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1. Supplementary notes 

 

 

Note S1  Modeling the additive genetic effects in au  under models FN_1, FN_2 and RN 

 

Under models FN_1 and FN_2, the variance-covariance matrix for the additive genetic effects 

in au  was defined as: 
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where 2

daσ  is the direct genetic variance, 2

)(
 

1Kiaσ  to 
2

)(
 

8Kiaσ  are indirect genetic variances 

pertaining to individual neighbor effects (i.e. for neighboring positions from K1 to K8; Figure 2) 

on a focal tree, 
)( 1Kdiaσ  to 

)( 8Kdiaσ  are covariances between the direct genetic effect and the 

indirect genetic effects of K1 to K8, and the remaining components (i.e. from 
)()( 2Ki1Kiaσ  to 

)()( 8Ki7Kiaσ ) are covariances among the indirect genetic effects of K1 to K8; A is the matrix of 

additive genetic relationship coefficients among all individuals in the pedigree (i.e. base 

population parents, first-generation parents and their field-tested progeny); and ⊗ denotes the 

Kronecker product operation. Under model RN, the variance-covariance matrix for effects in au  

was similar in form to that provided in Equation [S_1], but for the reduced set of neighbors. 
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As shown in Equation [S_1], the unstructured (US) form of the variance-covariance matrix for 

au  has 45 (co)variance parameters to be estimated but the sampling variance of each parameter is 

likely to result in a non-positive definite estimate of the matrix, because variances for some 

neighbor positions may be negligible and correlations among indirect effects should be 1. 

Therefore, as an alternative parameterization for the US matrix, we applied a structured variance 

model of the form used in factor analysis. The variance-covariance matrix for effects in au  was 

thus defined as (ΛΛΛΛΛΛΛΛ' + ΨΨΨΨ) ⊗ A, where ΛΛΛΛ is the v x p matrix of loadings (v = number of sub-

vectors or terms in au ; p = number of fitted factors), ΨΨΨΨ is the v x v diagonal matrix of “specific” 

(lack of fit) variances, and the superscript ' refers to the transpose operation. This is known as a 

factor analytic (FA) structure (Mardia et al., 1988). It is more parsimonious than the US form, 

having fewer parameters, and can be constrained to be positive (semi-) definite.  

To obtain the structure we required, we set p = 1 (i.e. a factor analytic structure with one 

factor; FA1) and the specific variances for the neighbor effects to zero. The variance related to a 

given term in au  can then be obtained as jj Ψ+2
λ  - where jλ  and jΨ  are, respectively, the 

loading and the specific variance associated with the j
th

 term in au  (j = 1 ... v) - with jΨ  being 

zero for j = 2 ... v. In addition, a matrix with direct-indirect and indirect-indirect genetic 

correlations (i.e. referring to the covariances in Equation [S_1]) can be obtained from ΛΛΛΛ(c)ΛΛΛΛ'(c) + 

ΨΨΨΨ(c), where ΛΛΛΛ(c) = D
-1

ΛΛΛΛ and ΨΨΨΨ(c) = D
-2

ΨΨΨΨ are matrices of loadings and specific variances 

(respectively) on a correlation scale, and D is a v x v diagonal matrix of standard deviations 

related to the terms in au . 

The algorithm used for fitting the FA1 model in the software ASReml standardizes the factor 

to have a variance equal to one, and thus in our case the factor corresponds to a standardized 

indirect effect. The loadings then scale this effect depending on the neighbor position relative to 

the focal tree. 
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Note S2  Modeling the residual effects in ξ  and η under models FN_1, FN_2 and RN 

 

To explore the need to account for non-stationarity of the spatially correlated residuals in ξ  

(e.g. due to global environmental trend and extraneous variation; Gilmour et al., 1997), the mixed 

model in Equation (1) (for the description of this equation, see Materials and Methods) also 

incorporated: cubic smoothing splines (Verbyla et al., 1999) and linear covariates in the row 

and/or column directions for MLD and DBH; and an interaction between the row and column 

linear covariates for DBH. By naturally incorporating distance to neighbors, a separable first-

order autoregressive process (AR1 x AR1) models (co)variances associated with non-heritable 

indirect effects affecting a focal tree and its neighbors. Stringer (2006) and Stringer et al. (2011) 

proposed an equal-roots third-order autoregressive process (EAR3) for jointly modeling both 

local environmental trend and competition effects at the residual level, since the AR1 process 

cannot model both of these sources of residual variation at the same time. Previous analyses of 2- 

and 4-year DBH data, in which IGEs were modeled as a combined effect (Costa e Silva et al., 

2013), found that the magnitude of an autocorrelation parameter related to competition in the 

