



**Supplementary Figure 1.** Current traces recorded from an MGB neuron (A) and statistics for HCN currents recorded from 8 MGB neurons (B) before (Ctrl) and after 50  $\mu$ M ZD7288. Current traces recorded from an MGB neuron (C) and statistics for HCN currents recorded from 8 MGB neurons (D) before (Ctrl) and after 400  $\mu$ M Cs<sup>+</sup>. HCN currents were induced by 1 s hyperpolarizing voltage steps from -50 to -100 mV, in- 10mV/step.



**Supplementary Figure 2.** Sample traces of voltage responses for deriving the input resistance. (A) Voltage responses to a series of 500 ms hyperpolarizing currents ranging from 0 pA to -40 pA (-10 pA/step) from an MGB neuron before and after application of ZD7288. (B) Voltage responses to a series of 500 ms hyperpolarizing currents ranging from -5 pA to -30 pA (-5 pA/step) from an MGB neuron before and after application of Ba<sup>2+</sup>.



**Supplementary Figure 3.** Scatter plots of the area (A), rise slope (B) and latency (C) of the RD as a function of the resting membrane potentials in MGB neurons during application of ZD7288, a blocker of HCN channels. Correlation coefficients are calculated by using Pearson's correlation. Data were sampled from 15 MGB neurons. Number of data points indicated in panels.



**Supplementary Figure 4.** The area (A), rise slope (B) and latency (C) of the RD as a function of the resting membrane potential depolarized by Ba<sup>2+</sup>, a blocker of Kir channels Correlation coefficients are calculated by using Pearson's correlation. Data were sampled from 10 MGB neurons. Number of data points indicated in panels.