- A global map of genetic diversity in *Babesia microti* reveals strong population structure and identifies variants associated with clinical relapse

- 1 2 3 4 5 6 7 8 9
- - Supporting information

10 Supplemental Text:

11

12 Sequencing and Enrichment of Global and US *Babesia microti*:

13

14 Zoonotic B. microti in the US was first described on Nantucket in 1969¹ and later 15 recognized at multiple sites throughout the Northeast and Midwest during the 1980s²³. 16 Phylogenetic analysis of 18S RNA and beta-tubulin genes has established a species complex with at least three major clades, with the original Nantucket strains along with 17 strains from Switzerland and Russia labeled as Clade 1 or *B. microti* sensu stricto⁴, and 18 B. microti-like strains such as those from Japan^{5,6}, Alaska, and Europe classified as 19 20 Clades 2 and 3, or *B. microti* sensu lato⁴, though others have proposed that *B. microti* be 21 reclassified as a genus⁷. We studied samples from Japan^{5,6}, Alaska⁸, Russia⁹, and 22 multiple sites in the United States. The origin, date of collection, and sample identifiers 23 for each sample are listed in Supplemental Table 1. The identifiers used to refer to 24 geographic groupings of samples are given below in the section "Nomenclature and 25 Geographic Groupings".

For clinical, rodent, and tick samples, we developed three methods to enrich for parasite material for sequencing: Leukocyte depletion based on cellulose filtration¹⁰, which produced 4.9 (+/- 5.4) -fold enrichment (Supplementary Fig. 1), and two methods of hybrid selection¹¹ (Supplementary Fig. 1), which yielded an 85.9 (+/- 78.6)-fold enrichment, sufficient to sequence the low quantities of parasite DNA from ticks.

31 Reads from B. microti sensu lato samples aligned poorly to the B. microti R1 reference genome¹² and were assembled de novo (see methods), producing draft 32 assemblies of 5.87 Mb for AW-1⁵ (Japan), 5.87 Mb for Hobetsu⁵ (Japan), and 6.14 Mb 33 for CR400⁸ (Alaska), which are included as supplemental files. *B. microti*-like genomes 34 35 displayed substantial nucleotide divergence, with a mean nucleotide diversity of 84.4% 36 for the Alaskan strain and 85.5% for the Japanese strain as compared to the R1 37 reference (Supplemental Fig 12a-c). Despite this, the assembled contigs from Alaskan 38 and Japanese strains possessed a conserved genomic architecture (Supplemental Fig. 39 5a-c) and aligned in contiguous blocks with *B. microti* R1 reference. The distribution of 40 contig sizes for the draft assemblies is given in Supplemental Figure 12c-f.

41 Nomenclature and Geographic Groupings:

In order to refer to groups of strains consistently, we used the following namingconventions:

44 Nantucket (NAN): Samples from Nantucket (includes Bab14, which groups with45 Nantucket samples).

- 46 Mainland New England (MNE): Samples from Connecticut, Rhode Island,
- 47 Massachusetts, New Hampshire, and Maine. Excludes samples from NAN lineage
- 48 above. This includes ND11, which was isolated from a North Dakota resident, but types
- 49 with other MNE samples.

- 50 Coastal New England (CNE): Samples from Mainland New England and Nantucket, i.e.51 the union of NAN and MNE.
- 52 Reference group (REF): This includes the R1 reference¹² and samples that group with it.
- Northeast (NE): All samples from the Northeastern United States, i.e. the union of NAN,
 MNE, and REF.
- 55 Midwest (MW): Samples from Minnesota and Wisconsin. This group excludes ND11, as 56 above, which groups with MNE samples.
- 57 Continental US (CUS): All samples from the Northeast and Midwest, i.e. the union of 58 MW and NE.
- 59 Global: All study samples, including those from Alaska, Japan, Russia, and the 60 Continental United States (CUS).
- 61 *B. microti* sensu stricto (BMSS): All Clade 1 samples, i.e. the union of CUS and the 62 sample from Russia.

63 Within-Host Evolution and Differences between Zoonotic and Enzootic Strains:

- 64 Among the 35 distinct BMSS strains studied (excluding the 3 serial samples of GI and 1
- 65 serial sample of RMNS). 32 were obtained from clinical cases of human babesiosis (plus
- 66 the reference R1). We sequenced two samples from tick (PI-2000, SN-1988), which fell
- 67 into the MNE and REF group lineages, respectively. One BMSS strain (MYS/Russia)
- 68 was from a vole (*Clethrionomys glareolus*). Both PI-2000 and SN-1998 were
- 69 phylogenetically situated within major lineages and were indistinguishable by nucleotide
- or structural differences from zoonotic samples, although the study was not powered to
- 71 detect differences between zoonotic and enzootic samples. The three lineages that have
- been detected in the Northeast by VNTR typing¹³ were identified in ticks, and we see the
- same lineages in clinical cases. Thus, it appears that all major enzootic lineages are
- capable of producing human disease, though whether certain lineages are more likely to
- 75 do so remains is not yet known.
- We sequenced serial samples of Bab16 over a course of 5 days. We did not observe any mutations. Together with the observation that only three mutations accumulated in GI and RMNS strains sampled over a period of 32 years of laboratory propagation, it appears rates of within-host evolution are slow, and this is consistent with inferred rates of mutation (Supplemental Figure 6D).

81 Time to Most Recent Common Ancestry:

- 82
- 83 Root-to-tip analysis of the Mainland New England and Nantucket lineages, for which
- samples were available over the time period 1969 2015, supported the existence of a
 molecular clock (Supplemental Figure 6a-b).

86 We used dates of collection at tip-dates to infer a rate of the molecular clock and to 87 estimate the time of most recent common ancestry for the identified lineages. The sequence of Gray¹ (1969) and Peabody¹⁴ (1973) strains was identical, which we attribute 88 to either an extreme lack of genetic diversity during the 1960s and 1970s on Nantucket 89 90 or to contamination of ATCC stocks at some point in the preservation or procurement 91 process. Thus, for the purposes of BEAST analysis, only one of these genomes was 92 considered and this was assigned a collection date of 1971 with an uncertainty of +/- 2 93 years. Chromosome 2 sequences were excluded from the analysis based on the 94 uncertain ancestry of select regions of chromosome 2 (see below). The precise collection time of the R1 reference isolate¹² was not known and this was assigned a 95 collection date of 2005 +/- 5 years. Following Drummond et al.¹⁵, we compared strict 96 97 molecular clock (CLOC) models, uncorrelated exponential (UCED) and log-normal 98 (UCLN) relaxed clock models. We used an HKY84 model for nucleotide substitution with 99 gamma-distributed rates with 4 site categories. We used the complete genomes 100 including both coding and non-coding sequences since most *B. microti* DNA is coding, 101 genes are densely spaced, and the assumption that the small intergenic regions are 102 neutral is doubtful. We also fit codon-partitioned models on the concatenated coding 103 sequence for all coding genes. We used an infinite uniform (improper) prior over the interval $[-\infty,\infty]$ for CLOC IU model and a Gamma(4, 5x10⁻⁹) prior based on empirical 104 105 substitution data for CLOC G, UCED G, and UCLN G models. The choice of prior was 106 based on observed mutation data for laboratory-propagated strains. The GI strain, which 107 was continuously maintained for 28 years with tick and rodent passage, accumulated 2 108 SNPs over this interval. The RMNS strain, maintained similarly for 4 years, accumulated 109 1 SNP over this interval. If we model mutations as a Poisson process, P(n) = $(\lambda T)^n e^{-1}$ $\lambda^{T}/n!$, for an observed n = 3 events observed over an interval of T = 32 years x 6395000 110 sites, the maximum likelihood estimate for λ is $n/T = 1.47 \times 10^{-8}$ variants/site/year. The 111 shape of this likelihood is closely approximated by a Gamma(4, 5x10⁻⁹) (Supplemental 112 Figure 6C). We therefore chose Gamma(4, 5×10^{-9}) as a prior, justified by observed rates 113 114 of evolution in laboratory lines and encompassing a range of plausible rates from 5.5x10⁻ 9 to 4.5x10⁻⁸ (95%HPD). This prior closely matched the inferred substitution rate for MNE 115 116 and NAN lineages (Supplemental Figure 6D) obtained using an uninformative (improper 117 uniform) prior in both lineages independently.

118 The four models produced similar estimates for TMRCA (Figure 3B, Supplemental 119 Figure 6, Supplemental Table 6). Importantly, estimates for CLOC IU and CLOC G45 120 were very similar, suggesting that the gamma $(4,5x10^{-9})$ is appropriate for these data and 121 not resulting in aberrant or unreliable estimates. Generally, relaxed clock models were favored by model comparison using the harmonic mean estimator¹⁶ and Akaike 122 Information Criteria through MCMC¹⁷ (Supplemental Table 6A-B). However, strict clock 123 models may be more biologically appropriate as CUS samples are closely related 124 125 members of a single species. We present models of both types. All models estimated 126 TMRCA for NAN, REF, and MNE at between 40-600 years. TMRCA between NE and 127 MW was earlier, between 300 – 5,000 years. Estimates for TMRCA placed divergence of 128 CUS samples within the last 15,000 years. We estimated a median mutation rate of

1.92x10⁻⁸ / site / year [median; 95% HPD 3.84x10⁻⁹ – 3.53x10⁻⁸] under the CLOC IU 129 model (Supplemental Figure 4) and of 1.85x10⁻⁸ / site / year [median; 95% HPD 8.01x10⁻¹ 130 9 – 3.00x10⁻⁸] under the CLOC G model. This was consistent among sublineages (MNE 131 -2.2×10^{-8} / site / generation [95% HPD 4.40x10⁻¹⁰ - 4.7x10⁻⁸] and NAN - 2.2 x10⁻⁸ / site 132 / generation [95%HPD 2.89x10⁻⁹ – 4.35x10⁻⁸]) analyzed independently under CLOC_IU 133 134 models. This held for trees computed on NAN samples alone, MNE samples alone 135 (lineages for which adequate numbers of reliably dated longitudinal samples were 136 collected), and for the set of CUS samples (Supplemental Figure 6). Median and 95% 137 HPD estimates for TMRCA are shown in Figures 3c-d. We also used a codon-partitioned 138 model for aligned coding sequences, which produced similar results (Supplemental 139 Figure 6G), with the exception of CLOC IU models, which had slightly wider HPD 140 intervals. We estimated divergence between CUS and Russian B. microti, but these 141 estimates were less precise. Most models placed this divergence between 200,000 and 142 1.5 million years ago. The CLOC yielded a slightly higher upper bound (up to 2.6 million 143 years ago). In cases where the CLOC IU models produced wider HPD intervals, this is 144 attributable to the model's allowance of mutation rates approaching zero, which are 145 biologically implausible, and it is likely that inference under models with informative 146 priors is more accurate. Overall, the estimates obtained from all models indicate 1) deep 147 divergence between NE and MW lineages with subsequent radiation into sub-lineages 148 (NAN, REF, MNE) along geographic lines 2) timing of the divergence among CUS 149 samples consistent with proposed models of population isolation at the conclusion of the most recent ice age approximately 15,000 years ago¹⁸ and 3) separation from Eurasian 150 populations much earlier, hundreds of thousands to millions of years ago. 151

152 One potential weakness of these estimates is that they rest on a relatively simple 153 demographic and mutational model and do not explicitly model changes in population 154 size, geographic range, and recombination. As additional samples become available, 155 these estimates may be refined. The absence of recombination in these models is not 156 likely to have affected estimates for EC lineages, which do not show strong evidence of recombination (Supplemental Figure 5), particularly as chromosome 2 was excluded 157 158 from BEAST analysis because of the unusually large proportion of alleles shared with 159 MW samples (see below), but MW samples and estimates for CUS may be affected. 160 Recombination would have a substantial effect on the TMRCA estimates if populations 161 of different ages were interbreeding. However, had this happened, blocks of the genome 162 within a given lineage would have a different mutational density than others, and we did 163 not see evidence of such differences (Supplemental Figure 4E). Despite these 164 limitations, the clear convergence to similar rates of evolution in independent lineages 165 (Supplemental figure 6D), the concordance with the empirical molecular clock 166 (Supplemental figures 6C-D) and consistency with proposed biogeographic models¹⁸, all argue in favor of the utility of our approach and support the estimates of most recent 167 168 common ancestry among *B. microti* lineages.

169 Discordant loci on chromosome 2

- 170 Two segments of chromosome 2, covering roughly positions 0 122 KB and 522 1000
- 171 KB, respectively, display unusual levels of genetic divergence between the MNE and

172 Nantucket samples. This is reproducible between samples collected at different times, 173 sequenced in different batches, and at different sites, and cannot be attributed to an 174 artifact of sequencing or variant calling. These regions, which amount to ~10% of the 175 nuclear genome, contain the majority of fixed differences between the samples (61 out 176 of 82); π measured between the two populations within the segments is 1.1 x 10⁻⁴, but 177 8.8 x 10⁻⁶ in the remainder of the genome.

178

179 The same regions show much more allele sharing between the Midwest and either the 180 MNE or the Nantucket samples than elsewhere in the genome. Table S2 breaks down 181 the distribution of loci for which two of these populations share an allele and the third has 182 a different allele. In the genome as a whole, more than 98% of the time the different 183 allele occurs in the Midwest. In the chromosome 2 regions, however, the different allele 184 is far more likely to occur in one of the eastern populations, with similar levels appearing 185 in Nantucket and MNE. The reason for this signature is not entirely clear. It is possible 186 that these regions represent introgression, i.e. acquisition of ancestral sequence to 187 promote survival or fitness, but the presence of two distinct regions argues against a 188 single event. Further analysis of this region as additional samples become available may 189 shed light on the unusual pattern of variation seen on this chromosome.

190

191 Analysis of Recombination:

Electron micrograph data have suggested that *Babesia microti* undergoes sexual 192 development¹⁹; however, nuclear fusion has not observed, nor have recombinant 193 organisms been demonstrated. We applied the pairwise homoplasy index²⁰ (PHI) to 194 search for recombination in our samples. This revealed strong evidence of 195 196 recombination in CUS samples and also BMSS. There was no evidence of 197 recombination in the MNE or NAN lineages, and only on chromosome 4 in NE samples 198 (Figure S5A). We attempted to localize signals of recombination by applying the PHI test 199 within 100Kb windows of each chromosome. This analysis revealed a single localizable 200 signal within the BMSS group, on chromosome 4, and equivocal signals on 201 chromosomes 1 and 3. No other statistically significant regions were identified. Thus, we 202 find evidence of recombination in *B. microti*, as evidence by an excess of incompatible sites²⁰, but this does not appear to have strongly shaped variation within recently 203 204 diverged lineages.

205 Multi-copy gene families and genomic distribution of variants:

206 *B. microti* possesses a unique multi-copy gene family, BMN^{12,21}. These genes occur at

207 chromosome ends in subtelomeric regions as well as internal clusters and resemble

208 multi-copy gene families of other bacteria and parasites. Multi-copy gene families are

common among pathogens²², particularly eukaryotic parasites²³⁻²⁶. Within the

210 Apicomplexa, such multi-copy gene families are found in *Plasmodia, Babesia,*

211 *Crytosporidia, and Eimeria,* and have recently been reviewed in depth by Reid²⁷.