EAR3 model decreased considerably relative to its standard error when the two (co)variance 

parameters associated with IGEs were included in the mixed model. This suggested that the 

residual EAR3 model was picking up (co)variation due to genetic competition when heritable 

competition effects were not explicitly included in the model. A similar tendency was also 

observed in the present study for 8-year DBH data, with the improvement of the EAR3 over the 

AR1 becoming non-significant at the 5% level after including the two (co)variance parameters 

related to IGEs. Given these results, we have modeled spatial variation in the current study for 

DBH simply as an AR1 x AR1 structure. After the inclusion of a spatial correlation structure in 

the model defined in Equation (1), restricted maximum likelihood (REML) estimates of the 

variances associated with row and column effects within replicates became non-significant at the 
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5% level (based on likelihood-ratio tests) for the traits and ages examined, and thus these terms 

were dropped from the mixed model in all data analyses. 

By regressing on the immediate neighbor, the AR1 process in a given direction implies an 

exponential decay of spatial correlation with distance of a focal tree and more distant neighbors. 

Under model FN_1, we explicitly modeled direct and indirect (co)variances pertaining to non-

heritable effects that may cause interactions between a focal tree and its immediate neighbors, 

and distributed independently of the correlated residuals in ξ . In this sense, for the independent 

residuals in η, we specified η = )'' , ..... ,' ,' ,'( )()()( 8Ki2Ki1Kid ηηηη  with the related incidence 

matrix given by Z  =  ) , ..... , , ,( )()()( 8Ki2Ki1Kid ZZZZ , where the subscripts d and i denote direct 

and indirect effects, respectively, the subscripts K1 to K8 are defined as before, and the transpose 

operation is indicated by the superscript ' . dZ  relates the phenotype of a focal tree to its own 

direct independent residual, and )( 1KiZ  to )( 8KiZ  relate the phenotype of a focal tree to the 

indirect independent residual effect of each of its immediate neighbors. Under this specification 

of model terms, the variance-covariance matrix for effects in η used a matrix similar in form to 

that defined in Equation [S_1] for effects in au , except that it applied the Kronecker product with 

obsnI  (i.e. an identity matrix of order equal to the number of tree observations) rather than with 

the matrix A. This residual variance-covariance matrix was then parameterized through a factor 

analytic structure with one factor (FA1), and using the constraints defined as for the effects in au  

(i.e. a constrained FA1 matrix with 10 parameters, comprising: one specific variance and one 

loading for the direct effect pertaining to the focal tree, and eight loadings for the indirect effects 

of its neighbors K1 to K8; see Materials and Methods). Under models FN_2 and RN, the residuals 

in η were assumed to represent direct non-heritable effects only, and thus 
obsnieVar Iη 2  )( σ= , 

where 
2
ieσ  is the variance associated with an independent residual term (i.e. a 'nugget' effect) in 

the mixed model.   
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Note S3  Model comparison using the AIC and BIC information criteria 

 

Information criteria may be used to compare and select models. In this context, the aim is to 

choose a model (or models) that minimizes an estimate of a criterion, which is a function of a 

measure of the goodness of fit and a penalty for model complexity. Two such criteria have been 

derived by Akaike (1974) and Schwarz (1978) and, in a broad sense, both attempt to achieve a 

trade-off between descriptive accuracy and model complexity. The Akaike's information criterion 

(AIC) is an estimate of the relative, expected Kullback-Leibler (K-L) distance of a model, which 

is an information-theoretic measure of the mean difference between the model and the 

unknowable truth (Burnham and Anderson, 2002; Kuha, 2004; Richards, 2005, 2008). For large 

samples, the Schwarz's Bayesian information criterion (BIC) may be a reasonable approximation 

of the natural logarithm of the Bayes factor, which is a measure of the evidence given by the data 

in favor of one model over another; thus, the difference between the BIC estimates of two models 

may provide a sensible indicator to quantify the strength of evidence for or against a model (Kass 

and Raftery, 1995; Kass and Wasserman, 1995). 

Although based on different theoretical frameworks, both of the AIC and BIC criteria have the 

form of a penalized likelihood (by adding a function of the number of model parameters), and can 

be used to compare either nested or non-nested models (Burnham and Anderson, 2002; Kuha, 

2004). For a given model, and regarding particularly mixed model selection (e.g. Wolfinger, 

1993), we calculated the AIC as: 

 

AIC = -2llR + 2nvp                                                                                                                [S_2] 

 

and the Schwarz's Bayesian information criterion (BIC) as: 

 

BIC = -2llR + nvplog(nobs - nfe)                                                                                             [S_3] 
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where llR is the model's REML log-likelihood, nvp is the number of (co)variance parameters, and 

nobs - nfe is the residual degrees of freedom (nobs = number of observations; nfe = number of fixed 

effects). Sugiura (1978) suggested a finite-sample correction for the AIC criterion, which is 

recommended when nobs/nvp < 40 (Burnham and Anderson, 2002; page 445). However, reflecting 

the large sample sizes used in the analyses of our field experiment, the finite-sample correction 

suggested by Sugiura (1978) had a minor effect on the AIC values, and thus it is not considered 

in the AIC reported in our study.  

