SUPPLEMENTAL MATERIAL

A nutrient-regulated cyclic diguanylate phosphodiesterase controls *Clostridium difficile*

biofilm and toxin production during stationary phase

Erin B. Purcell¹, Robert W. McKee¹, David S. Courson², Elizabeth M. Garrett¹, Shonna M.

McBride³, Richard E. Cheney², and Rita Tamayo^{1*}

¹Department of Microbiology and Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA

²Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA

³Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA

Table S1. Strains and plasmids used in this study.

Table S2. Oligonucleotides used in this study.

Figure S1. Construction of the *pdcA::catP* mutant

Figure S2. Putative CodY binding site upstream of pdcA.

Name	Description	Reference
E. coli		
DH5a	F- φ80 <i>lacZ</i> ΔM15 Δ(<i>lacZYA-argF</i>)U169 recA1 endA1	Invitrogen, (1)
	hsdR17(rk -, mk+) phoA supE44 thi-1 gyrA96 relA1 λ tonA	
RT881	DH5α pMC234	This study
RT899	DH5α pMC234::pdcA::catP	This study
RT1099	DH5α pRT1099	This study
RT1214	DH5α pRT1214	This study
BL21	fhuA2 [lon] ompT gal [dcm] ΔhsdS	NEB
RT489	BL21 pMMBneo::pdcA	(2)
RT548	BL21 pMMBneo::pdcA(GA)	This study
RT549	BL21 pMMBneo::pdcA-APAS	This study
RT496	BL21 pMMBneo::pdcA-EAL	(2)
HB101	F^- mcrB mrr hsdS20(r _B ⁻ m _B ⁻)recA13 leuB6 ara-14 proA2	(3)
	lacY1 galK2 xvl-5 mtl-1 rpsL20	()
HB101(pRK24)	E. coli strain used in conjugations with C. difficile	(3)
RT679	HB101(pRK24) pPdcA(GA)	This study
RT680	HB101($pRK24$) $pPdcA-\Delta PAS$	This study
RT925	HB101(pRK24) pMC234: pdcA: catP	This study
RT1177	HB101(pRK24) pRT1099	This study
RT1232	HB101(pRK24) pRT1214	This study
		The olday
C. difficile		
JIR8094	erythromycin-sensitive derivative of 630	(4)
	JIR8094pSD21 (codY-null)	(5)
630	Wild-type 630 ribotype 012	(6)
RT476	630 pMC-Pcpr	(2)
RT478	630 pMC-Pepr ndcA	This study
RT959	630 pdcA::catP	This study
RT1234	630 pRT1099	This study
RT1235	630 pdcA $catP nRT1099$	This study
RT1237	630 pdc/::catP nRT1214	This study
RT1668	$630 \ pdcA::catP nRT1662$	This study
		This Study
Plasmids		
pMMBneo	Low copy expression vector. Ptac promoter, neo cassette	(7)
pMMBneo pdcA	pdcA-His6	(2)
pMMBneo pdcA	$pdcA(\Lambda 1-438)$ -His6 (FAL domain only)	(2)
-EAL		(-)
pMMBneo::pdcA	pdcA(GA)-His6 (full length PdcA with residues 350-354	This study
(GA)	(DGDEM) mutated to AAAAA)	,
pMMBneo::pdcA	$pdcA(\Delta 1-251)$ -His6 (GGDEF and EAL domains remain)	This study
ΔPAS ,		
pMC123	E. coli- C. difficile shuttle vector, bla, catP	(3)
pMC-Pcpr	pMC123 with nisin-inducible cprABCK promoter	(2)
pPdcA	pMC-Pcpr::pdcA (CD630_15150)	(2)
pPdcA-EAL	pMC-Pcpr::pdcA-EAL (EAL domain only)	(2)

Table S1. Strains and plasmids used in this study.

pPdcA(GA)	pMC-Pcpr::pdcA(GA) (DGDEM to AAAAA mutations)	This study
pPdcA∆PAS	pMC-Pcpr:: <i>pdcA</i> APAS (GGDEF and EAL domains remain)	This study
pMC95	pUC19 with oriT	(8, 9)
pMC234	<i>C. difficile</i> allelic exchange plasmid, pMC95 with <i>catP</i> in <i>Bam</i> HI site of MCS	This study
pMC234:: <i>pdcA::</i> <i>catP</i>	<i>pdcA</i> upstream and downstream flanking sequences flanking the <i>catP</i> gene in pMC234	This study
pBTS	aad9 locus cloned into an E. coli/S. aureus shuttle vector	(10)
pRT1099	pMC123 with catP replaced with aad9	This study
pRT1214	pRT1099 with P _{pdcA} -pdcA	This study
pRT1662	pRT1099 with P _{pdcA} -pdcA(E479A)	This study
pEAV1	C. difficile codY with 6x histidine-tag cloned in pBAD30, Ap	(5)

Table S2- Oligonucleotides used in this study.