212 Members of these gene families are often rapidly evolving through accelerated mutation,

213 recombination, and gene conversion. For example, *P. falciparum var* genes, encoding

the PfEMP-1 proteins, mediate antigenic variation through a mutually exclusive
expression mechanism ²⁸. Within *Babesia*, Variant Erythrocyte Surface Antigen (VESA)
genes in *B. bovis* ²⁹⁻³¹, function in a manner similar to *var* genes in *P. falciparum* ³¹.

217 The function of BMN genes in *B. microti* is not known, but they are postulated to 218 contribute to chronic infection or immune evasion through differential expression or recombination²¹, though their degenerate repeat structure has raised speculation that 219 their primary function is structural²¹. Among CUS samples, we did not observe an 220 221 increased substitution rate among BMN gene families (P = 0.7, Wilcoxon Rank-Sum 222 test), but diversity was extremely limited among these samples, which limits the power of 223 this comparison. Comparing Russian *B. microti* to the R1 reference, we found evidence 224 of an accelerated substitution rate in BMN genes (nucleotide diversity was a mean of 1.9 fold greater than other coding sequences; $P = 9.8 \times 10^{-3}$, Wilcoxon Rank-Sum test, two-225 226 tailed alternative, Supplemental Figure 8F). BMN genes also had elevated dN/dS ratios 227 when compared to the genome as a whole (Supplemental Figure 8E; $P = 1.26 \times 10^{-5}$, 228 Wilcoxon Rank-Sum test, two-tailed alternative). BMN genes in which zero variants were 229 called were excluded from this analysis due to the likelihood that the reference sequence 230 was too divergent to align reads. Not all members of the BMN family were under the 231 same selective pressure, with BBM 10004 and BBM 103513 showing the strongest 232 evidence of increased substitution and positive selection. BBM II01570 appeared to 233 show weak evidence of negative selection, although manual inspection of this locus 234 revealed a drop in coverage and a small number of called variants, suggesting that 235 sequence may have diverged so substantially in this region that variants cannot be 236 called with short reads. Supporting this, in the analysis of unfiltered variants (Supplemental Figure 7 and Supplemental Table 3), highly substituted regions contained 237 238 multiple members of the BMN family. In general, resequencing approaches using short 239 reads likely underestimate the true diversity in the BMN family, much of which may be generated by recombination or gene conversion ³²⁻³⁴. 240

241 This issue likely affected other multi-copy gene families as well. B. microti 242 contains three vesa-like genes and four Theileria parva tpr-like genes in mosaic subtelomeric structures¹². The three VESA-like genes and one TPR-like protein 243 (BBM_III04845) were so highly polymorphic that we were unable to identify any variants. 244 245 Three additional TPR-like proteins (BBM 1104270, BBM 11100015, and BBM 100005) had 246 limited diversity; inspection of the aligned sequence found only small islands of short 247 reads aligning with confidence allowing for variant detection, although those that aligned 248 for BBM 10005 did show an excess of non-synonymous variants, providing weak 249 evidence of positive selection (adjusted P = 0.22). Furthermore, both BBM II04270 and 250 BBM III00015 were found in highly substituted regions as identified by the analysis of 251 unfiltered variants (Supplemental Table 3). Thus, given their multi-copy nature, presence 252 at chromosome ends, and our inability to align short reads reliably to these sequences, 253 we suspect that members of both families are also hyper-variable, perhaps more so than 254 BMN.

255 Clinical details of Relapsing Cases:

256 Bab05: The patient from whom Bab05 was isolated was a 48 year-old woman with a 257 severe case of babesiosis (16% parasitemia on first admission). Her past medical history 258 was notable for cystic fibrosis status post double lung transplantation, idiopathic 259 thrombocytopenic purpura status post splenectomy, and diabetes. Her home 260 medications included trimethoprim/sulfamethoxazole (TMP/SMX), mycophenolate 750 261 mg po three times daily, prednisone 15 mg po daily, and tacrolimus 4mg po twice daily. 262 She presented with abdominal pain in July 2014 and was found to have babesiosis due 263 to *B. microti* infection (initial parasitemia at with 16%). She was initiated on atovaguone 264 750 mg po twice daily and azithromycin 500 mg po daily; her TMP/SMX was stopped at that time. Testing for Lyme antibodies (IgG and IgM) was negative, and PCR assays to 265 266 Anaplasma phagocytophilum, and Ehrlichia spp. (E. Chaffeensis, E. Ewingii, E. muris-267 like) were all negative.

268 She underwent RBC exchange transfusion on hospital day (HD) 2. Her 269 parasitemia sharply declined, clinical status improved, and she was discharged on HD9 270 on atovaquone and azithromycin with a plan to continue on these medications for two 271 weeks until her parasitemia cleared or at least 6 weeks. Clearance of microscopic 272 parasitemia was documented 91 days after initial presentation. She continued on this 273 regimen for 110 days after her initial presentation, at which time atovaguone was 274 interrupted and the dose of azithromycin reduced to 250 mg po daily, for the purposes of 275 parasite suppression and *Mycobacterium avium* complex (MAC) prophylaxis. 21 days 276 later, she was readmitted with fevers and malaise. Parasitemia was at 21.7%, at which 277 point a sample study was collected. She was initiated on an antibiotic regimen of 278 clindamycin 600 mg po every 6hrs, atovaguone 750 mg po twice daily, and azithromycin 279 500 mg po daily. She underwent exchange transfusion on day 129 and day 135, and her 280 parasitemia decreased, with clinical improvement. Her parasitemia became undetectable 281 by PCR on day 255, at which point clindamycin was discontinued (after a total of 124 282 days), and the dose of azithromycin was reduced to 250 mg po daily, and atovaquone 283 was changed to 1500mg po daily.

284 Bab 14: Bab14 was isolated from a 77 year-old man with a past medical history notable 285 diffuse large B cell lymphoma and IgG4-related disease for which he had been treated 286 with rituximab in April 2015. He was found to have babesiosis in August 2015 and 287 treated with a 10-day course of atovaquone and azithromycin. He returned to care in 288 November 2015 complaining of severe fatigue, at which time his Babesia PCR was 289 noted to be positive (record of quantitative parasitemia not available) and he was 290 restarted on atovaquone and azithromycin after transfusion of four units of packed red 291 blood cells. Six days after re-initiation of treatment with atovaquone/azithromycin, his 292 parasitemia was noted to 4.5% and his hematocrit 21. He received two additional units 293 of packed red blood cells and was started on clindamycin/quinine. His parasitemia was 294 3.8% two days after starting clindamycin/quinine and then 1% five days after starting, at 295 which time a study sample was obtained. He experienced ototoxicity while on guinine 296 was transitioned to atovaguone/azithromycin after five days of clindamycin/guinine. After 297 restarting atovaguone/azithromycin, his parasitemia decreased to 0.5% after two days 298 and then was less than 0.1% after 25 days and was microscopically undetectable 38

- 299 days later; his treatment was discontinued 40 days after transitioning back to
- 300 atovaquone/azithromycin. Two months after discontinuing treatment he returned to care
- and was again found to have a positive Babesia PCR (no report of parasitemia
- 302 available), at which time was restarted on atovaquone/azithromycin with a plan for
- 303 ongoing monitoring by PCR and blood smear.
- 304
- 305 **MGH2001** has been reported previously³⁵. **BWH2003 and MORNS2015** were noted by

clinical providers to be relapsing cases and propagated in Hamsters to establish
 laboratory isolates. As a result of the protocol under which they were obtained, additional

308 details of human infection beyond their relapsing status were unavailable.

309 **Possible evidence for locally imported babesiosis in Bab14:**

310

Bab14 was isolated from a resident of South Dennis, MA. The Bab14 parasite is 311 separated from the Grav¹/Peabodv³⁶ strains, isolated on Nantucket in 1969 and 1973 312 313 respectively. The patient had not travelled to Nantucket in over 10 years. While he had 314 received blood transfusions as a part of his treatment for relapsed babesiosis, his 315 diagnosis of babesiosis preceded transfusion. The presence of a Nantucket group 316 parasite in this patient suggests the possibility that Nantucket group parasites have 317 recently established a focus on mainland MA, or conversely that Nantucket group 318 parasites are dispersed over a region that includes portions of mainland MA, and that 319 the Gray/Peabody parasites were themselves imported to Nantucket some time after 320 their divergence from other Nantucket-group parasites (i.e. RMNS, GI, BWH-2014), 321 which differ from the Gray/Peabody/Bab14 group by 50 – 70 SNPs.

322

323 Copy Number Amplification containing *B. microti* MRP:

324

325 In the Bab05 case, we also noted a three-fold amplification of a 15KB region on 326 chromosome 2 (658,075-672,981); this region includes the gene BBM II01855 327 (Supplemental Figure 13), which encodes an ABC transporter with homology to 328 multidrug resistance-associated proteins (MRPs). Copy number variation is an 329 established mechanism of drug resistance in P. falciparum, most notably the ABC transporter MDR1^{37,38}. The *P. falciparum* homolog of MRP is known to influence quinine 330 and chloroquine susceptibility in *P. falciparum*³⁹. Given the uniqueness of this event in a 331 332 case of severe relapse, we hypothesize that copy number variants in bmMRP may 333 contribute to *B. microti* survival during atovaquone or azithromycin treatment. 334

336 **Supplementary Table 1:**

Sample Name	Source	Site	Origin	Year	Enrichment Method	Coverage	VNTR Type
Bab01	Patient	MGH	Natick, MA	2014	Cellulose	16.0 (114.0)	CT/RI
Bab02	Patient	MGH	Millis, MA	2014	Cellulose	60.6 (92.6)	CT/RI
Bab03	Patient	MGH	Topsfield, MA	2014	Cellulose	27.2 (38.6)	CT/RI
Bab04	Patient	MGH	Bedford, MA	2014	Cellulose	8.9 (14.5)	CT/RI
Bab05	Patient	MGH	Lyndeborough, NH	2014	Cellulose	597.2 (882.7)	CT/RI
Bab06	Patient	BWH	N/A	2015	None	44.0 (65.3)	N/A
Bab07	Patient	Faulkner	N/A	2015	Cellulose	23.0 (35.8)	N/A
Bab08	Patient	BWH	N/A	2015	None	87.8 (447.1)	N/A
Bab10	Patient	BWH	Stonington, CT	2015	Cellulose	209.1 (277.7)	N/A
Bab11	Patient	MGH	Norwell, MA	2015	None	107.4 (153.8)	N/A
Bab12	Patient	BWH	N/A	2015	Cellulose	45.8 (71.8)	N/A
Bab13	Patient	MGH	Kennebunk, ME	2015	None	28.7 (46.6)	N/A
Bab14	Patient	MGH	South Dennis, MA	2015	None	12.9 (23.1)	N/A
Bab15	Patient	MGH	Winchester, MA	2015	None	96.6 (140.6)	N/A
Bab16	Patient	MGH	Gloucester, MA	2015	None	79.9 (105.5)	N/A
UMMS1	Patient	UMMS	N/A	2014	None	187.2 (212.5)	N/A
UMMS2	Patient	UMMS	N/A	2014	WGB HS	421.2 (778.6)	N/A
UMMS3	Patient	UMMS	N/A	2014	WGB HS	521.9 (749.4)	N/A
UMMS4	Patient	UMMS	N/A	2014	WGB HS	691.1 (1120.4)	N/A
UMMS5	Patient	UMMS	N/A	2014	WGB HS	974.5 (1389.4)	N/A
ND11	Patient	Mayo	North Dakota	2003	None	32.3 (41.6)	N/A
WI07	Patient	Mayo	Wisconsin	2002	None	10.5 (17.5)	N/A
MNBO10	Patient	Mayo	Minnesota	2005	None	11.1 (17.6)	N/A
Gray	HSPS	N/A	Nantucket	1969	None	45.0 (67.8)	Nan
Peabody	HSPS	N/A	Nantucket	1973	None	49.9 (74.0)	Nan
GI1986	HSPS	N/A	Nantucket	1986	None	9.4 (17.6)	Nan
GI1990	HSPS	N/A	Nantucket, MA	+4yrs	None	60.67 (82.5)	Nan
GI2004	HSPS	N/A	Nantucket, MA	+18 yrs	None	66.1 (102.6)	Nan
GI2014	HSPS	N/A	Nantucket, MA	+28 yrs	None	17.9 (23.1)	Nan
RMNS1997	HSPS	N/A	Nantucket, MA	1997	None	111.2 (183.3)	Nan
RMNS2001	HSPS	N/A	Nantucket, MA	+4 yrs	None	217.3 (274.5)	Nan
MGH2001	HSPS	MGH	N/A	2001	None	119.2 (166.2)	N/A
MN-1	HSPS	Minnesota	N/A	1995	None	89.2 (172.8)	N/A
BWH2014	HSPS	NCH/BWH	N/A	2014	None	149.2 (216.6)	N/A
BWH2003	HSPS	BWH	N/A	2003	None	34.4 (49.0)	N/A
MORNS	HSPS	MWH	N/A	2015	SureSelect	185.6 (205.7)	N/A
PI2000	Tick	N/A	Prudence Island, RI	2000	SureSelect	220.5 (3312.1)	N/A
SandyNeck	Tick	N/A	Sandy Neck, MA	1998	SureSelect	298.8 (449.2)	SN
MYS-Russia	Vole	N/A	Ural Mountains, Russia	1998	None	20.4 (51.4)	N/A
CR400	Vole	N/A	Alaska	2001	None	De novo assembly	N/A
AW1	HSRS	N/A	Awaji, Japan	2001	None	De novo assembly	N/A
Hobetsu	HSRS	N/A	Hobetsu, Japan	2001	None	De novo assembly	N/A

337 338

List of strains with date and place of origin, enrichment method (if applicable) and

340 coverage (mean and standard deviation). The Gray¹, Peabody³⁶, and Gl⁴⁰ strains were

341 isolated from the initial cases of babesiosis reported on Nantucket. MN-1 was isolated

from a Minnesota resident ²¹. PI2000 and SN1988 were collected from Prudence Island

and Sandy Neck (on Cape Cod, MA)¹³. Mys-Russia was isolated from the Ural

Mountains⁹. CR400 was isolated from Alaska⁸, and AW-1 and Hobetsu were isolated from Japan.⁵

346 Abbreviations: HSPS = Hamster Strain from Patient Sample; HSRS = Hamster strain

347 from rodent sample. BWH = Brigham and Women's Hospital; MGH = Massachusetts

348 General Hospital; NCH = Nantucket Cottage Hospital; MWH = Melrose Wakefield

- Hospital; UMMS = University of Massachusetts Medical School; WGB HS = Whole
- 350 Genome Bait Hybrid Select. CT/RI = Connecticut/Rhode Island. SN = Sandy Neck. PI =
- 351 Prudence Island. VNTR = variable nucleotide tandem repeat.