A model with a lower AIC or BIC value has a greater level of empirical support than a model 

with higher values of either of these criteria (Burnham and Anderson, 2002; Kuha, 2004). Hence, 

when comparing a pair of models M1 and M2, the larger the positive difference (∆) for either 

∆AIC(M1,M2) = AICM1 - AICM2 or ∆BIC(M1,M2) = BICM1 - BICM2 the less plausible it is that M1 is a 

good approximating model to explain the variation in the observed data when compared with M2. 

Yet, as indicated by Burnham and Anderson (2002) for the particular case of comparing nested 

models by using the AIC, when 0 ≤ ∆AIC(M1,M2) ≤ 2 there is a substantial level of empirical 

support for M1, in the sense that there will be little information loss by using this model relative 

to M2 (which has a lower AIC value). This guideline incorporates the uncertainty associated with 

the fact that the AIC is an estimate, and thus its sampling error means that the model with a lower 

AIC value may not necessarily be better in terms of expected K-L distance (Richards, 2005, 

2008). Therefore, under this simple rule, increasing evidence that a model with a lower AIC value 

is a better approximating model (given the data) may be provided when ∆AIC(M1,M2) > 2, which 

indicates a decreasing level (being essentially none when ∆AIC(M1,M2) > 10; Burnham and 

Anderson, 2002; page 70) of empirical support for the model with a higher AIC value. Parsimony 

is an important consideration when the number of fixed and random effects is large (Müller et al., 

2013) and, if the probable values of parameters added to a model are not well enough established 

by the available data, then a simpler model may be preferred over a complex model with more 

parameters (Kuha, 2004). This is likely to be more relevant for models sharing similar levels of 
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empirical support based on the AIC (e.g. when 0 ≤ ∆AIC(M1,M2) ≤ 2) as, despite penalizing a 

model for added complexity, this criterion may still over-fit the data; on the other hand, the BIC 

tends to over-penalize model complexity, and thus it may favor models with fewer parameters 

than does the AIC (see below).  

While comparing directly the log-likelihood (LogL) of pairs of nested models can be pursued 

through likelihood-ratio tests, model comparisons based on differences among either AIC or BIC 

values incorporate a penalty for model complexity, such that empirical support in favor of a given 

model relative to another will reflect a better balance between a good fit (as indicated by the 

LogL) and parsimony. The penalty for model complexity offsets partly the large-sample behavior 

of significance tests (such as likelihood-ratio tests), where simple models are increasingly likely 

to be rejected when the number of observations (nobs) is large (as in our field experiment) (Kuha, 

2004). Indeed, Burnham and Anderson (2002) indicated that, when compared with the AIC 

criterion, likelihood-ratio tests may tend to favor more complex models. In particular, Burnham 

and Anderson (2002; Table 6.20, page 338) also showed that, in cases where the difference 

between the null and alternative models in the number of fitted parameters is ≥ 8, the likelihood-

ratio testing method resulted in increasingly strong support of the models with many parameters 

and strong rejection of the simple null model. In this sense, for our model comparisons 

FN_2/FN_1 and RN/FN_2 that involve many parameters (for example, 9 and 6 parameters in the 

FN_2/FN_1 and RN/FN_2 comparisons, respectively; see footnote d of Table 1), likelihood-ratio 

tests may be too liberal. Thus, rather than applying likelihood-ratio tests, we used information 

criteria as a more conservative approach to compare models FN_1, FN_2 and RN, as described in 

the Materials and Methods section. 

By taking nobs into account in its calculation, BIC uses a more conservative penalty for model 

complexity than does AIC, implying that a greater improvement in LogL may be required to 

offset the increased number of parameters added to a model, and thus to enhance the relative 

performance of more complex models. Thus, due to the larger weight in the penalty for model 
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complexity when nobs > e
2
 (as ascertained by comparing the Equations [S_2] and [S_3] presented 

above), BIC will tend to favor simpler models (i.e. with fewer parameters) than does the AIC. 

The increasing function of nobs in the penalty term of BIC is needed for asymptotically 

consistency (Burnham and Anderson, 2002). BIC is a consistent model selector, in the sense that 

the probability of identifying the true data-generating model (assuming that it exists and is 

included within the candidate set) approaches unity as sample size increases; however, consistent 

criteria such as BIC may be particularly useful if, within a fixed family of models, there actually 

exists a simple (low-dimensional) target "true" model, given the data (Burnham and Anderson, 

2002; Kuha, 2004; Vrieze, 2012).  

