). 

(E) Selected midsection confocal images of MEX-5 in control, par-1(RNAi), pkc-3(RNAi), DMSO and CRT90 treated zygotes, before (Pre-bleach), 
immediately after (BLEACH), or 20 seconds after fluorescence photobleaching of a central stripe along the AP axis (Post-bleach). Scale bar: 10µm. 

(F) Pre-bleach-normalized fluorescence intensity recovery of a central region of the embryo, showing that MEX-5 mobility in CRT90-treated embryos 
closely matches the faster recovery of pkc-3(RNAi) embryos compared to par-1(RNAi).  For each condition, mean values are shown (thick line) along with 
a shaded region indicating the full data range across samples.
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Figure S3. PAR-6 and PAR-3 colocalization is reduced in PKC-3-inhibited embryos, 
Related to Figure 2

(A) Cortical confocal images of wild type and pkc-3(ts) zygotes at late establishment phase 
stained for PAR-6 and PAR-3. Insets are magnifications of the ROIs delimited by dashed-line 
rectangles in PAR-6 image and show the overlap (white) of PAR-6 and PAR-3 in the anterior 
cortex. Scale bar: 10µm. Graphs shows the intensity correlation quotient (Li et al., 2004,
Mean±CI 95%) between PAR-6 and PAR-3 in wild type (n=8) and pkc-3(ts) (n=9) 
zygotes.****p<0.0001.

(B) Super resolution images of wild type and pkc-3(ts) zygotes of an anterior cortical region 
stained for PAR-6 and PAR-3. In Costes’ Mask images (JaCOP, Fiji) white regions indicate 
highly probable regions of colocalization (p-value of 100%). Scale bar: 2 µm.
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Figure S4. PAR-6 membrane localization depends directly on PAR-3, PKC-3 and CDC-42, Related to Figure 2 
 
(A-C) Representative midsection confocal fluorescent images of PAR-6::GFP (A-B) and GFP::PAR-6 (C) expressing zygotes captured at 
nuclear envelope breakdown in the respective mutant backgrounds (par-1(ts), A-B;  par-2(ts), C) at the permissive (19ºC, A) or restrictive 
(25ºC, B-C) temperature in combination with RNAi targeting pkc-3, cdc-42 and par-3 as indicated. Note that at the permissive temperature 
(CTL, first row), PAR-6 fails to localize to the membrane in pkc-3(RNAi), cdc-42(RNAi) or par-3(RNAi) embryos.  Membrane localization is 
not rescued when shifted to the restrictive temperature to inactivate PAR-1(B) or PAR-2(C) suggesting the failure of PAR-6 to bind membrane 
is not due to invasion of PAR-1 / PAR-2 into the anterior. Scale bar:10µm.
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Figure S5. Impact of CDC-42/GTP on membrane loading of anterior PARs, Related to Figure 3

(A) Midsection confocal images of zygotes showing that in pkc-3(ts) zygotes membrane localisation of PAR-6 and PKC-3, but 
not PAR-3, is dependent on CDC-42/GTP. pkc-3(ts) embryos are stained for PKC-3, PAR-6 and PAR-3. Representative images 
of control RNAi, top row, and defective phenotypes observed after RNAi of cdc-42, cgef-1 or par-3 are shown as indicated.

(B) Scatter plot of PKC-3, PAR-6 and PAR-3 anterior cortical intensities for datasets represented in (A).  For each embryo (dot), 
the cortical intensity is divided by the corresponding PAR cytoplasmic intensity (mean±CI 95%). Values greater than 1 indicate 
presence at the cortex. See STAR Methods for details.

(C-E) Representative midsection confocal images (C), ASI quantifications (D), and normalized cortical intensity (E) for live 
wild-type, pkc-3(ts), or cgef-1(RNAi) zygotes expressing the CDC-42/GTP-binding domain of WSP-1 (GBPwsp1), which 
monitors CDC-42 activity. White arrowheads highlight boundaries of spatial CDC-42 activity enrichment in wild type. Note that 
active CDC-42/GTP is localized uniformly to the membrane in PKC-3-inhibited zygotes (D) and shows similar levels to those 
present in wild-type (E). Therefore, CDC-42/GTP is in position to support PAR-6/PKC-3 anchoring at the membrane. Dataset 
for RNAi targeting cgef-1 (CDC-42-GEF) is included for comparison. N (grey numbers) indicated in (D) and is the same for 
corresponding data in (E). 

(F) Representative midsection confocal images of live par-3(RNAi) embryos expressing CDC-42(WT, mCherry) or 
CDC-42(Q61L, mCherry). 

(G) Quantification of datasets represented in (F), which show no detectable rescue of GFP::PKC-3, despite observing signifi-
cant enrichment of CDC-42(Q61L) at the membrane compared to wild-type CDC-42, suggesting we are stabilizing CDC-42 at 
the membrane. Note this analysis used heterozygous worms due to difficulties obtaining non-silenced homozygotes after 
crossing to a GFP::PKC-3 strain, which may account for the difference compared to (H-J). Intensity is normalized as in Figure 
3D to control(RNAi) + CRT90 to facilitate comparison between the two figures.