354 Supplementary Table 2: Discordant Loci on Chromosome 2

	Discordant Loci	Genome-Wide	Chromosome 2 Regions
	MNE allele = Nantucket allele	1202	64
	Midwest allele = MNE allele	5	35
356 357	Midwest allele = Nantucket allel	e 16	20
358	Table S2. Number of loci with discordant	fixed alleles amo	ng the three CUS populations
359	(MNE, Nantucket and Midwest), broken of	down by the popul	ations that share an allele.
360	The genome-wide values exclude the two	o regions on chroi	nosome 2.
361			

362 Supplemental Table 3: Chromosomal regions of elevated variation

•••••				
Chromosome	Start	End	Genes Contained	Description
Chromosome 1	160007	161007	BBM_100435	
Chromosome 1	547024	548024	BBM_101510	
Chromosome 1	548024	549024		
Chromosome 1	939041	940041	BBM_102590	solute carrier family 25 (mitochondrial carrier; adenine nucleotide
Chromosome 1	1303057	1304057	BBM_103535	BMN family (1)
Chromosome 2	0	776	BBM_II00005	BMN family (1)
Chromosome 2	1776	2777	BBM_II00010	BMN family (2)
Chromosome 2	2777	3777	BBM_II00010	BMN family (2)
Chromosome 2	3777	4777	BBM_II00015	Vesa-like
Chromosome 2	292789	293789	BBM_II00780	
Chromosome 2	527800	528800	BBM_II01465	
Chromosome 2	1467841	1468841	BBM_II01485, BBM_II01490	
Chromosome 2	1470841	1471841	BBM_II01495	tRNA dimethylallyltransferase [EC:2.5.1.75]
Chromosome 2	1472841	1473841	BBM_1104200	exosome complex exonuclease DIS3/RRP44 [EC:3.1.13]
Chromosome 2	1480842	1481842	BBM_1104220	
Chromosome 2	1482842	1483842		
Chromosome 2	1483842	1484842		
Chromosome 2	1484842	1485842	BBM_1104225, BBM_1104230	BBM_II4230 - DDX54, DBP10, ATP-dependent RNA helicase DDX54/DBP10
Chromosome 2	1485842	1486842	BBM_1104230	DDX54, DBP10, ATP-dependent RNA helicase DDX54/DBP10
Chromosome 2	1486842	1487842		
Chromosome 2	1488842	1489842	DDM 1104225	
Chromosome 2	1490842	1491842	BBM_1104235	translation initiation factor IF-2
Chromosome 2	1492842	1493842	BBM_1104240	
Chromosome 2	1493842	1494842	BBM_II04245	
Chromosome 2	1495842	1496842	BBM_1104250, BBM_1104255	
Chromosome 2	1496842	1497842	BBM_1104255, BBM_1104260	BBM_II04260 - BMN family (1)
Chromosome 2	1497842	1498842	BBM_104260	BMN family (1)
Chromosome 2	1498842	1499842	BBM_104265	BMN family (2)
Chromosome 2	1501842	1502843	BBM_104270	I pri related protein, putative
Chromosome 2	1504843	1505843	BBM_104280	Bivin family (2)
Chromosomo 2	1505645	1500843	BBIVI_1104280	Bivin failily (2)
Chromosome 2	1500845	1507645		
Chromosome 3	3/58	1308843	BBMU 00015	Tor related protein putative
Chromosome 3	4458	5/58	BBMIII_00020	BMN family (2)
Chromosome 3	6458	7458	BBMIII_00020	BMN family (2)
Chromosome 3	90462	91462	BBMIII 00255	BMN family (2)
Chromosome 3	91462	92462	BBMIII 00255	BMN family (2)
Chromosome 3	93462	94462		
Chromosome 3	272470	273470	BBMIII 00785	BMN family (1)
Chromosome 3	280470	281470	-	
Chromosome 3	307471	308471	BBMIII 00885	
Chromosome 3	458478	459478	BBMIII 01295	CCR4-NOT transcription complex subunit 1
Chromosome 3	1232512	1233512	_	
Chromosome 3	1459522	1460522	BBMIII_04060	
Chromosome 3	1460522	1461522	BBMIII_04065, BBMIII_04070	BBMII_04070 - splicing factor 45
Chromosome 3	1743534	1744535	BBMIII_04820, BBMIII_04825	BBMIII_04825 - DNA-directed RNA polymerase II subunit A [EC:2.7.7.6]
Chromosome 3	1751535	1752535		
Chromosome 4	126132	127132	BBMIII_05195	
Chromosome 4	535150	536150		
Chromosome 4	1011171	1012171	BBM_III07535	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1012171	1013171	BBM_III07535	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1013171	1014171	BBM_III07535	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1014171	1015171	BBM_III07535	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1015171	1016171	BBM_III07535	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1016171	1017171	BBM_III07535	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1017171	1018171	BRWT_11102232	N1-15 protein, maltese-cross seroactive antigen
Chromosome 4	1018171	1019171		
Chromosome 4	1221180	1222180	BRW_1108155	
Chromosome 4	1222180	1223180	BRW_III08155	
Chromosome 4	1223180	1224180	BBM_III08155, BBM_III08157	
Chromosome 4	1549195	1550195	RRIM_11109120	D(A) = (1, 1, 2)
Chromosome 4	1813206	1814206	RRIATIII02212	BIVIN Tamily (1)
Chromosome 4	1912200	1910700	DDIAI_11103390	

Supplemental Table 4: dN/dS ratios

Strongest Positive Selection:

Gene	dN	dS	dNdS	z	Р	Adjusted.P	Description
BBM_100435	0.066647441	0.028337435	2.351922163	2.743518253	0.006078467	0.035782867	
BBM_II04205	0.048260353	0	0	2.320506431	0.020313497	0.070133592	
BBM_III03095	0.006793583	0	0	2.228442553	0.025851018	0.080798922	
BBM_103535	0.055619019	0.010544974	5.274457541	2.148390578	0.031682741	0.090134164	BMN family (1)
BBM_100004	0.072710427	0.008243002	8.820867387	2.114578873	0.034465856	0.093692284	BMN family (1)
BBM_III00955	0.042120083	0.00580892	7.250931531	2.029297821	0.042427965	0.105539942	
BBM 1102785	0.019279497	0	0	1.980506389	0.047646656	0.11259956	
BBM_III01305	0.035225402	0.009937892	3.544554835	1.796820985	0.072364044	0.143492551	
BBM III00255	0.053908407	0.034401947	1.567016182	1.712735688	0.086761176	0.159933645	BMN family (2)
BBM III08865	0.017707341	0	0	1.628289273	0.103463563	0.177533489	
BBM III03830	0.021225398	0	0	1.620646409	0.105093493	0.179446753	
BBM 101000	0.018447415	0.004759799	3.875670752	1.606824426	0.108092889	0.18313258	
BBM 11100960	0.053935564	0.025169206	2.142918822	1.597259478	0.110207879	0.185543217	
BBM 101510	0.080061241	0.048956297	1.635361446	1.515057934	0.129757733	0.20781512	
BBM 104270	0.004628382	0	0	1.449321589	0.147247795	0.228372477	Tor related protein, putative
BBM 11105650	0.006568239	0	0	1.409551396	0.158672187	0.24055249	r
BBM 11107835	0.007233399	0	0	1,409077296	0.158812314	0.240635179	
BBM 101360	0.009367956	0	0	1.407553438	0.159263343	0.240674559	
BBM 101000	0.016282946	0	0	1.406659591	0.159528354	0.240702724	
BBM 11104145	0.011364126	0	0	1 406125034	0 159687	0 240704669	
BBM 102865	0.028380027	0 010308514	2 75306688	1 397410523	0 162290157	0 242847996	
BBM 101310	0.030778946	0	0	1 392066638	0 16390222	0 243989347	
BBM 102960	0.074106745	0 024514344	3 022995213	1 346992364	0 177982692	0 25673414	
BBM 102595	0.021664146	0	0	1 321421585	0 186360833	0 264656684	
BBM 102335	0.035340247	0	0	1 317533019	0.187660021	0.265851696	
BBM_III03105	0.016411996	0 004650285	3 529245535	1 287934215	0 197768864	0 275579565	
BBM 109660	0.054595448	0.02363225	2 310209479	1 253055443	0 21018553	0 288157582	
BBM 101405	0.025553536	0.02505225	0	1 17657713	0.23936433	0.319244046	
BBM 100955	0.044164741	0.018202871	2 /1/182215	1 172/26726	0.23550455	0 321331600	
BBM 102130	0.032136044	0.010255871	0	1 1/7027208	0.241021758	0.321331003	
BBM 102150	0.032130544	0	0	1 14/00/250	0.252453040	0.332074007	
BBM 101535	0.020740000	0 000033404	2 045140518	1 1 2 2 0 2 0 0 4 0	0.257201257	0.3328800003	
BBM 102000	0.023233333	0.00333434	2.545140518	1.133030343	0.237201237	0.357475812	
	0.022191381	0 007119774	2 57626422	1.076165496	0.280931873	0.301013473	N acotylalycocaminylaborabatidylinosital deacotylaco [EC:2 E 1 80]
	0.010555642	0.007118774	2.37020422	1.073073221	0.282341032	0.301749473	N-acetyigiucosaminyiphosphatidyimositoi deacetyiase [cc.5.5.1.65]
	0.01336996	0.0056794	2.311457049	1.071932757	0.283750230	0.3030920	
	0.027347280	0.008029283	2 072074776	1.071808409	0.203600093	0.3030920	
	0.012051585	0.005810191	2.0/20/4//6	1.052252590	0.292692848	0.371050595	
BBIVI_1103720	0.000007930	0	0	1.034481769	0.300910995	0.378993429	
BBIVI_1103840	0.01392351	0	0	1.025183662	0.305276536	0.383798242	
DDNA 1104300	0.000030914	0	0	0.000427518	0.311019011	0.369191690	DMAN formily (2)
BBIVI_1104280	0.001124228	0	0	0.999437518	0.31/362/93	0.394431943	Bivin family (2)
BBIVI_102025	0.004081655	0	0	0.997954326	0.318301507	0.395024765	
BRIM_102355	0.006451702	0	0	0.996762059	0.318880019	0.395024765	
	0.008196905	U	U	0.995882054	0.31930/456	0.395024765	
	0.0122220272	0 0044638966	U 2 741051870	0.992110365	0.321140/64	0.395024765	
	0.012233029	0.004462896	2.741051876	0.986438045	0.323918204	0.39622848	
BBIVI_102345	0.02/119277	0.012//6338	2.12261/456	0.968861846	0.332614124	0.403888579	In the second
BBM 102020	0.024534584	0.016089181	1.524911964	0.963947559	0.3350/2218	0.406024576	aeoxynypusine monooxygenase [EC:1.14.99.29]
BRIVI_102820	0.014253586	0	0	0.96052078	0.336/93178	0.40/119051	
ввм_11107225	0.063603915	0.028/92247	2.20906396	0.949253768	0.342491561	0.412518188	

369

371 Strongest Purifying Selection:

Gene	dN	dS	dNdS	z	Р	Adjusted.P	Description
BBM_III05345	0.005977652	0.057142586	0.104609403	-8.374889449	0	0	
BBM_II00600	0.006174884	0.053529571	0.115354633	-8.314808196	0	0	E3 ubiquitin-protein ligase HUWE1 [EC:6.3.2.19]
BBM_III07380	0.006950063	0.043083465	0.161316247	-7.587982039	3.24E-14	3.77E-11	
BBM III02770	0.000962636	0.03854262	0.024975893	-7.193801512	6.30E-13	5.49E-10	pre-mRNA-processing factor 8
BBM_11100050	0.004138043	0.050623641	0.081741313	-6.922213694	4.45E-12	3.10E-09	
BBM II01570	0.003455963	0.048836085	0.070766581	-6.482868183	9.00E-11	5.23E-08	BMN1-5B
BBM III04825	0.001657985	0.049174278	0.033716513	-6.336763948	2.35E-10	1.17E-07	DNA-directed RNA polymerase II subunit A [EC:2.7.7.6]
BBM 1100735	0.008407229	0.051829167	0.162210378	-6.232298657	4.60E-10	2.00E-07	
BBM 11100165	0.008616785	0.047383162	0.181853319	-6.15125625	7.69E-10	2.98E-07	
BBM 11106375	0.010341525	0.041245637	0.250730158	-5.771876467	7.84E-09	2.44E-06	
BBM 100830	0.007992112	0.054522631	0.146583392	-5.764871776	8.17E-09	2.44E-06	
BBM 11108600	0.017156599	0.05503755	0.311725339	-5.759873623	8.42F-09	2.44F-06	
BBM 1101825	0.010170009	0.046231958	0.219977898	-5.553132248	2.81E-08	7.52F-06	
BBM_104060	0.008776307	0.048519883	0.180880637	-5.424939017	5.80E-08	1.35E-05	
BBM 101550	0.006469062	0.043987181	0 147066978	-5 367119957	8 00E-08	1 74E-05	ubiquitin carboxyl-terminal hydrolase 7 [EC:3 1 2 15]
BBM 102575	0.005859245	0.045479917	0 128831471	-5 343788976	9 10E-08	1.87E-05	
BBM 1102373	0.003134315	0.03959305	0.079163269	-5 329088276	9.87E-08	1.91E-05	myosin ATPase [FC·3.6.4.1]
BBM 104225	0.005154515	0.033333303	0.079103209	-5.28/076102	1.26E-07	2 225-05	myosin Arrase [EC.3.0.4.1]
BBM 104225	0.02043433	0.021212212	0.0224035728	-5.256016023	1.20L-07	2.32E-05	
BBM 100705	0.000304030	0.001012010	0.003100143	-5.250010025	1.47E-07	2.38E-05	
BBM_100735	0.0000000000000000000000000000000000000	0.046517274	0.25167702	-5.252411581 E 240622042	1.500-07	2.382-05	
BBN1_11109210	0.006938310	0.033313094	0.23107793	-3.249033042	1.522-07	2.365-05	
BBIVI_11109715	0.005074705	0.033713098	0.150526213	-5.244354084	1.57E-07	2.385-05	
BBINI_III06700	0.010370491	0.047838157	0.216/82821	-5.188252781	2.12E-07	3.08E-05	MDN1 DEA1 midasia
BBIVI_IIIU5555	0.013049775	0.035788342	0.304037587	-5.1/9088530	2.23E-07	3.11E-05	MIDN1, REA1, IIIUdsiii
BRIVI_102860	0.001604837	0.030468912	0.0526/13	-5.165930428	2.39E-07	3.21E-05	DNA-directed RNA polymerase il subunit B [EC:2.7.7.6]
BBM_1104235	0.02766337	0.1190/3//2	0.232321275	-5.146077939	2.66E-07	3.43E-05	translation initiation factor IF-2
BBM_II01450	0.013996549	0.044950313	0.311378225	-5.133974868	2.84E-07	3.53E-05	
BBM_1105350	0.008156596	0.041787482	0.195192327	-5.123034697	3.01E-07	3.60E-05	
BBM_11106670	0.008217173	0.040671184	0.202039186	-5.114025117	3.15E-07	3.60E-05	DNA polymerase epsilon subunit 1 [EC:2.7.7.7]
BBM_101085	0.004309301	0.045387811	0.094944011	-5.111170687	3.20E-07	3.60E-05	
BBM_III02890	0.010833752	0.057577734	0.188158711	-5.073584728	3.90E-07	4.25E-05	
BBM_III08125	0.005281424	0.044128847	0.119681902	-5.004413002	5.60E-07	5.80E-05	
BBM_III01095	0.002764964	0.067534598	0.040941443	-5.002383845	5.66E-07	5.80E-05	
BBM_II04195	0.003796458	0.114824551	0.033063124	-4.981805904	6.30E-07	6.27E-05	cleavage stimulation factor subunit 2
BBM_II00990	0.010931533	0.057680288	0.189519386	-4.895542589	9.80E-07	9.49E-05	
BBM_II01235	0.007022644	0.04354815	0.161261602	-4.888433614	1.02E-06	9.57E-05	DNA polymerase I [EC:2.7.7.7]
BBM_102285	0.004628565	0.044513116	0.103982038	-4.865419513	1.14E-06	0.000104747	carbamoyl-phosphate synthase [EC:6.3.5.5]/ aspartate
BBM_III00980	0.006132812	0.07085804	0.086550681	-4.854561364	1.21E-06	0.000107815	26S proteasome regulatory subunit N1
BBM_101860	0.011294601	0.048944126	0.230765204	-4.812092085	1.49E-06	0.000130129	
BBM_III01295	0.008153357	0.045659099	0.178570249	-4.802317185	1.57E-06	0.000133314	CCR4-NOT transcription complex subunit 1
BBM_III02935	0.011340995	0.052825739	0.214686909	-4.793939655	1.64E-06	0.000135697	
BBM_103030	0.005063307	0.04326818	0.117021502	-4.71328378	2.44E-06	0.000197556	
BBM_102740	0.003571542	0.045330955	0.078788138	-4.679248478	2.88E-06	0.000224402	structural maintenance of chromosome 4
BBM_II01960	0.00221525	0.033150103	0.066824816	-4.677948877	2.90E-06	0.000224402	intron-binding protein aquarius
BBM_III04140	0.004930402	0.041286296	0.119419831	-4.663479434	3.11E-06	0.000235546	chromodomain-helicase-DNA-binding protein 1 [EC:3.6.4.12]
BBM_101620	0.009195155	0.046370718	0.198296589	-4.64422353	3.41E-06	0.000253113	
BBM_III04250	0.002134682	0.044342385	0.048140897	-4.620120799	3.84E-06	0.000278449	splicing factor 3B subunit 1
BBM III04460	0.00093518	0.049703808	0.018815056	-4.524488554	6.05E-06	0.000430588	elongation factor EF-2 [EC:3.6.5.3]
BBM 11103480	0.008051411	0.057408998	0.140246497	-4.512957825	6.39E-06	0.00044559	· · ·
BBM 101920	0.004588896	0.038844712	0.11813438	-4.480796194	7.44E-06	0.000508162	clathrin, heavy polypeptide
							· · · · ·