Unlike the case of BIC, the penalty term in the AIC is not an increasing function of nobs; thus, 

AIC is not a consistent model selector, as it has always some probability of selecting overly 

parameterized models (Kuha, 2004; Richards, 2005, 2008; Vrieze, 2012). As also mentioned by 

Forster and Sober (1994), a feature of the Akaike's theorem is that the weight placed on model 

complexity relative to the LogL term declines with increasing sample size because, with a large 

amount of data, the estimate of how close a model is to the truth will be determined mainly by 

goodness-of-fit. There are studies indicating that the AIC may favor overly complex models 

(Link and Barker, 2006), even asymptotically (Kass and Raftery, 1995). However, when the 

dimensionality of the model that is closest to reality increases with nobs, the AIC is expected to be 

an asymptotically efficient model selector, such that it may select models with a better predictive 

performance (e.g. with a lower mean squared prediction error) than does BIC as sample size 

increases (Kuha, 2004; Vrieze, 2012). If it is assumed that the processes generating the observed 

data are conceivably best characterized by a model with a complex dimensionality (i.e. being 

infinite or increasing with sample size), then the AIC may be preferred to BIC for model 

selection; in such a condition, the assumptions forming the basis of the BIC properties may not 

hold (e.g. it is unlikely that the "true" model is included in the candidate set, in which case BIC 
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may not be a consistent model selector), and thus AIC may outperform BIC in terms of enabling 

to choose a model that best approximates reality (Burnham and Anderson, 2002; Vrieze, 2012). 

As indicated by simulation studies, it is possible that there will not be always a single criterion 

having the best performance in terms of model selection, as this may depend on the nature of the 

"true" data-generating model, the given set of candidate models being compared, the number of 

observations, and the theoretical foundations of the criteria (Burnham and Anderson, 2002; Kuha, 

2004; Vrieze, 2012; Müller et al., 2013). Hence, considering more than one information criterion 

for model comparison has been advocated to provide a useful guidance for model selection, while 

also enabling to identify models that are favored by different criteria (Kuha, 2004; Müller et al., 

2013). Although the AIC and BIC are based on distinct motivations (e.g. model predictive 

performance expected for new data, in the case of AIC; identification of the "true" data-

generating model, in the case of BIC), as well as on different assumptions underlying their 

properties (e.g. asymptotic efficiency for AIC; asymptotic consistency for BIC), they are well-

founded information criteria for model comparison and, in a broad sense, both aim at identifying 

good approximating models that are able to provide an adequate description of the observed data 

while minimizing the number of fitted parameters (Burnham and Anderson, 2002; Kuha, 2004). 

Besides the differences between the AIC and BIC in the theoretical foundations for measuring 

optimal performance in model comparison, it is also likely that model selection based on either of 

these criteria will not capture the full complexity inherent to the representation of reality. Neither 

the AIC or BIC may be able to effectively minimize all the measures of divergence aiming to 

represent how close a model is to the truth; however, the choice of these loss functions can 

determine the performance of the information criteria, and thus ideally the loss function(s) that is 

(are) relevant in a given context should be identified to decide on whether the AIC or BIC would 

be more adequate (Vrieze, 2012). Yet, useful information for model selection may be obtained by 

using the AIC and BIC together (as we have done in our study), particularly in terms of trying to 

find models favored by both criteria (Kuha, 2004). In this sense, when the AIC and BIC provide 
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similar indications in regard to a preferred model, there will be a stronger support on the strength 

of the choice for a good approximating model, given the observed data. 

 

Note S4  Comparing the RN and FN_2 models 

 

The FA1 loadings for the same-row neighbors K1 and K2 were dominant in the FN_2 model 

when assessed relative to their standard errors (see Table S1 in Supplementary tables), and so 

were included in the initial RN model; dropping either one of these neighbors led in general to a 

substantially worse fit of the RN model. 

When applying the AIC to compare models, the initial K1 and K2 positions were accepted as 

the main influential neighbors if their inclusion in the RN model resulted in ∆AIC(RN,FN_2) ≤ 2; 

otherwise, a forward selection process, adding other neighbor positions in order of relative 

magnitude of the FA1 loadings (i.e. according to the information given in Table S1), was pursued 

until ∆AIC(RN,FN_2) ≤ 2. The use of ∆AIC(RN,FN_2) ≤ 2 as a stopping rule was a conservative 

approach intended to minimize the chance of retaining too many parameters (and thus achieving a 

more parsimonious model) in the FA1 structure as a result of including successively more 

neighbor positions in the RN model, and considering that the AIC may favor overly complex 

models (see Note S3 above). In this sense, the AIC will indicate the largest acceptable RN model 

given the observed data.  