(H) Representative midsection confocal images of cdc-42(Q61L) and cdc-42(WT) embryos co-stained for PAR-3 and PKC-3 
after par-3(RNAi). 

(I) PKC-3 cortical intensity is normalized to cytoplasm and to wild type samples processed on the same day to account for 
variation between days (mean±CI 95%). Wild type (n=39), pkc-3(ts) (n=17), cdc-42(WT) (n=19) and cdc-42(Q61L) (n=47). Note 
that upon par-3(RNAi) in cdc-42(Q61L) embryos, we observe only a minor rescue of PKC-3 membrane localization compared 
to pkc-3(ts). Thus, while increasing CDC-42/GTP levels can bias the system towards CDC-42-dependent PKC-3 assemblies 
(see Figure 5F-K), the bulk of PKC-3 membrane loading remains dependent on PAR-3, unlike in PKC-3-inhibited embryos.

(J) Comparison of membrane profiles of PKC-3 for the embryos in (I), highlighting membrane signal, showing mean ± SD. 
Briefly, normalized intensity profiles were extracted as 60 pixel stripes encompassing the embryo membrane, which was 
straightened using ImageJ. A 60x60px area in the region of peak PKC-3 membrane signal was projected in x to give a 
cross-section profile spanning background (Bkgd), crossing the membrane/cortex and into the cytoplasm (Cyto), which was 
then normalized such that background is set to 0 and cytoplasm to 1. Although cdc-42(Q61L) embryos show a minor peak of 
PKC-3 at the membrane, the magnitude of this peak in cdc-42(Q61L)  embryos is significantly reduced compared to pkc-3(ts). 
All analysis in (I-J) was limited to embryos with no detectable PAR-3 at the membrane. 

**p<0.01, ***p<0.001, ****p<0.0001. Scale bars: 10μm. 



A

C

wild type pkc-3(ts) pkc-3(ts)
0

0.5

1

1.5

2

A
S

I

ns

**
**

**

PAR-3
PKC-3

rga-3/4 (RNAi) 50%

w
ild

 ty
pe

Anti-PAR-3 Anti-PKC-3

 p
kc

-3
(ts

)
rg

a-
3/

4 
(R

N
A

i) 
50

%
  

 p
kc

-3
(ts

);
rg

a-
3/

4(
R

N
A

i) 
50

%

B

mlc-4
(RNAi)

CRT-90

flow speed
(µm/min)

GFP::PKC-3

3.6 / 0.27 2.2 / 0.23 1.7 / 0.19

2.2 / 0.88 1.5 / 0.673.6 / 0.94

ASI

Figure S6. Analysis of the role of actomyosin flow and PAR segregation in wild type and PKC-3-inhibited embryos, Related to Figure 5

(A) Midsection confocal images of mlc-4(RNAi) and CRT90 treated embryos, matched by measured flow speed.  Note all CRT90-treated embryos exhibit 
similar loss of asymmetry across all three flow rates, whereas mlc-4(RNAi) embryos retain asymmetry, though it decreases somewhat as flow rates are 
reduced. Flow rate (µm/min) / ASI are shown within each embryo.

(B) Representative midsection confocal images of maintenance phase wild-type or pkc-3(ts) embryos with or without partial RNAi-mediated depletion of 
the RhoGAPs RGA-3/4. Embryos were fixed and stained for both PAR-3 and PKC-3. Note that segregation of PAR-3 is fully rescued in pkc-3(ts) by 
rga-3/4(RNAi), whereas PKC-3 remains present at the posterior. Scale bar: 10μm.

(C) ASI quantification of the full dataset represented in (B) reveals failure of rga-3/4(RNAi) to rescue PKC-3 asymmetry despite rescue of PAR-3 ASI to 
wild-type levels. ASI is shown normalized for each protein individually compared to N2. (N: wild type = 25, pkc-3(ts) = 22, pkc-3(ts); rga-3/4(RNAi)
50% = 9, wild type; rga-3/4(RNAi)50% = 6)

**p<0.01. Scale bars: 10μm. 
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Figure S7. Anterior meiotic PAR-2 domains are rapidly cleared by targeting PKC-3 to the membrane, Related to Figure 6

(A) Midsection fluorescent images of emb-27(RNAi) zygotes expressing GFP::PKC-3 with mCherry::PAR-2. emb-27(RNAi) induces 
defects in meiotic progression, leading to inverted polarity with an anterior domain of PAR-2 near the meiotic spindle remnant, similar to 
mei-1(RNAi) (Wallenfang and Seydoux, 2000). This anterior meiotic domain remains on the membrane for more than 30 min (n=3).

(B) Same as (A), but zygotes express GFP::C1B-PKC-3, which is targeted to the membrane by the addition of PMA. (B). The increase in 
PKC-3 at the membrane rapidly clears the anterior PAR-2 domain upon PMA addition (3.2±1.7min, n=3).  Arrows indicate enhanced 
PKC-3 membrane localisation 60 s after PMA addition.

Note that neither GFP::PKC-3 or C1B::GFP::PKC-3 are fully excluded by the PAR-2 domain (arrowheads). Scale bar: 10μm.
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