Supplementary Table 5: Highly substituted genes

A)

Gene	SNPs	Length	Diversity	z	Р	Adjusted.P	Description
BBM_II04245	60	687	0.087336245	9.991352954	1.66E-23	5.87E-20	
BBM_II04285	40	534	0.074906367	8.26855884	1.36E-16	2.39E-13	
BBM_101510	92	1356	0.067846608	7.290068755	3.10E-13	3.64E-10	
BBM_III08185	8	123	0.06504065	6.901160123	5.16E-12	4.55E-09	
BBM_II04230	168	2712	0.061946903	6.472363426	9.65E-11	6.81E-08	DDX54, DBP10, ATP-dependent RNA helicase DDX54/DBP10
BBM_II04255	39	645	0.060465116	6.266986273	3.68E-10	1.93E-07	
BBM_II04250	60	993	0.060422961	6.261143469	3.82E-10	1.93E-07	
BBM_100425	90	1539	0.058479532	5.991782224	2.08E-09	9.16E-07	
BBM_100004	20	351	0.056980057	5.783953384	7.30E-09	2.86E-06	BMN family (1)
BBM_1104220	63	1128	0.055851064	5.627473744	1.83E-08	5.87E-06	
BBM_1100780	101	1842	0.054831705	5.486189491	4.11E-08	1.15E-05	
BBM 103513	12	219	0.054794521	5.481035732	4.23E-08	1.15E-05	BMN family (2)
BBM_102960	26	480	0.054166667	5.394014523	6.89E-08	1.74E-05	
BBM_III07225	10	192	0.052083333	5.105262329	3.30E-07	7.77E-05	
BBM 1104225	124	2388	0.051926298	5.083497088	3.71E-07	8.17E-05	
BBM_100435	100	1947	0.051361068	5.005155636	5.58E-07	0.000115869	
BBM 1104235	135	2679	0.050391937	4.870833056	1.11E-06	0.000217874	translation initiation factor IF-2
BBM III03565	27	549	0.049180328	4.702902714	2.56E-06	0.000476394	
BBM 1104115	5	102	0.049019608	4.680626749	2.86E-06	0.000504646	
BBM III00255	145	2991	0.04847877	4.605666004	4.11E-06	0.000690924	BMN family (2)
BBM III02125	12	255	0.047058824	4.408859978	1.04E-05	0.00166691	
BBM III07964	18	387	0.046511628	4.333018088	1.47E-05	0.002256704	CCAAT-box DNA binding protein subunit B - CBFD NFYB HMF
BBM 102465	36	789	0.045627376	4.210459901	2.55E-05	0.003747377	
BBM 1104240	56	1242	0.045088567	4.135780323	3.54E-05	0.004901018	
BBM III08155	128	2841	0.045054558	4.131066699	3.61E-05	0.004901018	
BBM 101980	51	1134	0.044973545	4.119838173	3.79E-05	0.004955482	
BBM III02340	8	180	0.04444444	4.046504283	5.20E-05	0.006326423	
BBM 11109660	16	360	0.04444444	4.046504283	5.20E-05	0.006326423	
BBM 103535	24	543	0.044198895	4.012470875	6.01E-05	0.007068175	BMN family (1)
BBM III03785	44	1002	0.043912176	3.972731267	7.11E-05	0.008088604	
BBM 1101535	24	549	0.043715847	3.945519909	7.96E-05	0.008781367	
BBM 11100960	49	1125	0.043555556	3.923303346	8.73E-05	0.009340414	
BBM 102095	13	303	0.04290429	3.833037314	0.000126571	0.013137299	
BBM III05105	27	636	0.04245283	3.770464449	0.000162944	0.01597304	
BBM_III07935	10	237	0.042194093	3.734603178	0.000188011	0.017932223	
BBM_III09760	45	1068	0.042134831	3.72638949	0.000194242	0.018038964	BMN family (2)
BBM III02305	39	933	0.041800643	3.68007063	0.000233169	0.021098838	
BBM_III04830	7	168	0.041666667	3.661501357	0.000250742	0.022121672	
BBM_101335	10	243	0.041152263	3.590204519	0.000330419	0.02776303	
BBM III05850	15	366	0.040983607	3.566828506	0.000361328	0.029654086	
BBM_11109960	15	375	0.04	3.430499601	0.000602471	0.047247104	
BBM_III03525	55	1380	0.039855072	3.410412492	0.000648647	0.049762502	
BBM III07810	92	2322	0.039621016	3.37797207	0.000730225	0.054829019	
BBM_11100785	39	987	0.039513678	3.363094834	0.000770739	0.05666536	BMN family (1)
BBM_III09725	18	459	0.039215686	3.321792893	0.000894411	0.064415813	
BBM_102825	63	1620	0.038888889	3.276498431	0.001051029	0.074181624	
BBM_III07375	5	129	0.03875969	3.258591318	0.001119668	0.077476659	
BBM_III02585	12	315	0.038095238	3.166497595	0.001542866	0.104707209	
BBM_III06235	85	2250	0.037777778	3.122497261	0.001793238	0.117191407	

B)

Gene	Diversity	Z	Р	Adjusted.P	Description			
BBM_mt00020	0.00170925	9.77344876	1.46E-22	8.61E-20	cytb, ubiquinol-cytochrome c reductase cytochrome b subunit			
BBM_III09915	0.00153496	8.7351951	2.43E-18	9.54E-16				
BBM_III06145	0.00131976	7.45329945	9.10E-14	2.68E-11	histone H4			
BBM_mt00035	0.0012674	7.14138573	9.24E-13	2.33E-10	cox3, cytochrome c oxidase subunit 3			
BBM_III00690	0.00119514	6.71099922	1.93E-11	4.55E-09				
BBM_II02210	0.00109242	6.09908446	1.07E-09	1.79E-07				
BBM_III08185	0.00095648	5.28932235	1.23E-07	1.88E-05				
BBM_III04950	0.00092428	5.09748532	3.44E-07	4.67E-05				
BBM_III04080	0.00090747	4.99738126	5.81E-07	7.60E-05				
BBM_II00935	0.0008993	4.948682	7.47E-07	9.42E-05	glutaredoxin 3			
BBM_II02225	0.00089498	4.92297356	8.52E-07	0.00010373				
BBM_III09795	0.00088951	4.89038078	1.01E-06	0.00011839				
BBM_III02625	0.00086507	4.74481459	2.09E-06	0.00023758				
BBM_102275	0.00085318	4.67396817	2.95E-06	0.00032581	large subunit ribosomal protein L24e			
BBM_II00295	0.00082457	4.50357352	6.68E-06	0.00071457				
BBM_102065	0.00081507	4.44695322	8.71E-06	0.00090401	deoxyhypusine synthase [EC:2.5.1.46]			
BBM_102530	0.00078941	4.29409922	1.75E-05	0.00176857				
BBM_I01885	0.00076786	4.16574759	3.10E-05	0.00288202				
BBM_III00955	0.00068399	3.66618027	0.0002462	0.02227798				
BBM_I01335	0.0006822	3.65551027	0.00025667	0.02264479				
BBM_II02290	0.00067806	3.63083476	0.00028251	0.02431619				
BBM_II03255	0.00066576	3.55758863	0.00037427	0.031448				
BBM_III06620	0.00065243	3.47815505	0.00050488	0.0414352				
BBM_100005	0.00064561	3.43752688	0.00058705	0.04708427	Tpr related protein, putative			
BBM_III00785	0.00063572	3.3785905	0.00072858	0.05713721	BMN family (1)			
BBM_III01850	0.00062854	3.33584351	0.00085041	0.06524125				
BBM_II03600	0.00062439	3.31112486	0.00092922	0.06977039	cyclin-dependent kinase regulatory subunit CKS1			
BBM_II02815	0.00060908	3.21995769	0.0012821	0.09426071				
BBM_II01100	0.00057041	2.98957997	0.00279361	0.19717321				
BBM_II01460	0.00056325	2.94691331	0.00320963	0.22209392				
BBM_III00590	0.00055258	2.88339817	0.0039341	0.26195155				
BBM_II01055	0.00054711	2.85080772	0.00436083	0.27980691				
BBM_I01270	0.00053958	2.80591416	0.00501741	0.31618615				
BBM_III00080	0.00053476	2.77721638	0.00548267	0.3394444	prefoldin alpha subunit			
BBM_III05115	0.00052627	2.72665361	0.00639802	0.38268813				
BBM_II01490	0.00052216	2.70213834	0.00688951	0.40468164				
BBM_100955	0.00052131	2.69707917	0.00699506	0.40468164				
BBM_III01965	0.00051886	2.68250022	0.00730741	0.41593309				
BBM_II00310	0.00051388	2.65285931	0.00798131	0.44708021				
BBM_102135	0.00051191	2.64108586	0.00826408	0.45068299				
BBM_III06860	0.00051165	2.6395733	0.00830105	0.45068299				
BBM_102395	0.00050515	2.60082316	0.00930004	0.49727022				
BBM_II01845	0.00050383	2.59300234	0.00951421	0.50112919				
BBM_III05330	0.00050235	2.58415856	0.00976169	0.50660303				
BBM_II02610	0.00049894	2.56382126	0.01035268	0.52948729				
BBM_III03830	0.00049782	2.55720004	0.01055185	0.53196408				
BBM_III04280	0.00049546	2.54314148	0.01098607	0.54605427				
BBM_III06190	0.00049338	2.53072291	0.01138277	0.55791397				
BBM_II03800	0.00048901	2.50471441	0.01225503	0.58443245	DNA-directed RNA polymerase III subunit C11 [EC:2.7.7.6]			
BRW_III01/52	0.00048901	2.50471441	0.01225503	0.58443245				
Suppleme	ntal Tabl	e 5: A) L	ist of the	e 50 mos	t substituted genes comparing Russian B.			
<i>microti</i> to t	he R1 re	ference.	Full tab	le availa	ble in supplemental files. B) 50 most			
substituted	substituted genes within the CUS samples. Full table available in supplemental files.							

388 Supplemental Table 6: BEAST estimates and Model Comparisons

389

- 390 **A**)
- 391 HME:

	In P(model data)	S.E.	CUS_CL	.oc_iu	CUS_CLOC	_G CUS_	UCED_G	CUS_UCLN_
CUS_CLOC_IU	-6618014.212	+/- 0.146	-		-0.542	-	22.09	-20.713
CUS_CLOC_G	-6618012.963	+/- 0.148	0.5	42	-	-2	21.548	-20.171
CUS_UCED_G	-6617963.348	+/- 0.155	22.	09	21.548		-	1.377
CUS_UCLN_G	-6617966.518	+/- 0.163	20.7	713	20.171	-	1.377	-
AICM:								
	AICM	S.E. CU	s_cloc	_וט כט	s_cloc_e	i CUS_L	ICED_G	CUS_UCLN_
CLOC_IU	13236055.2 +/-	0.086	-		-4.707	-89	.429	-78.319
CLOC_G45	13236050.4 +/-	0.077	4.707		-	-84	.723	-73.613
UCED_G45	13235965.7 +/-	0.114	89.429		84.723		-	11.11
UCLN_G45	13235976.8 +/-	0.089	78.319		73.613	-11	1.11	-
В)								
Summary St	atistic	EC	MNE	MW	NAN	REF	CUS	CNE
mean		1649	219	2237	268	215	6316	410
stderr of me	an	116	5	114	6	7	444	10
median		1293	177	1837	220	160	5043	336
geometric m	nean	1357	186	1868	231	171	5291	348
95% HPD lov	wer	327	51	379	73	41	1341	99
95% HPD up	per	3933	499	5100	583	543	14708	909
auto-correla	tion time (ACT)	145220	19046	88392	2 19516	24064	166960	23842
	CUS_CLOC_IU CUS_CLOC_G CUS_UCED_G CUS_UCED_G CUS_UCLN_G AICM: CLOC_IU CLOC_G45 UCED_G45 UCED_G45 UCEN_G45 B) Summary St mean stderr of me median geometric m 95% HPD low 95% HPD low	In P(model data) CUS_CLOC_IU -6618014.212 CUS_CLOC_G -6618012.963 CUS_UCED_G -6617963.348 CUS_UCLN_G -6617966.518 AICM:	In P(model data) S.E. CUS_CLOC_IU -6618014.212 +/- 0.146 CUS_CLOC_G -6618012.963 +/- 0.148 CUS_UCED_G -6617963.348 +/- 0.155 CUS_UCLN_G -6617966.518 +/- 0.163 AICM:	In P(model data) S.E. CUS_CL CUS_CLOC_IU -6618014.212 +/- 0.146 - CUS_CLOC_G -6618012.963 +/- 0.148 0.5 CUS_UCED_G -6617963.348 +/- 0.155 22. CUS_UCLN_G -6617966.518 +/- 0.163 20.7 AICM:	In P(model data) S.E. CUS_CLOC_IU CUS_CLOC_G -6618014.212 +/- 0.146 - CUS_CLOC_G -6618012.963 +/- 0.148 0.542 CUS_UCED_G -6617963.348 +/- 0.155 22.09 CUS_UCLN_G -6617966.518 +/- 0.163 20.713 AICM:	In P(model data)S.E.CUS_CLOC_IUCUS_CLOCCUS_CLOC_IU-6618014.212+/-0.1460.542CUS_CLOC_G-6618012.963+/-0.1480.542-CUS_UCED_G-6617963.348+/-0.15522.0921.548CUS_UCLN_G-6617966.518+/-0.16320.71320.171AICMS.E.CUS_CLOC_IUCUS_CLOC_GCLOC_IU13236055.2+/-0.0864.707CLOC_G4513236050.4+/-0.0774.707-UCED_G4513235965.7+/-0.11489.42984.723UCLN_G4513235976.8+/-0.08978.31973.613B)Summary StatisticECMNEMWNANmean16492192237268stderr of mean11651146median12931771837220geometric mean1357186186823195% HPD lower327513797395% HPD upper39334995100583auto-correlation time (ACT)145220190468839219516	In P(model data)S.E.CUS_CLOC_IUCUS_CLOC_G </td <td>$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$</td>	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

A) Log10 Bayes factors (BF) based on the marginal likelihood method¹° and Akaike
 Information Criteria by Markov Chain Monte Carlo (AICM)¹⁷ comparing strict clock

403 (CLOC), uncorrelated exponential (UCED) and uncorrelated log-normal (UCLN)

404 distributions for CUS samples. Positive values between compared models favor the

405 model in the row over the model in the column. B) Summary statistics (in years) for time

406 to most recent common ancestry by population for UCED (the favored model in A).