When model comparison was based on the BIC, the initial K1 and K2 positions were accepted 

as the main influential neighbors if adding the next most important neighbor to the RN model did 

not lead to an improvement in this criterion; otherwise, such a sequential inclusion of neighbor 

positions in the RN model was followed until no further improvement was observed in the BIC 

(i.e. when ∆BIC(RN,FN_2) started to become less negative). Thus, considering that the BIC tends to 

over-penalize model complexity, the smallest acceptable RN model given the observed data will 

be identified by BIC.  
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Note S5  Modeling a combined indirect effect under univariate data analysis 

 

When modeling IGEs as a combined effect, we specified au  = )'' ,'(
iada uu  with the related 

incidence matrix given by aZ  =  ) ,(
iada ZZ , where the subscripts d and i are defined as before. 

The matrix 
daZ  relates the phenotype of a focal tree to its own direct additive genetic effect (i.e. 

akin to the models FN_1, FN_2 and RN). The matrix 
iaZ  was constructed by summing the 

matrices 
)( 1KiaZ  to 

)( 8KiaZ  pertaining to the immediate neighbors of a focal tree, and containing 

intensity of interaction factors calculated specifically for each neighborhood. These are weighting 

factors that account for the differential intensity of interaction effects that neighbors may exert on 

the phenotype of a focal tree, as a result of missing trees in the neighborhood (e.g. due to 

mortality and/or edge position of focal trees) and/or differences in inter-tree distance (Cappa and 

Cantet, 2008; Costa e Silva and Kerr, 2013). Therefore, the two approaches - that is, modeling 

IGEs using a FA1 model and as a combined effect - differ in that, in the former, the relative 

magnitude of the indirect effect with respect to a particular neighbor position is estimated in the 

model whereas, in the latter, it is a function of the relative distances among trees but allowing for 

missing individuals.   

Cappa and Cantet (2008) developed formulae to calculate intensity of interaction factors by 

assuming inter-row spacing to be equal to inter-column spacing. However, these formulae cannot 

be used for the Eucalyptus globulus trial we have studied here due to the different row and 

column spacing (i.e. 2.125 and 5.0 m within and between planting rows, respectively). 

Consequently, Costa e Silva and Kerr (2013; see that article's Supplementary Material) developed 

formulae for a general application (i.e. inter-row spacing not necessarily equal to inter-column 

spacing), and thus enabling intensity of interaction factors to be calculated for same-row, same-

column and diagonal neighbors in our studied trial (see also Costa e Silva et al., 2013). 
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The derivation of the intensity of interaction factors enables uniformity of scaling of indirect 

effects within and across neighborhoods. Without the scaling of indirect genetic effects using the 

intensity of interaction factors, the total contribution (i.e. summed across all immediate neighbors 

of a focal tree) of the indirect additive genetic variance (
2

iaσ ) to the phenotypic variance would 

equal nngh
2

iaσ  (nngh = number of immediate neighbors of a focal tree), assuming no inbreeding 

and genetically unrelated neighbors. However, through the scaling achieved by using the intensity 

of interaction factors, 
2

iaσ  corresponds directly to the total contribution of indirect genetic effects 

to the phenotypic variance, assuming again absence of inbreeding and unrelated neighbors (for 

further details, see Supporting Information in Costa e Silva et al., 2013). 

The genetic (co)variance parameters estimated by modeling IGEs as a combined effect were 

compared between using all eight immediate neighbors and a reduced set comprising the most 

influential neighbors as identified under model RN, using recalculated intensity of interaction 

factors. The variance-covariance matrix specified for the additive genetic effects in au  had the 

form: 

 

A
u

u
⊗













=











 

     

     
   

2

2

iadia

diada

ia

da
Var

σσ

σσ
                                                                                         [S_4] 

 

where  2

iaσ corresponds to the total contribution of the indirect genetic variance to the phenotypic 

variance, 
diaσ  is the direct-indirect genetic covariance, and 2

daσ  and A are defined as before (i.e. 

as in Equation [S_1]).  

A variance-covariance matrix explicitly incorporating direct and indirect (co)variances 

pertaining to residual effects in η (i.e. akin to model FN_1, but using: a 2 x 2 matrix similar in 

form to that given in Equation [S_4]; and intensity of interaction factors in a incidence matrix 

constructed as 
iaZ , but relating the phenotype of a focal tree to the indirect non-heritable effects 
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of the immediate neighbors) was not applied in a final model. This decision was made on the 

basis of the results obtained in preliminary analyses modeling a combined indirect effect for 

terms in au  and η: for the traits and ages examined, REML estimates for the (co)variance 

parameters related to indirect non-heritable effects were never significant. Table S3 in 

