**Developmental Cell, Volume 42** 

# **Supplemental Information**

# aPKC Cycles between Functionally Distinct PAR

# **Protein Assemblies to Drive Cell Polarity**

Josana Rodriguez, Florent Peglion, Jack Martin, Lars Hubatsch, Jacob Reich, Nisha Hirani, Alicia G. Gubieda, Jon Roffey, Artur Ribeiro Fernandes, Daniel St Johnston, Julie Ahringer, and Nathan W. Goehring



## Figure S1. PKC-3 (D386V) causes a temperature sensitive polarity phenotype distinct from reduction in PKC-3 levels, Related to Figure 1

(A) Embryo extract blots at the indicated conditions showing PKC-3 and  $\alpha$ -tubulin (loading control). Intensity of PKC-3 (loading-corrected) in *pkc-3(ts)*(D386V) and *pkc-3(RNAi*) embryos quantified relative to their corresponding wild type temperature condition (mean±SEM). *pkc-3(RNAi*) was performed at 25°C. Note that *pkc-3(ts)* at the restrictive and permissive temperatures show similar reduction in PKC-3 protein amounts compared to controls. *pkc-3(ts)* 25°C (n=5), *pkc-3(ts)* 15°C (n=3), *pkc-3(RNAi*) (n= 4).

(B) Quantification of zygote PKC-3 cortical intensity determined by confocal immunofluorescence. PKC-3 cortex intensity of *pkc-3(ts)* embryos are plotted relative to PKC-3 cortical levels of control zygotes (mean±SEM). Control (TY3558) and *pkc-3(ts)* (WM150) zygotes were processed on the same slide to facilitate direct comparisons, with control zygotes identifiable by expression of GFP fusions to histone and  $\beta$ -tubulin. Embryos subjected to *pkc-3(RNAi)* were mounted on a separate slide but processed in parallel and imaged under identical conditions. Note that the results are broadly similar to what is seen in western blots. wt 25°C (n=23), *pkc-3(ts)* 25°C (n=31), *pkc-3(ts)* 15°C (n=25), *pkc-3(RNAi)* (n= 10) and wt 15°C (n=27).

(C) Representative midsection confocal images of wild type, *pkc-3(RNAi)* and *pkc-3(ts)* metaphase zygotes, immunostained for PAR-2, PAR-3 and PKC-3. Note that although PKC-3 levels are similar in *pkc-3(ts)* at 15°C and 25°C (A and B), only *pkc-3(ts)* at 25°C shows a clear polarity defect. *pkc-3(ts)* at 15°C appears very similar to the phenotype observed under a weak knock down of PKC-3 (*pkc-3(RNAi)* 25%), including the appearance of a small, transient anterior PAR-2 domain during the establishment phase (data not shown). Scale bar: 10µm.



Dendra2::MEX-5

## Figure S2. CRT0103390 inhibits atypical PKC without affecting PAR-1, Related to Figure 1

(A) Structure of CRT0103390 and key enzymatic data. Kinase selectivity represents the percent of kinases out of a panel of 442 diverse kinases inhibited by >90%.

(B) CRT0103390 inhibits LLGL2 phosphorylation in HEK-293 cells, co-transfected with LLGL2-FLAG and PKCi, after 1 hr of treatment as assayed by immunoblot analysis.

(C) IC50 curve of LLGL2 phosphorylation by CRT0103390 measured by ELISA.

(D) The diffusive state of MEX-5 along the antero-posterior zygote axis is regulated by PAR-1, which is epistatic to PKC-3. In *pkc-3(RNAi)* embryos, PAR-1 is uniformly active, resulting in uniform, fast diffusion of MEX-5. Conversely, in *par-1(RNAi)* or *par-1/pkc-3(RNAi)* embryos, MEX-5 is uniformly slow (Griffin et al., 2011). If CRT90 inhibited both PAR-1 and PKC-3, we would expect uniform slow MEX-5, which we do not observe in (E) and (F).

(E) Selected midsection confocal images of MEX-5 in control, *par-1(RNAi)*, *pkc-3(RNAi)*, DMSO and CRT90 treated zygotes, before (Pre-bleach), immediately after (BLEACH), or 20 seconds after fluorescence photobleaching of a central stripe along the AP axis (Post-bleach). Scale bar: 10µm.

(F) Pre-bleach-normalized fluorescence intensity recovery of a central region of the embryo, showing that MEX-5 mobility in CRT90-treated embryos closely matches the faster recovery of *pkc-3(RNAi)* embryos compared to *par-1(RNAi)*. For each condition, mean values are shown (thick line) along with a shaded region indicating the full data range across samples.