407 Positive values between compared models favor the model in the row over the model in

- 408 the column. HPD = highest posterior density.
- 409
- 410
- 411

412 Supplemental Table 7: Non-Synonymous Variants in Relapsing Cases. Each

relapsing case was compared to its nearest neighbor (as measured by p-distance) and
 substitutions resulting in pairwise amino acid differences were identified. Variants in

415 which the relapsing case contained the wild-type allele are marked as WT.

416

Babb BBM_100580 chromosome 1 210944 n/a F115L Babb5 BBM_101510 chromosome 1 547252 n/a Y323C Babb5 BBM_100230 chromosome 1 100570 n/a Y323C Babb5 BBM_100235 chromosome 1 200573 n/a Y324C Babb5 BBM_100235 mitochondrion 7648 cytochrome oxidase 3 H179Y Bab14 BBM_100215 chromosome 1 762763 inorganic pyrophosphatase P2645 coatomer protein complex, subunit alpha Statomer protein complex, subunit alpha A924V Bab14 BBM_103465 chromosome 1 1264066 (reinin) A924V B46C Bab14 BBM_103260 chromosome 1 126406 n/a V120C V120C Bab14 BBM_100213 chromosome 1 20792 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1002370 chromosome 3 943961 n/a T300A MGH2001 BBM_1002370 chromosome 3 9	Sample	Gene	Chromosome	Base	Description	Amino Acid Substitution
Bab05 BBM101510 chromosome 1 547252 n/a Y322C Bab05 BBM1002835 chromosome 2 100673 n/a 12247 (WT) Bab05 BBMmt002835 chromosome 2 100673 n/a 1227P (shared by MORNS2015) Bab05 BBMmt002035 mitochondrion 3648 cytochrome b L277P (shared by MORNS2015) Bab05 rpl4 apicopiast 7864 n/a norganic pyrophosphatase cytochrome b 1297P Bab14 BBM_002075 chromosome 1 37648 n/a D355G Bab14 BBM_00345 chromosome 1 1264006 n/a D355G Bab14 BBM_002075 chromosome 1 1264006 n/a D355G Bab14 BBM_00213 chromosome 1 126900 n/a U320C Bab14 BBM_002013 chromosome 1 12679 cytochrome b Y120C MGH2001 BBM_010213 chromosome 1 1977 n/a Y120A (WT) MGH2001 BBM_010021	Bab05	BBM_100580	chromosome 1	210944	n/a	F115L
Babo5 BBM102330 chromosome 1 110570 n/a 11294T (WT) Bab05 BBMmt00020 mitochondrion 3648 cytochrome b L277P (shared by MORNS2015) Bab05 BBM_mt00023 mitochondrion 7430 cytochrome oxidase 3 H179Y Bab14 BBM_00115 chromosome 1 762763 n/a Bab14 BBM_00115 chromosome 1 762763 Bab14 BBM_00115 chromosome 1 762763 inorganic pyrophosphatase P2643 Bab14 BBM_003460 chromosome 1 126406 n/a D3556 Bab14 BBM_003460 chromosome 1 126900 n/a D3556 Bab14 BBM_00213 chromosome 1 126940 n/a L211 MGH2001 BBM_100370 chromosome 3 119074 n/a L211 MGH2001 BBM_1003470 chromosome 4 122589 n/a R65504 (WT) MGH2001 BBM_1003470 chromosome 4 13986 n/a F1998 (MT) MGH	Bab05	BBM_I01510	chromosome 1	547252	n/a	Y323C
Bab05 BBM_III02835 chromosome 2 100073 n/a 5221P Bab05 BBM_mt00035 mitochondrion 3648 cytochrome b L277P (shared by MORNS2015) Bab05 BBM_mt00035 mitochondrion 7430 cytochrome oxidase 3 H179Y Bab14 BBM_100115 chromosome 1 37648 n/a R86H Bab14 BBM_103445 chromosome 1 72673 inorganic gyrophosphatase P264S Bab14 BBM_103445 chromosome 1 1264406 (xenin) A924V Bab14 BBM_103465 chromosome 1 1264406 n/a D355G Bab14 BBM_100245 chromosome 1 1264406 n/a D355G Bab14 BBM_1003465 chromosome 1 1264406 n/a D355G Bab14 BBM_100213 chromosome 1 60729 cytein Rich Modular Protein, CRMP W335L MGH2001 BBM_100265 chromosome 1 125089 n/a T300A MGH2001 BBM_1000213 chromosome 1	Bab05	BBM_103030	chromosome 1	1106570	n/a	11294T (WT)
Bab05 BBM_mt00020 mitochondrion 3648 cytochrome b L277P (shared by MORNS2015) Bab05 BBM_mt00035 mitochondrion 7864 ribosomal subunit L4 R86H Bab14 BBM_100115 chromosome 1 75678 n/a R86H Bab14 BBM_00215 chromosome 1 75678 inorganic pyrophosphatase coatomer protein complex, subunit alpha A924V Bab14 BBM_00345 chromosome 1 126406 n/a 03556 Bab14 BBM_003213 chromosome 1 126400 n/a 03556 Bab14 BBM_100203 mitochondrion 3177 cytochrome b Y120C Bab14 BBM_1003213 chromosome 1 60729 Cytetin Rich Modular Protein, CRMP W335L MGH2001 BBM_1003270 chromosome 3 199774 n/a T300A MGH2001 BBM_1006975 chromosome 4 813896 n/a T300A MGH2001 BBM_1001325 chromosome 4 813896 n/a F398L BBM_1001325	Bab05	BBM_II02835	chromosome 2	1000673	n/a	S221P
Bab05 BBM_m00035 mitochondrion 7430 cytochrome oxidase 3 H179Y Bab05 rpi4 apicoplast 7664 ribosomal subunit L4 R86H Bab14 BBM_m00115 chromosome 1 37648 n/a ribosomal subunit L4 R86H Bab14 BBM_m02075 chromosome 1 2764406 norganic pyrophosphatase P2645 Catomer protein complex, subunit alpha A924V Bab14 BBM_m00020 mitochondrion 3177 cytochrome b Y120C Bab14 BBM_m10020 mitochondrion 3177 cytochrome b Y120C R86C MGH2001 BBM_m103270 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L Y170A (WT) MGH2001 BBM_m103270 chromosome 3 1190774 n/a T300A R655H (WT) MGH2001 BBM_m10325 chromosome 4 81396 n/a F300A MGH2001 BBM_m101475 chromosome 2 526568 n/a F1998L (WT) BWH2003 BBM_m101475	Bab05	BBM_mt00020	mitochondrion	3648	cytochrome b	L277P (shared by MORNS2015)
Bab05 rpl4 apicoplast 7864 ribosomal subunit L4 R86H Bab14 BBM_100115 chromosome 1 37648 n/a coatomer protein complex, subunit alpha P2645 Bab14 BBM_002460 chromosome 1 126400 n/a D355G Bab14 BBM_100213 chromosome 1 126400 n/a D355G Bab14 BBM_100213 chromosome 1 1269400 n/a D355G Bab14 BBM_100213 chromosome 1 1269400 n/a D355G Bab14 BBM_100213 chromosome 3 943961 n/a N/a N335L MGH2001 BBM_1102665 chromosome 3 1190774 n/a V170A (WT) MGH2001 BBM_110370 chromosome 3 1190774 n/a T300A MGH2001 BBM_110175 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_1101475 chromosome 4 493919 n/a S141G BWH2003 BBM_1101475 chromosome 4 <td>Bab05</td> <td>BBM_mt00035</td> <td>mitochondrion</td> <td>7430</td> <td>cytochrome oxidase 3</td> <td>H179Y</td>	Bab05	BBM_mt00035	mitochondrion	7430	cytochrome oxidase 3	H179Y
Bab14 BBM_100115 Bab14 chromosome 1 BBM_102075 37648 chromosome 1 762763 n/a inorganic pyrophosphatase coatomer protein complex, subunit alpha P2645 Bab14 BBM_002435 chromosome 1 1269400 (xenin) A924V Bab14 BBM_00200 mitochondrion 3177 optochrome b Y120C Bab14 BBM_00201 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_00213 chromosome 3 149361 n/a T300A MGH2001 BBM_000213 chromosome 3 149374 n/a Y170A (WT) MGH2001 BBM_00020 chromosome 3 125509 n/a T300A MGH2001 BBM_00020 chromosome 4 81395 sparate aminotransferase P240L MGH2001 BBM_00020 mitochondrion 3102, 3220 cytochrome b 1955, M134I BWH2003 BBM_001325 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_001325 chromosome 2 536568 n/a S1197	Bab05	rpl4	apicoplast	7864	ribosomal subunit L4	R86H
Bab14 BBM_102075 chromosome 1 37648 n/a inorganic pyrophosphatase P2645 Bab14 BBM_102075 chromosome 1 1264406 (xenin) A924V Bab14 BBM_103455 chromosome 1 1269400 n/a D3556 Bab14 BBM_m00020 mitochonion 3177 cytochrome b Y120C Bab14 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1102665 chromosome 3 943961 n/a T300A MGH2001 BBM_1102470 chromosome 3 1225089 n/a T300A MGH2001 BBM_1106470 chromosome 4 81395 n/a T300A MGH2001 BBM_1105470 chromosome 4 829012 aspartate aminotransferase P240L MGH2001 BBM_101325 chromosome 4 83956 n/a S14116 BWH2003 BBM_101325 chromosome 4 83956 n/a S14116 BWH2003 BBM_1101345 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
Babl4 BBM_00113 Chromosome 1 762763 Inva Babl4 BBM_002075 chromosome 1 762763 inorganic pyrophosphatase P2645 Babl4 BBM_003460 chromosome 1 1264400 n/a D355G Babl4 BBM_00201 mitchondrion 3177 cytochrome b Y120C Babl4 BBM_00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_00213 chromosome 3 190774 n/a V170A (WT) MGH2001 BBM_001020 chromosome 3 1225089 n/a T300A MGH2001 BBM_001020 chromosome 4 813896 n/a R655H (WT) MGH2001 BBM_001475 chromosome 4 813896 n/a F1998L (WT) MGH2001 BBM_0101475 chromosome 2 53556 n/a F1998L (WT) MGH2003 BBM_0101475 chromosome 2 53556 n/a F1998L (WT) BWH2003 BBM_0101475 chromosome 4 535781	Dob14			27649	- 1-	
BB14 BBM_I02027 chromosome 1 762/r63 inorganic pyrophosphatase P2645 coatomer protein complex, subunit alpha coatomer protein complex, subunit alpha A924V Bab14 BBM_I0345 chromosome 1 1264406 (xenin) A924V Bab14 BBM_I00200 mitochondrion 3177 cytochrome b Y120C Bab14 BBM_II00200 mitochondrion 3177 cytochrome b Y120C Bab14 rpl4 apicoplast 7863 rribosomal subunit L4 R86C MGH2001 BBM_III02370 chromosome 3 943961 n/a T300A MGH2001 BBM_III0675 chromosome 3 125289 n/a T300A MGH2001 BBM_III0740 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_III01475 chromosome 1 483564 n/a F1998L (WT) BWH2003 BBM_III01475 chromosome 4 32251 gytochrome b 13157 BWH2003 BBM_IIII01480 chromosome 4	Bab14	BBIVI_100115	chromosome 1	37648	n/a	D 2646
Bab14 BBM_103445 chromosome 1 1264065 (xenin) A924V Bab14 BBM_103460 chromosome 1 1269400 n/a D3556 Bab14 BBM_mt00020 mitochondrion 3177 cytochrome b Y120C Bab14 BBM_10213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1002370 chromosome 3 190774 n/a V1704 (WT) MGH2001 BBM_100370 chromosome 4 81396 n/a T300A MGH2001 BBM_101325 chromosome 4 843912 aspartate aminotransferase P240L MGH2001 BBM_101325 chromosome 4 843912 aspartate aminotransferase P240L MGH2001 BBM_101325 chromosome 4 536568 n/a F1998L (WT) BWH2003 BBM_101325 chromosome 4 505781 n/a S2271 (shared by Bab15) BWH2003 BBM_101780 chromosome 4 505781 n/a S2271 (shared by Bab15) BWH2003 <td< td=""><td>Bab14</td><td>BRIM_105012</td><td>chromosome 1</td><td>/62/63</td><td>inorganic pyrophosphatase</td><td>P264S</td></td<>	Bab14	BRIM_105012	chromosome 1	/62/63	inorganic pyrophosphatase	P264S
Bab14 BBM_U0349 chromosome 1 1264406 (xenin) A924V Bab14 BBM_m100420 mitochondrion 3177 cytochrome b Y120C Bab14 BBM_m100210 mitochondrion 3177 cytochrome b Y120C Bab14 rpl4 apicoplast 7863 ribosomal subunit L4 R86C MGH2001 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1003170 chromosome 3 125089 n/a T300A MGH2001 BBM_101470 chromosome 4 813896 n/a T300A MGH2001 BBM_101470 chromosome 4 843012 aspartate aminotransferase P240L MGH2001 BBM_101475 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_101475 chromosome 4 48354 n/a S141G BWH2003 BBM_1016135 chromosome 4 505781 n/a S141G BWH2003 BBM_101780 chromosome 4	5.144	DD14 100445			coatomer protein complex, subunit alpha	102.01
Bab14 BBM_103400 chromosome 1 1209400 n/a D3556 Bab14 rpl4 apicoplast 7863 ribosomal subunit L4 R86C MGH2001 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1003370 chromosome 3 943961 n/a L211 MGH2001 BBM_100370 chromosome 3 1190774 n/a V170A (WT) MGH2001 BBM_100370 chromosome 4 81396 n/a R655H (WT) MGH2001 BBM_10370 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_100200 mitochondrion 3102, 3220 cytochrome b 1955, M1341 BWH2003 BBM_101475 chromosome 4 83919 n/a S141G BWH2003 BBM_101325 chromosome 4 505781 n/a S141G BWH2003 BBM_101780 chromosome 4 93919 n/a S2271 (shared by Bab15) BWH2003 BBM_107180 <td< td=""><td>Bab14</td><td>BBM_103445</td><td>chromosome 1</td><td>1264406</td><td>(xenin)</td><td>A924V</td></td<>	Bab14	BBM_103445	chromosome 1	1264406	(xenin)	A924V
Bab14 BBM_mt00020 mitochondrion 3177 cytochrome b Y120C Bab14 rpl4 apicoplast 7863 ribosomal subunit L4 R86C MGH2001 BBM_l00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_l002665 chromosome 3 943961 n/a T300A MGH2001 BBM_l005475 chromosome 3 1190774 n/a T300A MGH2001 BBM_l00575 chromosome 4 813896 n/a T300A MGH2001 BBM_l01425 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_l01475 chromosome 1 483564 n/a F1998L (WT) BWH2003 BBM_l01475 chromosome 2 536568 n/a S141G BWH2003 BBM_l010155 chromosome 4 505781 n/a S141G BWH2003 BBM_l010180 chromosome 4 955965 n/a S227I (shared by Bab15) BWH2003 BBM_l0108455 chrom	Bab14	BBM_103460	chromosome 1	1269400	n/a	D355G
Bab14 rpl4 apicoplast 7863 ribosomal subunit L4 R86C MGH2001 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1003370 chromosome 3 943961 n/a L211 MGH2001 BBM_100370 chromosome 3 1190774 n/a T300A MGH2001 BBM_100370 chromosome 4 81396 n/a R655H (WT) MGH2001 BBM_1007040 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_101325 chromosome 1 483564 n/a F1998L (WT) BWH2003 BBM_101325 chromosome 4 49319 n/a A326T BWH2003 BBM_10135 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_1075 chromosome 4 95695 n/a S2271 (shared by Bab15) BWH2003 BBM_107380 chromosome 4 95695 n/a S2271 (shared by Bab15) BWH2003 BBM_107380	Bab14	BBM_mt00020	mitochondrion	3177	cytochrome b	Y120C
MGH2001 BBM_100213 (http://www.intexturbediatediatediatediatediatediatediatediat	Bab14	rpl4	apicoplast	7863	ribosomal subunit L4	R86C
MGH2001 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MGH2001 BBM_1102665 chromosome 3 943961 n/a 1211 MGH2001 BBM_1103370 chromosome 3 1190774 n/a T300A MGH2001 BBM_1103470 chromosome 4 813896 n/a T300A MGH2001 BBM_11005975 chromosome 4 813896 n/a R655H (WT) MGH2001 BBM_1100740 chromosome 4 849012 aspartate aminotransferase P240L MGH2003 BBM_101325 chromosome 4 849012 aspartate aminotransferase P240L BWH2003 BBM_101475 chromosome 4 849319 n/a S1416 BWH2003 BBM_106135 chromosome 4 93919 n/a A326T BWH2003 BBM_106135 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_1106175 chromosome 4 59565 n/a T3445K BWH2003 BBM_1107180 chromos						
MGH2001 BBM_III02665 chromosome 3 943961 n/a L21I MGH2001 BBM_III03370 chromosome 3 1190774 n/a V170A (WT) MGH2001 BBM_III03470 chromosome 3 1120774 n/a T300A MGH2001 BBM_III0470 chromosome 4 813896 n/a R655H (WT) MGH2001 BBM_III07040 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_III07040 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_II01475 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_II01475 chromosome 4 493919 n/a A326T BWH2003 BBM_III07180 chromosome 4 505781 n/a S121F (shared by Bab15) BWH2003 BBM_III07180 chromosome 4 59565 n/a S2271 (shared by Bab15) BWH2003 BBM_III07915 chromosome 4 595655 n/a T3445K BWH2003 BBM_III07380 <td>MGH2001</td> <td>BBM_100213</td> <td>chromosome 1</td> <td>60729</td> <td>Cystein Rich Modular Protein, CRMP</td> <td>W335L</td>	MGH2001	BBM_100213	chromosome 1	60729	Cystein Rich Modular Protein, CRMP	W335L
MGH2001 BBM_II03370 chromosome 3 1190774 n/a V170A (WT) MGH2001 BBM_II03470 chromosome 3 1225089 n/a T300A MGH2001 BBM_II06975 chromosome 4 813896 n/a R655H (WT) MGH2001 BBM_II07040 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_I00200 mitochondrion 3102, 3220 cytochrome b I955, M134I BWH2003 BBM_I01325 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_I013455 chromosome 2 52258 n/a S141G BWH2003 BBM_II06135 chromosome 4 493919 n/a A326T BWH2003 BBM_II07380 chromosome 4 505781 n/a S227I (shared by Bab15) BWH2003 BBM_II07380 chromosome 4 956965 n/a T3445K BWH2003 BBM_II07380 chromosome 4 956965 n/a V821 BWH2003 BBM_II07380	MGH2001	BBM III02665	chromosome 3	943961	n/a	L21I
MGH2001 BBM_III03470 chromosome 3 1225089 n/a T300A MGH2001 BBM_III06975 chromosome 4 813896 n/a R655H (WT) MGH2001 BBM_III07040 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_III07040 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_III07040 chromosome 4 849012 aspartate aminotransferase P240L BWH2003 BBM_II01325 chromosome 1 483564 n/a F1998L (WT) BWH2003 BBM_II01348 chromosome 2 536568 n/a S141G BWH2003 BBM_II06135 chromosome 4 493919 n/a A326T BWH2003 BBM_III07180 chromosome 4 505781 n/a D315P (WT) BWH2003 BBM_III07180 chromosome 4 98529 n/a S227I (shared by Bab15) BWH2003 BBM_III07915 chromosome 4 9750655 n/a E115K (shared by Bab15) BWH2003	MGH2001	BBM III03370	chromosome 3	1190774	n/a	V170A (WT)