Supplementary tables presents these results, which were obtained from analyses using the 

neighbors identified as contributing most to IGEs, and the neighbors appearing to be dominant at 

the residual level (i.e. based on the magnitude of the FA1 loadings relative to their standard 

errors, as estimated under the FN_1 model; see Table S2). In addition, these analyses indicated 

positive and high estimates for the autocorrelation parameters rowφ  and colφ  associated with local 

environmental trend. All of these results suggested that, at the population level, indirect heritable 

effects and local environmental trend seemed to be more important than indirect non-heritable 

(residual) effects for the given data. Thus, a final model used the following definition of the 

variance-covariance structure for the residual effects in e (which was similar to that specified for 

models FN_2 and RN): 

 

[ ]     )( )(   )  (  )(
22

obsniecolcolrowrowceVarVar Iηξe σφφσ +⊗=+= ΣΣΣΣΣΣΣΣ                                       [S_5]        

where 
2
ieσ  and 

obsnI  are defined as in Note S2, and the remaining parameters as in Materials and 

Methods. 
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Note S6  Variance-covariance matrices for random terms defined under the bivariate model 

 

Under the bivariate linear mixed model defined in Equation (2), the variance-covariance 

matrix for the additive genetic effects was specified as: 

A
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u
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where, for 1 and 2 representing a pair of traits or ages, 
2

 ,
1

dadaσ  is the covariance between the 

direct genetic effects of 1 and 2, 
2

 ,
1

iadaσ  is the covariance between the direct genetic effect of 1 

and the indirect genetic effect of 2, 
1

 ,
2

iadaσ  is the covariance between the direct genetic effect of 

2 and the indirect genetic effect of 1, and 
2

 ,
1

iaiaσ  is the covariance between the indirect genetic 

effects of 1 and 2; for a given trait or age, 2

1
daσ  and 2

2
daσ  are direct genetic variances, 2

1
iaσ  

and 2

2
iaσ  are indirect genetic variances, and 

1
 ,

1
iadaσ  and 

2
 ,

2
iadaσ  are direct-indirect genetic 

covariances. For the l
th 

term in ∑
=

t

l
ll

1

uZ , the variance-covariance matrix was defined as: 

l
n

lll

lll

l

l

Var I
u

u
⊗













=













 

     

        
  

2

22
 ,

1

2
 ,

1

2

1

2

1

σσ

σσ
                                                                                     [S_7] 

 

where 2

1
lσ , 2

2
lσ  and 

2
 ,

1
llσ  are (co)variances for effects of the l

th 
term, and 

l
nI  is an identity 

matrix of order ln  (i.e. the number of effects of the l
th

 term). For a spline term, 
2

 ,
1

llσ  was always 

assumed to be zero. For each of the other terms in ∑
=

t

l
ll

1

uZ , the 
2

 ,
1

llσ  component was fitted only 
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when the REML estimates of 2

1
lσ  and 2

2
lσ  were both found to be significant at the 5% level in 

the analyses of single traits or ages, otherwise it was assumed to be zero. For two traits or ages 

using a spatial correlation structure of the same form, the covariance between effects in ξ  can be 

accounted for by using the following variance-covariance matrix (Costa e Silva and Graudal, 

2008):  

 













⊗⊗=









      

           
  )(   )(  

2

22
 ,

1

2
 ,

1

2

1

2

1

cecece

cecece

colcolrowrowVar
σσ

σσ
φφ ΣΣΣΣΣΣΣΣ

ξ

ξ
                                              [S_8] 

where  
2

1
ceσ , 2

2
ceσ  and 

2
 ,

1
ceceσ  are (co)variances for the spatially correlated residuals; rowΣΣΣΣ , 

rowφ , colΣΣΣΣ  and colφ  are defined as before. The specification of the variance-covariance matrix in 

Equation [S_8] assumes common autocorrelation parameters ( rowφ  and colφ ) for 1 and 2 in a 

given direction. For the independent residuals in η , the variance-covariance matrix was a 2 x 2 

matrix similar in form to that given in Equation [S_7], but with the order of the identity matrix in 

the Kronecker product (⊗) being equal to the number of tree observations (i.e. 
obsnI ). 

 

Note S7  Correlation between the total breeding values of two traits or ages 

 

The correlation between the total breeding values (
2) 1,(TBVr ) of two traits or ages was computed 

as: 

 

2) 1,(TBVr  = 
  

 , 

21

21

)()(

)(

TBVVarTBVVar

TBVTBVCov
                                                                                  [S_9] 

 

where TBV denotes total breeding value, Var(TBV1) and Var(TBV2) are total heritable variances 

for traits or ages 1 and 2, respectively, and Cov(TBV1, TBV2) is the covariance between the total 

breeding values of traits or ages 1 and 2. The TBV is the heritable impact of an individual's own 
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genes on the population's mean trait value (Bijma et al., 2007), and the variance among 

individuals in TBV (i.e. Var(TBV)) determines the population's potential to respond to selection 

for a trait affected by IGEs at a given age (Bijma, 2011). Var(TBV) was calculated by Equation 