Name	Sequence (5' to 3')*	Reference
pdcAF	CA <u>GGTACC</u> TTTAGGATACATTTTTATGAACAAACATAATT	(2)
	TTGAAGTTATATTAAATC	
pdcAR	CCCTGCAGCTAATGGTGATGGTGATGGTGATTATCTAGC	(2)
	TTTAAAAGGTCAAAGATTTC	
pdcAgaR	CTTTATAAACTT GCAGCAGCAGCAGCA GGCATTCTTGTT	This study
	GATAATG	
pdcAgaF	CAACAAGAATGCC TGCTGCTGCTGCTGC AAGTTTATAAA	This study
	GTTCAGC	
pdcAeaF	ATAGGTGTAG C AGTTCTTTTAAGG	This study
pdcAeaR	CCTTAAAAGAACT G CTACACCTAT	This study
pdcAdpF	CTA <u>GGTACC</u> TTTAGGATACATTTTTATGCGTGATGAATTT	This study
	GGAGAAC	
pdcAFbamHI	CA <u>GGATCC</u> GAGCAGTAACTATGGAGGAG	This study
pdcARpstl	GAC <u>CTGCAG</u> ATACTATTCCCAATTTAACATCC	(2)
67EHF	CGACATCATAACGGTTCTGG	(11)
67EHR	TTCACTTCTGAGTTCGGCAT	(11)
pUCmcsF	TCTTCGCTATTACGCCAG	(8)
m13R	AACAGCTATGACCATG	(12)
tcdBqF	AAGGAATATCTAGTTACAGAAGTATTAGAGC	(13)
tcdBR	GCAGTGTCATTTATTTGACCTCCA	(13)
oMC15	GCAGGCCCTCGGATCTTTTCCGCTGCA	This study
oMC16	GCGACGTCCTTATCGGCCAGCCTCG	This study
oMC2	GCGGATCCTAGCGCCTACGGGGAATT	This study
oMC143	GCGGATCCCCTTGGTTGTGTTGCTTTTCG	This study
pdcAf1	CAAGAATTCACCTTAAACCCACCAAATG	This study
pdcAr1	CAAGGTACCCATATACTTATCTCCTCCATAGTTAC	This study
pdcAf2	CAAGTCGACGATAATTAATTCTAATTTATCAATAATATCA	This study
	CTG	
pdcAr2	CAACTGCAGCCTCTAAACTCATTCCTATTTCTC	This study

pdcAr0	AGCTGGGGAGTTCTATTTTG	This study
blaF	CATGAGATTATCAAAAAGGATCTTC	This study
blaR	GCCTTCCTGTTTTTGCTCAC	This study
aad9F_EcoRV	GATATCGTAACGTGACTGGCAAGAG	This study
aad9R_EcoRV	GATATCACCCAAAATTGAAAAAAGTGTTTCC	This study
pdcApromF	AAAGCATGCACCATCCATAAATATCTTACCA	This study
pdcApromR	GACGGATCCATACTATTCCCAATTTAACATCC	This study
rpoCqF	CTAGCTGCTCCTATGTCTCACATC	(2)
rpoCqR	CCAGTCTCTCCTGGATCAACTA	(2)
pdcAqF	AGATATTGCAAACTCAACAAGCTTAAA	This study
pdcAqR	TAATCAAAGCATCGTAAAGCAATGTA	This study
tcdRqF	AGCAAGAAATAACTCAGTAGATGATT	(13)
tcdRqR	TTATTAAATCTGTTTCTCCCTCTTCA	(13)
ilvCqF	AACGGTGTACATGTAATGATAGGTC	This study
ilvCqR	TTTGTAGCTTCTGCTACACTCTTAAC	This study
codYqF	ATTAGGAACATTGGTACTTTCAAGAT	(2)
codYqR	TTGAACTACAGCTTTCTTTCTCATTT	(2)
tcdAqF	GGAGAAGTCAGTGATATTGCTCTTG	This study
tcdAqR	CAGTGGTAGAAGATTCAACTATAGCC	This study
flgBqF	GCAACTAATCTAAGAAGTCAGACAATAGC	This study
flgBqR	AGGCATAGCATCATTTAGTGTTTCTTC	This study
fliCqF	TACAAGTTGGAGCAAGTTATGGAAC	This study
fliCqR	GTTGTTATACCAGCTGAAGCCATTA	This study
OSD107	AAGAGAGATAACTGTTGAAAGATGAGAC	(14)
OSD108	CTTCCATAACCTAAAACTGCAAC	(14)
pdcAemsaF	TGGACAATTTGTCAAGATTAGATCC	This study
pdcAemsaR	CAACAAACTTTTCCTTCTGGATC	This study
gbpAqF	CAGTGGATTAGCGTATGGACAC	(15)
gbpAqR	GTATTGAATCGCGCCACAGT	(15)

*Restriction sites are underlined. Altered nucleotides for generating point mutations are in bold text.