MGH2001 BBM_III06975 chromosome 4 813896 n/a R655H (WT) MGH2001 BBM_II0740 chromosome 4 849012 aspartate aminotransferase P240L MGH2001 BBM_II01325 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_II01475 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_II01475 chromosome 4 493919 n/a A326T BWH2003 BBM_III06135 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_III07180 chromosome 4 505781 n/a S227I (shared by Bab15) BWH2003 BBM_III07180 chromosome 4 956965 n/a T3445K BWH2003 BBM_III07915 chromosome 4 1669128 n/a V821 BWH2003 BBM_III07915 chromosome 4 1669128 n/a V821 BWH2003 BBM_III07180 chromosome 1 160729 Cystein Rich Modular Protein, CRMP W335L E1155K (shared by Bab03, Bab0	MGH2001	BBM III03470	chromosome 3	1225089	n/a	T300A
MGH2001 BBM_III07040 chromosome 4 849012 aspartate aminotransferase cytochrome b P240L MGH2001 BBM_mt00020 mitochondrion 3102, 3220 cytochrome b I955, M134I BWH2003 BBM_I01325 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_II03485 chromosome 2 536568 n/a S141G BWH2003 BBM_II06135 chromosome 4 493919 n/a A326T BWH2003 BBM_III07180 chromosome 4 505781 n/a S227I (shared by Bab15) BWH2003 BBM_III07180 chromosome 4 956965 n/a T3445K BWH2003 BBM_III07915 chromosome 4 1669128 n/a V821 BWH2003 BBM_III09545 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L BWH2003 BBM_I02213 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02455 chromosome 1 875249 n/a L891	MGH2001	BBM III06975	chromosome 4	813896	n/a	R655H (WT)
MGH2001 BBM_mt00020 mitochondrion 3102, 3220 cytochrome b I955, M134i BWH2003 BBM_l01325 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_l01475 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_l03485 chromosome 2 1222818 n/a S141G BWH2003 BBM_lII06175 chromosome 4 493919 n/a A326T BWH2003 BBM_lII06175 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_lII07180 chromosome 4 956965 n/a T3445K BWH2003 BBM_lII07380 chromosome 4 956965 n/a Value BWH2003 BBM_lII07380 chromosome 1 60	MGH2001	BBM III07040	chromosome 4	849012	aspartate aminotransferase	P240L
BWH2003 BBM_101325 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_1001475 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_1003485 chromosome 2 1222818 n/a S1416 BWH2003 BBM_106135 chromosome 4 493919 n/a A326T BWH2003 BBM_106175 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_1007380 chromosome 4 98529 n/a S2271 (shared by Bab15) BWH2003 BBM_1007380 chromosome 4 956965 n/a T3445K BWH2003 BBM_1007380 chromosome 4 169128 n/a V821 BWH2003 BBM_1009545 chromosome 4 169128 n/a V821 BWH2003 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L E115K (shared by Bab03, Bab08, Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_102415 chromosome 1 875249 n/a I1294T (WT)	MGH2001		mitochondrion	3102, 3220	cytochrome b	195S, M134I
BWH2003 BBM_101325 chromosome 1 483564 n/a D159N (shared by Bab15) BWH2003 BBM_1001475 chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_1003485 chromosome 2 1222818 n/a S141G BWH2003 BBM_106135 chromosome 4 493919 n/a A326T BWH2003 BBM_106175 chromosome 4 898529 n/a D319E (WT) BWH2003 BBM_100780 chromosome 4 956965 n/a T3445K BWH2003 BBM_1007915 chromosome 4 956965 n/a T3445K BWH2003 BBM_1007915 chromosome 4 1669128 n/a V821 BWH2003 BBM_1009545 chromosome 4 1669128 n/a V821 BWH2003 BBM_100213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L E115K (shared by Bab03, Bab08, Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_102415 chromosome 1 875249 MORNS2015 BBM_10		-		,		
BWH2003 BBM_ID1235 Chromosome 2 536568 n/a F1998L (WT) BWH2003 BBM_II01475 chromosome 2 536568 n/a S141G BWH2003 BBM_II03485 chromosome 2 1222818 n/a S141G BWH2003 BBM_II06135 chromosome 4 493919 n/a A326T BWH2003 BBM_II07180 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_II07180 chromosome 4 956965 n/a T3445K BWH2003 BBM_III07380 chromosome 4 1669128 n/a V821 BWH2003 BBM_III09545 chromosome 1 1669128 n/a V821 BWH2003 BBM_I00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L E115K (shared by Bab03, Bab08, MORNS2015 BBM_I02415 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02415 chromosome 1 875249 n/a I1294T (WT) MORNS2015	D/W/H2002	DDM 101225	chromocomo 1	102561	2/2	D1EON (charad by Dah1E)
BWH2003 BBM_II03475 Chromosome 2 1222818 n/a F1998L (W1) BWH2003 BBM_II03485 chromosome 2 1222818 n/a S141G BWH2003 BBM_II0515 chromosome 4 493919 n/a A326T BWH2003 BBM_II06175 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_II07180 chromosome 4 956965 n/a T3445K BWH2003 BBM_II07150 chromosome 4 956965 n/a T3445K BWH2003 BBM_II07915 chromosome 4 17108, 11371 n/a K475Q, 1480N BWH2003 BBM_II09545 chromosome 4 1669128 n/a V821 BWH2003 BBM_I00200 mitochondrion 3648 cytochrome b L277P MORNS2015 BBM_I02415 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L E115K (shared by Bab03, Bab08, Bab08, Bab108, Bab10	BWH2003	BBIVI_101325	chromosome 1	483564	n/a	
BWH2003 BBM_III03485 Chromosome 4 493919 n/a S141G BWH2003 BBM_III06135 chromosome 4 493919 n/a A326T BWH2003 BBM_III07150 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_III07180 chromosome 4 898529 n/a S227I (shared by Bab15) BWH2003 BBM_III07380 chromosome 4 956965 n/a T3445K BWH2003 BBM_III07915 chromosome 4 1669128 n/a V821 BWH2003 BBM_III09545 chromosome 4 1669128 n/a V821 BWH2003 BBM_I00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L E115K (shared by Bab03, Bab08, Bab10, Bab12, Bab16, MGH2001) E115K (shared by Bab03, Bab08, MORNS2015 BBM_I02415 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02455 chromosome 1 84392 TSR2, pre-rRNA-processing protein TSR2 W41C MORNS2015 BBM_I	BWH2003	BBIVI_1101475	chromosome 2	530508	n/a	F1998L (WT)
BWH/2003 BBM_III06135 chromosome 4 493919 n/a A3261 BWH2003 BBM_III06175 chromosome 4 505781 n/a D319E (WT) BWH2003 BBM_III07180 chromosome 4 98529 n/a S227I (shared by Bab15) BWH2003 BBM_III07380 chromosome 4 956965 n/a T3445K BWH2003 BBM_III07915 chromosome 4 9709565 n/a V821 BWH2003 BBM_III07915 chromosome 4 1669128 n/a V821 BWH2003 BBM_III00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L E115K (shared by Bab03, Bab08, Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02415 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02455 chromosome 1 875249 n/a I1294T (WT) MORNS2015 BBM_I02455 chromosome 1 1106570 n/a I1294T (WT) MORNS2015 BBM_II02600 chromosome 2 348600 n/a <td>BWH2003</td> <td>BBIM_II03485</td> <td>chromosome 2</td> <td>1222818</td> <td>n/a</td> <td>\$141G</td>	BWH2003	BBIM_II03485	chromosome 2	1222818	n/a	\$141G
BWH2003BBM_III0517sChromosome 4S05781fr/aD319E (W1)BWH2003BBM_III07180chromosome 4898529n/aS2271 (shared by Bab15)BWH2003BBM_III07380chromosome 4956965n/aT3445KBWH2003BBM_III07915chromosome 437108, 11371n/aK475Q, I480NBWH2003BBM_III09545chromosome 41669128n/aV821BWH2003BBM_mmt00020mitochondrion3648cytochrome bL277PMORNS2015BBM_I00213chromosome 160729Cystein Rich Modular Protein, CRMPW335LMORNS2015BBM_I02415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 11106570n/aI1294T (WT)MORNS2015BBM_I00300chromosome 2348600n/aL891MORNS2015BBM_II02600chromosome 2348600n/aL891MORNS2015BBM_II02600chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL4691MORNS2015BBM_II014730chromosome 31699962n/aT259MMORNS2015BBM_II00020mitochondrion3237cytochrome bT140KMORNS2015RBM_mt00020mitochondrion3237cytochrome bT140KMORNS2015RBM_mt00205ribosoma 31699962n/aT259M	BWH2003	BRIM_11106135	chromosome 4	493919	n/a	A3261
BWH2003 BBM_III07180 chromosome 4 898529 n/a S227/ (shared by Bab15) BWH2003 BBM_III07380 chromosome 4 956965 n/a T3445K BWH2003 BBM_III07915 chromosome 4 37108, 11371 n/a K475Q, I480N BWH2003 BBM_III09545 chromosome 4 1669128 n/a V821 BWH2003 BBM_mt00020 mitochondrion 3648 cytochrome b L277P MORNS2015 BBM_I00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MORNS2015 BBM_I002415 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02455 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I03030 chromosome 1 106570 n/a I1294T (WT) MORNS2015 BBM_II0300 chromosome 2 321860 n/a L89I MORNS2015 BBM_II02600 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L469I	BWH2003	BRIM_11106175	chromosome 4	505781	n/a	
BWH2003 BBM_III07380 chromosome 4 956965 n/a 13445k BWH2003 BBM_III07915 chromosome 4 37108, 11371 n/a K475Q, I480N BWH2003 BBM_III09545 chromosome 4 1669128 n/a V82I BWH2003 BBM_mt00020 mitochondrion 3648 cytochrome b L277P MORNS2015 BBM_I00213 chromosome 1 60729 Cystein Rich Modular Protein, CRMP W335L MORNS2015 BBM_I002415 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02455 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I03030 chromosome 1 1106570 n/a I1294T (WT) MORNS2015 BBM_II03030 chromosome 2 321987 n/a L89I MORNS2015 BBM_II02600 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L469I MORNS2015 BBM_III01030 chromosome 3 1699962 n/a T259M <tr< td=""><td>BWH2003</td><td>BBM_1110/180</td><td>chromosome 4</td><td>898529</td><td>n/a</td><td>S227I (shared by Bab15)</td></tr<>	BWH2003	BBM_1110/180	chromosome 4	898529	n/a	S227I (shared by Bab15)
BWH2003BBM_III07915chromosome 4 37108, 11371n/aK475Q, 1480NBWH2003BBM_III09545chromosome 41669128n/aV821BWH2003BBM_mt00020mitochondrion3648cytochrome bL277PMORNS2015BBM_I00213chromosome 160729Cystein Rich Modular Protein, CRMPW335LMORNS2015BBM_I02415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 1884392TSR2, pre-rRNA-processing protein TSR2W41CMORNS2015BBM_I03030chromosome 11106570n/aI1294T (WT)MORNS2015BBM_II00950chromosome 2348600n/aL89IMORNS2015BBM_II02600chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL469IMORNS2015BBM_II03100chromosome 31699962n/aT259MMORNS2015BBM_II004730chromosome 31699962n/aT259MMORNS2015BBM_mt00020mitochondrion3237cytochrome bT140KMORNS2015BBM_mt00020mitochondrion3237cytochrome bT140K	BWH2003	BBM_11107380	chromosome 4	956965	n/a	13445K
BWH2003BBM_III09545chromosome 41669128n/aV821BWH2003BBM_mt00020mitochondrion3648cytochrome bL277PMORNS2015BBM_I00213chromosome 160729Cystein Rich Modular Protein, CRMPW335LMORNS2015BBM_I02415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 1884392TSR2, pre-rRNA-processing protein TSR2W41CMORNS2015BBM_I03030chromosome 11106570n/aI1294T (WT)MORNS2015BBM_II00950chromosome 2348600n/aL89IMORNS2015BBM_II02600chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL469IMORNS2015BBM_II03100chromosome 31699962n/aT259MMORNS2015BBM_mt00020mitochondrion3237cytochrome bT140KMORNS2015BBM_mt00020mitochondrion3237cytochrome bT140K	BWH2003	BBM_1107915	chromosome 4	3/108, 113/1	n/a	K475Q, 1480N
BWH2003BBM_mt00020mitochondrion3648cytochrome bL277PMORNS2015BBM_I00213chromosome 160729Cystein Rich Modular Protein, CRMPW335L E115K (shared by Bab03, Bab08, Bab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 1875249TSR2, pre-rRNA-processing protein TSR2W41CMORNS2015BBM_I03030chromosome 11106570n/aI1294T (WT)MORNS2015BBM_II00950chromosome 2348600n/aL89IMORNS2015BBM_II02600chromosome 2921987n/aA283V (WT)MORNS2015BBM_II02600chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL469IMORNS2015BBM_III04730chromosome 31699962n/aT259MMORNS2015BBM_mt00020mitochondrion3237cytochrome bT140KMORNS2015rpl4apicoplast7825ribosomal subunit L4S73L	BWH2003	BBM_11109545	chromosome 4	1669128	n/a	V821
MORNS2015BBM_100213chromosome 160729Cystein Rich Modular Protein, CRMPW335L E115K (shared by Bab03, Bab08, Bab10, Bab12, Bab16, MGH2001)MORNS2015BBM_102415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_103030chromosome 11106570n/aI1294T (WT)MORNS2015BBM_1100950chromosome 2348600n/aL891MORNS2015BBM_1102600chromosome 2921987n/aA283V (WT)MORNS2015BBM_1103100chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL4691MORNS2015BBM_1104730chromosome 31699962n/aT259MMORNS2015BBM_100020mitochondrion3237cytochrome bT140KMORNS2015rpl4apicoplast7825ribosomal subunit L4S73L	BWH2003	BBM_mt00020	mitochondrion	3648	cytochrome b	L277P
MORNS2015BBM_I00213chromosome 160729Cystein Rich Modular Protein, CRMPW335LMORNS2015BBM_I02415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 1884392TSR2, pre-rRNA-processing protein TSR2W41CMORNS2015BBM_I03030chromosome 11106570n/a11294T (WT)MORNS2015BBM_I102600chromosome 2348600n/aL891MORNS2015BBM_I102600chromosome 2921987n/aA283V (WT)MORNS2015BBM_II103100chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL4691MORNS2015BBM_III04730chromosome 3169962n/aT259MMORNS2015BBM_mto0020mitochondrion3237cytochrome bT140KMORNS2015rpl4apicoplast7825ribosomal subunit L4S73L						
E115K (shared by Bab03, Bab08,MORNS2015BBM_I02415chromosome 1875249n/aBab10, Bab12, Bab16, MGH2001)MORNS2015BBM_I02455chromosome 1848392TSR2, pre-rRNA-processing protein TSR2W41CMORNS2015BBM_I03030chromosome 11106570n/a11294T (WT)MORNS2015BBM_I102600chromosome 2348600n/aL891MORNS2015BBM_I102600chromosome 2921987n/aA283V (WT)MORNS2015BBM_III03100chromosome 31110447mRNA (guanine-N7-)-methyltransferaseL4691MORNS2015BBM_III04730chromosome 3169962n/aT259MMORNS2015BBM_mt00020mitochondrion3237cytochrome bT140KMORNS2015rpl4apicoplast7825ribosomal subunit L4S73L	MORNS2015	BBM_100213	chromosome 1	60729	Cystein Rich Modular Protein, CRMP	W335L
MORNS2015 BBM_I02415 chromosome 1 875249 n/a Bab10, Bab12, Bab16, MGH2001) MORNS2015 BBM_I02455 chromosome 1 884392 TSR2, pre-rRNA-processing protein TSR2 W41C MORNS2015 BBM_I03030 chromosome 1 106570 n/a I1294T (WT) MORNS2015 BBM_I100950 chromosome 2 348600 n/a L891 MORNS2015 BBM_II02600 chromosome 2 921987 n/a A283V (WT) MORNS2015 BBM_II03100 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L4691 MORNS2015 BBM_III04730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L						E115K (shared by Bab03, Bab08,
MORNS2015 BBM_I02455 chromosome 1 884392 TSR2, pre-rRNA-processing protein TSR2 W41C MORNS2015 BBM_I03030 chromosome 1 1106570 n/a I1294T (WT) MORNS2015 BBM_I100950 chromosome 2 348600 n/a L891 MORNS2015 BBM_I102600 chromosome 2 921987 n/a A283V (WT) MORNS2015 BBM_I102600 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L4691 MORNS2015 BBM_II04730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_102415	chromosome 1	875249	n/a	Bab10, Bab12, Bab16, MGH2001)
MORNS2015 BBM_103030 chromosome 1 1106570 n/a I1294T (WT) MORNS2015 BBM_1100950 chromosome 2 348600 n/a L891 MORNS2015 BBM_1102600 chromosome 2 921987 n/a A283V (WT) MORNS2015 BBM_1103100 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L4691 MORNS2015 BBM_1104730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_102455	chromosome 1	884392	TSR2, pre-rRNA-processing protein TSR2	W41C
MORNS2015 BBM_II00950 chromosome 2 348600 n/a L891 MORNS2015 BBM_II02600 chromosome 2 921987 n/a A283V (WT) MORNS2015 BBM_II03100 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L4691 MORNS2015 BBM_III04730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_103030	chromosome 1	1106570	n/a	11294T (WT)
MORNS2015 BBM_II02600 chromosome 2 921987 n/a A283V (WT) MORNS2015 BBM_III03100 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L4691 MORNS2015 BBM_III04730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_II00950	chromosome 2	348600	n/a	L89I
MORNS2015 BBM_III03100 chromosome 3 1110447 mRNA (guanine-N7-)-methyltransferase L4691 MORNS2015 BBM_III04730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_II02600	chromosome 2	921987	n/a	A283V (WT)
MORNS2015 BBM_III04730 chromosome 3 1699962 n/a T259M MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 \$73L	MORNS2015	BBM_III03100	chromosome 3	1110447	mRNA (guanine-N7-)-methyltransferase	L469I
MORNS2015 BBM_mt00020 mitochondrion 3237 cytochrome b T140K MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_III04730	chromosome 3	1699962	n/a	T259M
MORNS2015 rpl4 apicoplast 7825 ribosomal subunit L4 S73L	MORNS2015	BBM_mt00020	mitochondrion	3237	cytochrome b	T140K
	MORNS2015	rpl4	apicoplast	7825	ribosomal subunit L4	\$73L