# Figure S3. PAR-6 and PAR-3 colocalization is reduced in PKC-3-inhibited embryos, Related to Figure 2

(A) Cortical confocal images of wild type and *pkc-3(ts)* zygotes at late establishment phase stained for PAR-6 and PAR-3. Insets are magnifications of the ROIs delimited by dashed-line rectangles in PAR-6 image and show the overlap (white) of PAR-6 and PAR-3 in the anterior cortex. Scale bar: 10µm. Graphs shows the intensity correlation quotient (Li et al., 2004, Mean±CI 95%) between PAR-6 and PAR-3 in wild type (n=8) and *pkc-3(ts)* (n=9) zygotes.\*\*\*\*p<0.0001.

(B) Super resolution images of wild type and *pkc-3(ts)* zygotes of an anterior cortical region stained for PAR-6 and PAR-3. In Costes' Mask images (JaCOP, Fiji) white regions indicate highly probable regions of colocalization (p-value of 100%). Scale bar: 2  $\mu$ m.



### Figure S4. PAR-6 membrane localization depends directly on PAR-3, PKC-3 and CDC-42, Related to Figure 2

(A-C) Representative midsection confocal fluorescent images of PAR-6::GFP (A-B) and GFP::PAR-6 (C) expressing zygotes captured at nuclear envelope breakdown in the respective mutant backgrounds (*par-1(ts*), A-B; *par-2(ts*), C) at the permissive (19°C, A) or restrictive (25°C, B-C) temperature in combination with RNAi targeting *pkc-3*, *cdc-42* and *par-3* as indicated. Note that at the permissive temperature (CTL, first row), PAR-6 fails to localize to the membrane in *pkc-3*(*RNAi*), *cdc-42*(*RNAi*) or *par-3*(*RNAi*) embryos. Membrane localization is not rescued when shifted to the restrictive temperature to inactivate PAR-1(B) or PAR-2(C) suggesting the failure of PAR-6 to bind membrane is not due to invasion of PAR-1 / PAR-2 into the anterior. Scale bar:10µm.



#### Figure S5. Impact of CDC-42/GTP on membrane loading of anterior PARs, Related to Figure 3

(A) Midsection confocal images of zygotes showing that in *pkc-3(ts)* zygotes membrane localisation of PAR-6 and PKC-3, but not PAR-3, is dependent on CDC-42/GTP. *pkc-3(ts)* embryos are stained for PKC-3, PAR-6 and PAR-3. Representative images of control RNAi, top row, and defective phenotypes observed after RNAi of *cdc-42*, *cgef-1* or *par-3* are shown as indicated.

(B) Scatter plot of PKC-3, PAR-6 and PAR-3 anterior cortical intensities for datasets represented in (A). For each embryo (dot), the cortical intensity is divided by the corresponding PAR cytoplasmic intensity (mean±CI 95%). Values greater than 1 indicate presence at the cortex. See STAR Methods for details.

(C-E) Representative midsection confocal images (C), ASI quantifications (D), and normalized cortical intensity (E) for live wild-type, *pkc-3(ts)*, or *cgef-1(RNAi)* zygotes expressing the CDC-42/GTP-binding domain of WSP-1 (GBPwsp1), which monitors CDC-42 activity. White arrowheads highlight boundaries of spatial CDC-42 activity enrichment in wild type. Note that active CDC-42/GTP is localized uniformly to the membrane in PKC-3-inhibited zygotes (D) and shows similar levels to those present in wild-type (E). Therefore, CDC-42/GTP is in position to support PAR-6/PKC-3 anchoring at the membrane. Dataset for RNAi targeting *cgef-1* (CDC-42-GEF) is included for comparison. N (grey numbers) indicated in (D) and is the same for corresponding data in (E).

(F) Representative midsection confocal images of live *par-3(RNAi)* embryos expressing CDC-42(WT, mCherry) or CDC-42(Q61L, mCherry).

(G) Quantification of datasets represented in (F), which show no detectable rescue of GFP::PKC-3, despite observing significant enrichment of CDC-42(Q61L) at the membrane compared to wild-type CDC-42, suggesting we are stabilizing CDC-42 at the membrane. Note this analysis used heterozygous worms due to difficulties obtaining non-silenced homozygotes after crossing to a GFP::PKC-3 strain, which may account for the difference compared to (H-J). Intensity is normalized as in Figure 3D to *control(RNAi)* + CRT90 to facilitate comparison between the two figures.