(16) given by Costa e Silva and Kerr (2013) and, following Equation (14) also provided by these 

authors to estimate TBV, Cov(TBV1, TBV2) in Equation [S_9] was computed as: 

 

2
 ,

1
dadaσ + 

2
 ,

1222222
)      (

iadadiagdiagcolcolrowrow fnfnfn σ++  +                                        [S_10] 

1
 ,

2111111
)      (

iadadiagdiagcolcolrowrow fnfnfn σ++  + 

2
 ,

1222222111111
)      )(      (

iaiadiagdiagcolcolrowrowdiagdiagcolcolrowrow fnfnfnfnfnfn σ++++  

where, for traits or ages 1 and 2, rowrow fn  , colcol fn   and diagdiag fn   denote products of means, 

taken across all focal trees at a given trial, for the number of their immediate neighbors ( rown , 

coln  and diagn ) and corresponding intensity of interaction factors ( rowf , colf  and diagf ) in the 

row, column and diagonal directions of the trial layout, respectively; 
2

 ,
1

dadaσ , 
2

 ,
1

iadaσ , 
1

 ,
2

iadaσ  

and 
2

 ,
1

iaiaσ  are defined as in Equation [S_6] (see Note S6). Equation [S_10] refers explicitly to 

modeling IGEs as a combined effect using all eight immediate neighbors of a focal tree. For an 

analysis comprising a reduced neighborhood set, Equation [S_10] will use only the most 

influential neighbors (i.e. as identified under model RN) with the corresponding recalculated 

intensity of interaction factors. 
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2. Supplementary tables 

 

Table S1  Estimates of the FA1 loadings obtained under the FN_2 model for the indirect effects 

at the heritable level. 
a, b, c, d, e

 
 

Neighbors MLD 

(2 years) 

DBH 

(2 years) 

DBH 

(4 years) 

DBH 

(8 years) 

K1 

 

1.093 

(4.35) 

 

1.816 

(6.17) 

5.404 

(12.65) 

8.287 

(13.51) 

K2 

 

0.668 

(2.75) 

 

2.390 

(7.50) 

4.794 

(10.95) 

10.937 

(15.51) 

K3 

 

0.194 

(0.96) 

 

0.079 

(0.32) 

0.762 

(2.15) 

1.175 

(1.90) 

K4 

 

0.190 

(0.77) 

 

0.764 

(2.55) 

1.851 

(4.50) 

2.549 

(4.12) 

K5 

 

0.086 

(0.42) 

 

0.452 

(1.49) 

0.274 

(0.65) 

0.036 

(0.06) 

K6 

 
0.297 

(1.24) 
 

0.502 

(1.85) 

0.955 

(2.47) 

1.937 

(3.21) 

K7 

 

0.471 

(2.10) 

 

0.107 

(0.31) 

0.122 

(0.28) 

1.253 

(1.94) 

K8 

 

0.492 

(1.93) 
0.153 

(0.59) 

0.627 

(1.63) 
0.148 

(0.24) 

 
a
 The indirect effects at the heritable (i.e. additive genetic) level pertain to each of the eight immediate  

neighbors of a focal tree (i.e. K1 to K8). 

 
b
 For a given neighbor, the ratio of the magnitude of the loading relative to its standard error is presented 

in parenthesis. The only values that were consistently high relate to neighbors K1 and K2. 

 
c
 The loadings and their estimate/standard error ratios are presented in absolute value. For a given trait  

and age, the loadings marked in bold have an opposite sign compared to the loadings obtained for the  

other neighbors. 

 
d
 We used a FA structure that fixed the specific variances associated with the individual neighbor effects 

to be zero, so that the correlations between the direct genetic effect and the indirect genetic effects of K1  

to K8 are the same except for sign, and the correlations among the indirect genetic effects of K1 to K8 are  

all one or minus one. For MLD, the correlations between the direct effect and the indirect effects were all  

positive, except for the correlation involving the relationship with the neighbor in which the loading is  

marked in bold. For DBH at a given age, the correlations between the direct effect and the indirect effects  

were all negative, except for the correlation estimate(s) involving the relationship(s) with the neighbor(s)  

in which the loading is marked in bold. 

 
e
 For MLD, the parameter estimates refer to the (arcsine) transformed and rescaled observations (see  

footnote e of Table 1). 
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Table S2  Estimates of the FA1 loadings obtained under the FN_1 model for the indirect effects 

at the non-heritable level. 
a, b, c, d, e

 
 

Neighbors MLD 

(2 years) 

DBH 

(2 years) 

DBH 

(4 years) 

DBH 

(8 years) 

K1 

 