Supplemental Table 8: Mutations associated with atovaquone and azithromycin

- 419 resistance in other Apicomplexa and bacterial species.

421 A. Cytochrome B mutations associated with atovaquone resistance

Species	Position	Corresponding Position in <i>B.</i> <i>microti</i>	Mutation	Reference
B. gibsoni	108	121	A>T	Sakuma et al. 2009 ⁴¹
B. gibsoni	121	134	M>I	Matsuu et al. 2006 ⁴²
T. gondii	129	134	M>L	McFadden et al. 2000 ⁴³
P. falciparum, P.	133	134	M>I	Korsinczky et al.
berghei				2000 ⁴⁴
P. berghei	144	145	L>(F,S)	Korsinczky et al. 2000
T. gondii	254	262	I>L	McFadden et al. 2000
P. yoelii	258	262	I>M	Korsinczky et al. 2000
P. yoelii	267	271	F>I	Korsinczky et al. 2000
P. falciparum, P. yoelii	268	272	Y>(S,C)	Korsinczky et al. 2000
P. yoelii	271	275	L>V	Korsinczky et al. 2000
P. falciparum, P. yoelii	272	276	K>R	Korsinczky et al. 2000
P. falciparum	275	279	P>T	Korsinczky et al. 2000
P. falciparum	280	284	G>D	Korsinczky et al. 2000

423 B. Ribosomal protein L4 mutations associated with azithromycin resistance.

Species	Po siti on	Correspondin g Position in <i>B. microti</i>	Mutation	Reference
				45
E. coli	63	80	K>N, E	Sidhu et al. 2007 ⁴⁵ , Chittum and
				Champney 1994 ⁴⁶
S. pneumoniae	69	81	G>(C,T,	Sidhu et al. 2007
			V)	
S. pneumoniae	70	82	T>P	Sidhu et al. 2007
S. pneumoniae	71	83	G>(S, R)	Sidhu et al. 2007
P. falciparum	76	83	G>V	Sidhu et al. 2007

427 Supplementary Figure 1: Enrichment of Babesia microti DNA by three methods

428

429

430

431

432 Fold enrichment by method for the strains which underwent an enrichment procedure.

433 Bab02 and Bab02_2 denote samples separated by consecutive days of collection from

the same patient. Short reads from this sample were pooled in the remainder of the

435 analyses.

A)

443 E)

A) Mean coverage per site +/- 1SD for all of the libraries in the study B) Percentage of
bases in the genome with fewer than 2 reads for each library sequenced. C-F) Coverage
histograms for libraries prepared with C) Apollo protocol D) Agilent SureSelect E)
TruSeq protocol and F) TruSeq protocol with hybrid selection. G) Fraction of reads

451 supporting alternate variants in BMSS and H) CUS samples.

453 Supplementary Figure 3: Additional Phylogenetic Analysis of *B. microti* samples

B)

457

458

A) Maximum clade credibility tree from core chromosomal sequences (chromosome 2 removed – see supplement) with groups of samples colored by lineage; Green – Midwest, Cyan – Reference Group, Blue – Nantucket, Red – Mainland New England. B)
Cladeogram of the tree in A) showing posterior support for each node. C-D) Principal component plots of genetic relationships among strains based p-distance (i.e. the proportion of nucleotides that differ between two sequences).

- **A)**

- 480 A) Genome-wide values of Fst calculated by nucleotide (upper panel) and haplotype
- 481 (lower panel) methods. The x-axis shows concatenated chromosomes (chromosome 1 –
- 482 black; chromosome 2 red; chromosome 3 green; chromosome 4 blue). B)
- 483 Relationship between Tajima's D and π for Mainland New England linage samples; C)
- 484 Relationship between Tajima's D and π for Nantucket linage samples. **E)** Nucleotide
- 485 diversity within lineages. The peak on chromosome 4 in REF corresponds to
- 486 BBM_III07535, which had extreme polymorphism such that reads aligned to the
- 487 reference only for other samples within the REF group.

488 Supplementary Figure 5: Analysis of Recombination in B. microti

	,					
		B. microti sensu stricto	United States	EastCoast	Mainland New England	Nantucket
	Chromosome 1	2.24E-06	4.52E-04	3.71E-01	6.27E-01	1.00E+00
	Chromosome 2	2.85E-05	4.52E-06	2.50E-01	2.07E-01	1.00E+00
	Chromosome 3	2.23E-12	3.81E-05	9.88E-01	1.00E+00	1.00E+00
490	Chromosome 4	6.22E-16	3.10E-04	2.28E-04	4.61E-01	1.00E+00
491	В)					

492 493

A) Results of the PHI²⁰ test for all chromosomes in each lineage. B) PHI test in 200Kb 494 windows throughout the genome. No point is plotted if the interval contained an 495 insufficient number of polymorphic sites to evaluate the test statistic. The test could not

- 496 be conducted on a lineage with three samples, so a separate panel for MW is not
- 497 included. These samples are incorporated into CUS.

506 E)

515 A) Root-to-tip distance for MNE and B) NAN samples. C) Poisson likelihood for empirical rate from laboratory propagated isolates and Gamma(4,5x10⁻⁹) which was used to 516 517 construct a prior (see supplemental note). D) Posterior distributions for mutation rate for 518 NAN and MNE lineages run independently with an uninformative (improper uniform) prior, for CUS samples with an uninformative (improper uniform) prior, and for CUS 519 520 samples with a Gamma(4,5x10⁻⁹) prior. TMRCA estimates for continental US lineages 521 are given in Figure 3c and Supplemental Table 6. E-F) TMRCA (median plotted as a 522 point, with shape denoting the model, and error bars corresponding to 95% HPD) for all 523 BMSS lineages are shown in E) (linear scale) and F) (log scale). G) TMRCA estimates 524 obtained under a codon-partitioned model based on an alignment of all protein coding 525 genes on nuclear chromosomes (median plotted as a point, with shape denoting the 526 model, and error bars corresponding to 95% HPD).

B. microti sensu stricto

Pairwise nucleotide diversity (π, in 1Kb bins) using the unfiltered set of variant calls
(methods). Discrepancies with Figure 2a represent places where there is likely sequence
variation (e.g. subtelomeric regions), but we cannot confidently call the variant. Regions
marked with gray ticks were in the top 1% of diversity by bin. A list of these regions is
provided in Supplemental Table 3.

548 549 550 551	A) Distribution of dS, the rate of synonymous mutations per synonymous site, B) dN, the rate of non-synonymous mutations per non-synonymous site and C) the ratio of dN/dS. D) Box-and-whisker plot showing median and 1 st and 3 rd quartiles of dN/dS ratio by sequence type. Whiskers extend to 1.5 times the interquartile range, or the most
552	extreme data point, whichever is larger. E) Box-and-whisker plot showing median and 1 st
553	and 3 rd quartiles for dN/dS ratios for BMN genes as compared to the genome as a whole
554	$(P = 1.26 \times 10^{-5}, Wilcoxon Rank-Sum test, two-tailed alternative). Whiskers are marked$
555	as in D. F) Box-and-whisker plot showing median and 1 st and 3 rd quartiles for SNP
556	density among BMN genes compared to the genome as a whole ($P = 9.8 \times 10^{-3}$,
557	Wilcoxon Rank-Sum test, two-tailed alternative). Whiskers are marked as in D).