(H) Representative midsection confocal images of *cdc-42(Q61L)* and *cdc-42(WT)* embryos co-stained for PAR-3 and PKC-3 after *par-3(RNAi)*.

(I) PKC-3 cortical intensity is normalized to cytoplasm and to wild type samples processed on the same day to account for variation between days (mean±Cl 95%). Wild type (n=39), *pkc-3(ts)* (n=17), *cdc-42(WT)* (n=19) and *cdc-42(Q61L)* (n=47). Note that upon *par-3(RNAi)* in *cdc-42(Q61L)* embryos, we observe only a minor rescue of PKC-3 membrane localization compared to *pkc-3(ts)*. Thus, while increasing CDC-42/GTP levels can bias the system towards CDC-42-dependent PKC-3 assemblies (see Figure 5F-K), the bulk of PKC-3 membrane localing remains dependent on PAR-3, unlike in PKC-3-inhibited embryos.

(J) Comparison of membrane profiles of PKC-3 for the embryos in (I), highlighting membrane signal, showing mean  $\pm$  SD. Briefly, normalized intensity profiles were extracted as 60 pixel stripes encompassing the embryo membrane, which was straightened using ImageJ. A 60x60px area in the region of peak PKC-3 membrane signal was projected in x to give a cross-section profile spanning background (Bkgd), crossing the membrane/cortex and into the cytoplasm (Cyto), which was then normalized such that background is set to 0 and cytoplasm to 1. Although *cdc-42(Q61L)* embryos show a minor peak of PKC-3 at the membrane, the magnitude of this peak in *cdc-42(Q61L)* embryos is significantly reduced compared to *pkc-3(ts)*. All analysis in (I-J) was limited to embryos with no detectable PAR-3 at the membrane.

\*\*p<0.01, \*\*\*p<0.001, \*\*\*\*p<0.0001. Scale bars: 10μm.



## Figure S6. Analysis of the role of actomyosin flow and PAR segregation in wild type and PKC-3-inhibited embryos, Related to Figure 5

(A) Midsection confocal images of *mlc-4(RNAi)* and CRT90 treated embryos, matched by measured flow speed. Note all CRT90-treated embryos exhibit similar loss of asymmetry across all three flow rates, whereas *mlc-4(RNAi)* embryos retain asymmetry, though it decreases somewhat as flow rates are reduced. Flow rate (μm/min) / ASI are shown within each embryo.

(B) Representative midsection confocal images of maintenance phase wild-type or *pkc-3(ts)* embryos with or without partial RNAi-mediated depletion of the RhoGAPs RGA-3/4. Embryos were fixed and stained for both PAR-3 and PKC-3. Note that segregation of PAR-3 is fully rescued in *pkc-3(ts)* by *rga-3/4(RNAi)*, whereas PKC-3 remains present at the posterior. Scale bar: 10µm.

(C) ASI quantification of the full dataset represented in (B) reveals failure of rga-3/4(RNAi) to rescue PKC-3 asymmetry despite rescue of PAR-3 ASI to wild-type levels. ASI is shown normalized for each protein individually compared to N2. (N: wild type = 25, pkc-3(ts) = 22, pkc-3(ts); rga-3/4(RNAi) 50% = 9, wild type; rga-3/4(RNAi)50% = 6)

\*\*p<0.01. Scale bars: 10µm.



## Figure S7. Anterior meiotic PAR-2 domains are rapidly cleared by targeting PKC-3 to the membrane, Related to Figure 6

(A) Midsection fluorescent images of *emb-27(RNAi)* zygotes expressing GFP::PKC-3 with mCherry::PAR-2. *emb-27(RNAi)* induces defects in meiotic progression, leading to inverted polarity with an anterior domain of PAR-2 near the meiotic spindle remnant, similar to *mei-1(RNAi)* (Wallenfang and Seydoux, 2000). This anterior meiotic domain remains on the membrane for more than 30 min (n=3).

(B) Same as (A), but zygotes express GFP::C1B-PKC-3, which is targeted to the membrane by the addition of PMA. (B). The increase in PKC-3 at the membrane rapidly clears the anterior PAR-2 domain upon PMA addition (3.2±1.7min, n=3). Arrows indicate enhanced PKC-3 membrane localisation 60 s after PMA addition.

Note that neither GFP::PKC-3 or C1B::GFP::PKC-3 are fully excluded by the PAR-2 domain (arrowheads). Scale bar: 10µm.