Figure S1. Construction of the *pdcA::catP* **mutant.** (A) Schematic representation of the double homologous recombination between pMC234::*pdcA::catP* and the *C. difficile* 630 chromosome. Regions of homology are in grey. The positions of screening PCR primers are indicated. (B) PCRs were performed with the indicated screening primers using lysates of *C. difficile* 630 (WT) or candidate 630 *pdcA::catP* (KO) as the templates. A control PCR was done with the blaF+blaR primers using purified pMC234::*pdcA::catP* (P).

Figure S2

AATTTTCWGAAAATT AATTTTAACAATGTT ***** * * ** ** CodY box (*L. lactis*, *B. subtilis*) putative CodY binding site for *pdcA*

Figure S2. Putative CodY binding site upstream of *pdcA***.** (A) The sequence of the DNA fragment used in the electrophoretic mobility shift assays is shown (407 bp). Highlighted is the sequence pulled down by CodY in the prior study by Dineen, McBride and Sonenshein (J. Bacteriol, 2010, 192:5350-62). The underlined sequence corresponds to a putative CodY binding site. (B) Alignment of the putative CodY binding site for *pdcA* with the CodY box previously identified for *B. subtilis, L. lactis* and *C. difficile*. Asterisks indicate conserved nucleotides, with 4/15 matching the CodY box sequence.

Figure S3.

Figure S3. Complementation of toxin and flagellar gene expression during growth in stationary phase. Relative transcript levels of *tcdA*, *flgB*, and *fliC* in wild-type with control vector pRT1099 (black), *pdcA::catP* with control vector (grey), *pdcA::catP* complemented with the wild-type *pdcA* allele in pRT1214 (thick lines), and *pdcA::catP* complemented with the mutant *pdcA*-479A allele in pRT1662 (thin lines) cells during stationary phase. The means and standard deviations from five biological replicates are shown. The data were analyzed by one-way ANOVA and Tukey's multiple comparisons test. No statistically significant differences were found.

Literature Cited

- 1. **Hanahan D.** 1983. Studies on transformation of *Escherichia coli* with plasmids. J Mol Biol **166**:557-580.
- 2. **Purcell EB, McKee RW, McBride SM, Waters CM, Tamayo R.** 2012. Cyclic diguanylate inversely regulates motility and aggregation in *Clostridium difficile*. Journal of Bacteriology **194:**3307-3316.
- 3. **McBride SM, Sonenshein AL.** 2011. Identification of a genetic locus responsible for antimicrobial peptide resistance in *Clostridium difficile*. Infect Immun **79:**167-176.
- 4. O'Connor JR, Lyras D, Farrow KA, Adams V, Powell DR, Hinds J, Cheung JK, Rood JI. 2006. Construction and analysis of chromosomal *Clostridium difficile* mutants. Mol Microbiol **61:**1335-1351.
- 5. **Dineen SS, Villapakkam AC, Nordman JT, Sonenshein AL.** 2007. Repression of *Clostridium difficile* toxin gene expression by CodY. Mol Microbiol **66**:206-219.
- 6. Wüst J, Sullivan NM, Hardegger U, Wilkins TD. 1982. Investigation of an outbreak of antibiotic-associated colitis by various typing methods. Journal of Clinical Microbiology **16**:1096-1101.
- 7. **Osorio CG, Crawford JA, Michalski J, Martinez-Wilson H, Kaper JB, Camilli A.** 2005. Second-generation recombination-based in vivo expression technology for largescale screening for *Vibrio cholerae* genes induced during infection of the mouse small intestine. Infect Immun **73**:972-980.
- 8. **Yanisch-Perron C, Vieira J, Messing J.** 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene **33**:103-119.
- 9. Lyras D, Rood JI. 1998. Conjugative transfer of RP4-oriT shuttle vectors from *Escherichia coli* to *Clostridium perfringens*. Plasmid **39**:160-164.
- 10. Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR. 2011. Identification of a lactate-quinone oxidoreductase in *Staphylococcus aureus* that is essential for virulence. Frontiers in Cellular and Infection Microbiology **1**:19.
- 11. **Tamayo R, Schild S, Pratt JT, Camilli A.** 2008. Role of cyclic di-GMP during El Tor biotype *Vibrio cholerae* infection: characterization of the in vivo-induced cyclic di-GMP phosphodiesterase CdpA. Infect Immun **76**:1617-1627.
- 12. **Messing J.** 1983. New M13 vectors for cloning. Methods Enzymol **101**:20-78.
- 13. **McKee RW, Mangalea MR, Purcell EB, Borchardt EK, Tamayo R.** 2013. The second messenger cyclic di-GMP regulates *Clostridium difficile* toxin production by controlling expression of *sigD*. J Bacteriol **195:**5174-5185.
- 14. **Dineen SS, McBride SM, Sonenshein AL.** 2010. Integration of metabolism and virulence by *Clostridium difficile* CodY. J Bacteriol **192:**5350-5362.
- 15. **Kariisa AT, Grube A, Tamayo R.** 2015. Two nucleotide second messengers regulate the production of the *Vibrio cholerae* colonization factor GbpA. BMC Microbiol **15**:166.