Supplemental Figure 9: Variants Associating with Relapsing Babesiosis and
 Timeline of Parasitemia in Bab05

- 562 A)

B)

A) Fisher's exact test for association between the proportion of relapsing cases that
contain a non-synonymous variant in a given protein vs. the proportion of non-relapsing
cases that contain such variants. Top plot gives correct P values by the method of
Benjamini and Hochberg ⁴⁷; uncorrected P values are in the bottom panel. C) Timeline of
parasitemia and treatment for the Bab05 case.

- **Supplementary Figure 10:** Modeling of cytochrome b mutations identified in relapsing
- *B. microti* cases.

- 590 The solved structure of *S. cerevisiae* cytochrome bc1 complex (yellow ribbon)
- 591 complexed with atovaquone⁴⁸ (red) was used to model mutations found in atovaquone-592 resistant *B. microti*. (PDB ID: 4PD4)
- A. Mutations conferring atovaquone resistance in *P. falciparum* have been described⁴⁴ in residues (orange) that are in close proximity with the atovaquone binding pocket, as well as the highly conserved PEWY motif (blue).
- 596 B. Visualization of L277 in *B. microti* (corresponding to L282 in the structural model),
- 597 which has been colored green (i). An L>P substitution has been observed at this site in
- atovaquone-resistant strains Bab05 and BWH2003; the mutant residue is shown in gray
- 599 (ii). The Mutagenesis wizard in Pymol was used to model the L277P mutation and the
- 600 highest probability rotamer was selected for representation (iii). Red disks denote
- significant overlap of atomic van der Waals radii and thus indicate potential sterichindrance.
- 603 C. Same as in B, but modeling M134I in *B. microti* (corresponding to M139 in the
- 604 structural model). The M>I substitution has been observed at this site in the atovaquone-
- resistant *B. microti* strain MGH2001, as well as in other Apicomplexan species.
- D. Same as in B, but modeling Y120C in B. microti (corresponding to Y125 in the
- 607 structural model). The Y>C substitution has been observed at this site in the
- 608 atovaquone-resistant *B. microti* strain Bab14.
- E. Same as in B, but modeling T140K in B. microti (corresponding to T145 in the
- 610 structural model). The T>K substitution has been observed at this site in the
- 611 atovaquone-resistant *B. microti* strain MORNS2015.
- 612

- 613 **Supplementary Figure 11:** Modeling of ribosomal protein L4 mutations identified in
- 614 relapsing cases

- 615
- A. The published structure of *T. thermophilus* ribosomal protein L4⁴⁹ (green ribbon) was
- 617 used to model *RPL4* mutations in azithromycin-resistant B. microti described in this
- 618 study (PDB ID: 4V7Y). 23S, 16S, and 5S rRNA (gray) have been simplified to enable
- 619 visualization of the interaction between L4 and azithromycin (red spheres). The positions
- 620 of previously described mutations conferring azithromycin resistance in other Bacterial⁵⁰
- and Apicomplexan⁴⁵ species (see Figure 4) have been highlighted in blue.
- B. Visualization of S73 (corresponding to G61 in the structural model), which has been colored in green (i). The *B. microti* MORNS2015 sample has an S>L substitution at this site; the mutant residue is shown in gray (ii). Due to the discordance in the wild-type residue occurring at this site between species, the steric hindrance resulting from the conversion to leucine cannot be appropriately modeled.
- C. Same as in B, but modeling R86H in *B. microti* (corresponding to R74 in the structural model, colored in green). The *B. microti* Bab05 sample has an R>H mutation at this site;
 the mutant residue is shown in gray (ii). Red disks denote significant overlap of atomic
- 630 van der Waals radii and thus indicate possible steric hindrance.
- 631
- 632

633 Supplementary Figure 12: Contig Alignment of *B. microti*-like strains and Draft
 634 Assemblies

A-C) Promer alignments for the first 320kb of chromosome 1 for (A) Hobetsu B) AW-1
samples, both from Japan, and C) CR-400 from Alaska. Distinct contigs are represented
by different colors, with blue representing the reference sequence and red regions
representing areas of alignment to the reference. D-F) Distribution of contig sizes for the
each of the assemblies.

Amplification of a 15KB region on chromosome 2 (658,075-672,981), containing bmMRP

645 (red), which coverage data suggested was present in three copies in Bab05.

647	References:			
648				
649				
650	1.	Western, K. A., Benson, G. D., Gleason, N. N., Healv, G. R. & Schultz, M. G.		
651		Babesiosis in a Massachusetts Resident, N Engl J Med 283, 854–856 (1970).		
652	2.	Steketee, R. W. <i>et al.</i> Babesiosis in Wisconsin: A New Focus of Disease		
653		Transmission, JAMA 253 , 2675–2678 (1985).		
654	3.	Joseph, J. T. et al. Babesiosis in Lower Hudson Valley, New York, USA, Emerg.		
655	•••	Infect. Dis. 17. 843–847 (2011).		
656	4.	Goethert, H. K. & Telford, S. R. What is Babesia microti? Parasitology 127, 301-		
657		309 (2003).		
658	5.	Tsuji, M. et al. Human babesiosis in Japan: epizootiologic survey of rodent		
659		reservoir and isolation of new type of Babesia microti-like parasite. J. Clin.		
660		Microbiol. 39 , 4316–4322 (2001).		
661	6.	Wei, Q. et al. Human babesiosis in Japan: isolation of Babesia microti-like		
662		parasites from an asymptomatic transfusion donor and from a rodent from an area		
663		where babesiosis is endemic. J. Clin. Microbiol. 39, 2178–2183 (2001).		
664	7.	Nakajima, R. et al. Babesia microti-group parasites compared phylogenetically by		
665		complete sequencing of the CCTeta gene in 36 isolates. J Vet Med Sci 71, 55–68		
666		(2009).		
667	8.	Goethert, H. K., Cook, J. A., Lance, E. W. & Telford, S. R., III. Fay and Rausch		
668		1969 Revisited: Babesia microti in Alaska Small Mammals. journal of parasitology		
669		92, 826–831 (2009).		
670	9.	Telford, S. R. et al. [Detection of natural foci of babesiosis and granulocytic		
671		ehrlichiosis in Russia]. Zh Mikrobiol Epidemiol Immunobiol 21–25 (2002).		
672	10.	Sriprawat, K. et al. Effective and cheap removal of leukocytes and platelets from		
673		Plasmodium vivax infected blood. Malaria Journal 8, 115 (2009).		
674	11.	Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for		
675		massively parallel targeted sequencing. <i>Nat Biotechnol</i> 27 , 182–189 (2009).		
676	12.	Cornillot, E. et al. Sequencing of the smallest Apicomplexan genome from the		
677		human pathogen Babesia microti. Nucleic Acids Research 40 , 9102–9114 (2012).		
678	13.	Not 'out of Nantucket': Babesia microti in southern New England comprises at		
679		least two major populations. 7, 546 (2014).		
680	14.	Ruebush, T. K. & Spielman, A. Human Babesiosis in the United States. Ann Intern		
681		<i>Med</i> 88, 263–263 (1978).		
682	15.	Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. Relaxed		
683		Phylogenetics and Dating with Confidence. <i>Plos Biol</i> 4 , e88 (2006).		
684	16.	Suchard, M. A., Weiss, R. E. & Sinsheimer, J. S. Bayesian selection of		
685		continuous-time Markov chain evolutionary models. <i>Molecular Biology and</i>		
686	. –	<i>Evolution</i> 18 , 1001–1013 (2001).		
687	17.	Baele, G. et al. Improving the accuracy of demographic and molecular clock		
688		model comparison while accommodating phylogenetic uncertainty. <i>Molecular</i>		
689	10	Biology and Evolution 29, 2157–2167 (2012).		
690	18.	Telford, S. R., III. Badesial infections in numans and wildlife. <i>Parasitic protozoa</i> 5,		
602	10	I-47 (1993). Budzinska M. A. Snielman, A. Lawangrup, S. Tragar, W. & Diasman, J.		
092 602	19.	Ruuzinska, W. A., Opielinan, A., Lewenyrub, S., Hayer, W. & Piesinan, J.		
604		Proceedings of the National Academy of Sciences 90 , 2066, 2070 (1092)		
605	20	Ruen T. C. Philippe H. & Bryant D. A Simple and Poblet Statistical Test for		
696	20.	Detecting the Presence of Recombination. <i>Genetics</i> 172 , 2665–2681 (2006).		

697 698	21.	Homer, M. J. <i>et al.</i> A Polymorphic Multigene Family Encoding an Immunodominant Protein from Babesia microti, <i>J. Clin. Microbiol.</i> 38 , 362–368
699		(2000)
700	22	Deitsch K W Moxon F R & Wellems T F Shared themes of antigenic
701	<i>LL</i> .	variation and virulence in bacterial protozoal and fundal infections. <i>Microbiol</i>
707		Mol Riol Dev 61 281 203 (1007)
702	22	Barry I. D. Cinger M. L. Burton D. & McCullech B. Why are peresite
703	23.	Darry, J. D., Giriger, M. L., Durion, P. & McCulloch, R. Wily are parasite
704		Contingency genes often associated with terometes? International Journal for
705	04	Parasitology 33, 29–45 (2003).
706	24.	Jackson, A. P. Genome evolution in trypanosomatic parasites. <i>Parasitology</i> 142
707	~-	Suppl 1, S40–56 (2015).
708	25.	Zarowiecki, M. & Berriman, M. What heiminth genomes have taught us about
709		parasite evolution. Parasitology 142 Suppl 1, S85–97 (2015).
710	26.	Reid, A. J. Large, rapidly evolving gene families are at the forefront of host-
711		parasite interactions in Apicomplexa. <i>Parasitology</i> 142 , S57–S70 (2014).
712	27.	Reid, A. J. Large, rapidly evolving gene families are at the forefront of host-
713		parasite interactions in Apicomplexa. <i>Parasitology</i> 142 , S57–S70 (2014).
714	28.	Kyes, S., Horrocks, P. & Newbold, C. Antigenic Variation at the Infected Red Cell
715		Surface in Malaria. Annu. Rev. Microbiol. 55, 673–707 (2001).
716	29.	Allred, D. R. & Al-Khedery, B. Antigenic variation and cytoadhesion in Babesia
717		bovis and Plasmodium falciparum: different logics achieve the same goal. Mol.
718		Biochem. Parasitol. 134 , 27–35 (2004).
719	30.	Allred, D. R., Cinque, R. M., Lane, T. J. & Ahrens, K. P. Antigenic variation of
720		parasite-derived antigens on the surface of Babesia bovis-infected erythrocytes.
721		Infect. Immun. 62. 91–98 (1994).
722	31.	Al-Khedery, B. & Allred, D. R. Antigenic variation in Babesia boyis occurs through
723	•	segmental gene conversion of the ves multigene family, within a bidirectional
724		locus of active transcription <i>Mol Microbiol</i> 59 , 402–414 (2006)
725	32	Frank M <i>et al.</i> Erequent recombination events generate diversity within the multi-
726	02.	copy variant antigen gene families of Plasmodium falcinarum. International
727		Journal for Parasitology 38, 1099–1109 (2008)
728	33	Claessens A <i>et al</i> Generation of Antigenic Diversity in Plasmodium falcinarum
720	55.	by Structured Rearrangement of Var Genes During Mitosis, PLoS Genet 10
729		
730	24	Paret D & Cross C A M Molecular basis for trypanosome antigonic variation
701	54.	
732	25	Vives IM Tolfard C. D. & Debbins C. K. Treatment of refrectory Debasis
733	35.	vyas, J. M., Telloru, S. R. & Robbins, G. K. Treatment of reflactory babesia
734		Microli mection with atovaquone-proguani in an Hiv-infected patient: case report.
735	00	Clin Infect Dis. 45, 1588–1590 (2007).
736	36.	Ruebush, M. J. & Hanson, W. L. Susceptibility of Five Strains of Mice to Babesia
/3/	~-	microti of Human Origin. The Journal of Parasitology 65, 430 (1979).
738	37.	Price, R. N. et al. Metloquine resistance in Plasmodium falciparum and increased
739		pfmdr1 gene copy number. The Lancet 364 , 438–447 (2004).
740	38.	Venkatesan, M. et al. Polymorphisms in Plasmodium falciparum chloroquine
741		resistance transporter and multidrug resistance 1 genes: parasite risk factors that
742		affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine
743		and artesunate-amodiaquine. Am. J. Trop. Med. Hyg. 91, 833–843 (2014).
744	39.	Raj, D. K. et al. Disruption of a Plasmodium falciparum multidrug resistance-
745		associated protein (PfMRP) alters its fitness and transport of antimalarial drugs
746		and glutathione. Journal of Biological Chemistry 284, 7687–7696 (2009).
747	40.	Piesman, J., Karakashian, S. J., Lewengrub, S., Rudzinska, M. A. & Spielmank,

748		A. Development of Babesia microti sporozoites in adult Ixodes dammini.
749		International Journal for Parasitology 16, 381–385 (1986).
750	41.	Sakuma, M., Setoguchi, A. & Endo, Y. Possible Emergence of Drug-Resistant
751		Variants of Babesia gibsoni in Clinical Cases Treated with Atovaguone and
752		Azithromycin. Journal of Veterinary Internal Medicine 23, 493–498 (2009).
753	42.	Matsuu, A., Miyamoto, K., Ikadai, H., Okano, S. & Higuchi, S. Short report: cloning
754		of the Babesia gibsoni cytochrome B gene and isolation of three single nucleotide
755		polymorphisms from parasites present after atovaquone treatment. American
756		Journal of Tropical Medicine and Hygiene 74 , 593–597 (2006).
757	43.	McFadden, D. C., Tomavo, S., Berry, E. A. & Boothroyd, J. C. Characterization of
758		cytochrome b from Toxoplasma gondii and Qo domain mutations as a mechanism
759		of atovaguone-resistance. Mol. Biochem. Parasitol. 108, 1–12 (2000).
760	44.	Korsinczky, M. et al. Mutations in Plasmodium falciparum cytochrome b that are
761		associated with atovaquone resistance are located at a putative drug-binding site.
762		Antimicrob. Agents Chemother. 44, 2100–2108 (2000).
763	45.	Sidhu, A. B. S. et al. In vitro efficacy, resistance selection, and structural modeling
764		studies implicate the malarial parasite apicoplast as the target of azithromycin.
765		Journal of Biological Chemistry 282, 2494–2504 (2007).
766	46.	Chittum, H. S. & Champney, W. S. Erythromycin inhibits the assembly of the large
767		ribosomal subunit in growing Escherichia coli cells. Current Microbiology 30, 273-
768		279 (1995).
769	47.	Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical
770		and Powerful Approach to Multiple Testing. Journal of the Royal Statistical
771		Society. Series B (Methodological) 57, 289–300 (1995).
772	48.	Birth, D., Kao, WC. & Hunte, C. Structural analysis of atovaquone-inhibited
773		cytochrome bc1 complex reveals the molecular basis of antimalarial drug action.
774		Nature Communications 5, (2014).
775	49.	Bulkley, D., Innis, C. A., Blaha, G. & Steitz, T. A. Revisiting the structures of
776		several antibiotics bound to the bacterial ribosome. Proceedings of the National
777		Academy of Sciences 107 , 17158–17163 (2010).
778	50.	Pihlajamäki, M. et al. Ribosomal mutations in Streptococcus pneumoniae clinical
779		isolates. Antimicrob. Agents Chemother. 46, 654–658 (2002).
780		