0.813 

(0.82) 

 

0.525 

(0.63) 

1.168 

(1.04) 

3.649 

(1.97) 

K2 

 

1.357 

(1.22) 

 

0.767 

(0.96) 

2.765 

(2.30) 

4.659 

(2.85) 

K3 

 

0.040 

(0.06) 

 

0.405 

(0.48) 

2.606 

(3.15) 

3.608 

(2.54) 

K4 

 

0.047 

(0.07) 

 

0.155 

(0.19) 

2.966 

(3.45) 

3.785 

(2.78) 

K5 

 

0.218 

(0.43) 

 

1.266 

(1.66) 

0.132 

(0.18) 

0.456 

(0.40) 

K6 

 

1.405 

(2.26) 

 

0.193 

(0.31) 

1.998 

(3.09) 

3.511 

(3.40) 

K7 

 

0.141 

(0.21) 

 

1.384 

(1.81) 

0.321 

(0.46) 

1.160 

(1.07) 

K8 

 

1.309 

(2.11) 

0.037 

(0.06) 
0.822 

(0.98) 

1.191 

(0.90) 

 
a
 The indirect effects at the non-heritable (i.e. independent residual) level pertain to each of the eight  

immediate neighbors of a focal tree (i.e. K1 to K8). 

 
b
 For a given neighbor, the ratio of the magnitude of the loading relative to its standard error is presented 

in parenthesis.  

 
c
 The loadings and their estimate/standard error ratios are presented in absolute value. For a given trait  

and age, the loadings marked in bold have an opposite sign compared to the loadings obtained for the  

other neighbors. 

 
d
 We used a FA structure that fixed the specific variances associated with the individual neighbor effects 

to be zero, so that the correlations between the direct genetic effect and the indirect genetic effects of K1  

to K8 are the same except for sign, and the correlations among the indirect genetic effects of K1 to K8 are  

all one or minus one. For MLD, the correlations between the direct effect and the indirect effects were all  

positive. For DBH at a given age, the correlations between the direct effect and the indirect effects were all  

negative, except for the correlation estimate(s) involving the relationship(s) with the neighbor(s) in which  

the loading is marked in bold. 

 
e
 For MLD, the parameter estimates refer to the (arcsine) transformed and rescaled observations (see  

footnote e of Table 1). 
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Table S3  REML estimates for (co)variance parameters (± standard errors) related to direct and indirect effects at the heritable (i.e. additive genetic) and non-heritable (i.e. 

independent residual) levels, obtained by modeling indirect effects as a combined effect, and using reduced sets of immediate neighbors. 
a, b, c, d

 
 

Trait 

(age) 
2

da
σ̂  

dia
σ̂  

2

ia
σ̂  diar̂  2

dη
σ̂  

diη
σ̂   

2

iη
σ̂   

∆LogL 

 

MLD 

(2 years) 

 

 

82.96 ± 14.45 

(5.7) 

 

9.26 ± 1.95 

(4.7) 

 

1.49 ± 0.62 

(2.4) 

 

0.83 ± 0.13 

(6.4) 

 

99.23 ± 8.0 

(12.4) 

 

-0.27 ± 1.12 

(-0.2) 

 

-1.46 ± 3.17 

(-0.5) 

 

0.13 

DBH 

(2 years) 

 

90.02 ± 15.28 

(5.9) 

-22.01 ± 2.92 

(-7.5) 

6.72 ± 1.48 

(4.5) 

-0.90 ± 0.06 

(-15.0) 

135.81 ± 9.25 

(14.7) 

0.85 ± 1.52 

 (0.6) 

-4.0 ± 4.17 

(-1.0) 

0.66 

DBH 

(4 years) 

 

219.24 ± 29.47 

(7.4) 

-84.35 ± 7.98 

(-10.6) 

36.25 ± 5.25 

(6.9) 

-0.95 ± 0.03 

(-31.7) 

251.50 ± 19.96 

(12.6) 

-1.04 ± 3.71 

(-0.3) 

-0.42 ± 8.40 

(-0.1) 

0.04 

DBH 

(8 years) 

 

644.99 ± 81.54 

(7.9) 

-298.86 ± 28.85 

(-10.4) 

153.59 ± 19.74 

(7.8) 

-0.95 ± 0.03 

(-31.7) 

646.68 ± 42.24 

(15.3) 

6.30 ± 21.72 

(0.3) 

-41.23 ± 31.23 

(-1.3) 

1.29 

 

a
 The tabulated (co)variance parameter estimates refer to: 

2

da
σ̂ = direct additive genetic variance; 

dia
σ̂ = direct-indirect additive genetic covariance; 

2

ia
σ̂  = indirect additive genetic variance;  

diar̂  = direct-indirect additive genetic correlation;  
2

dη
σ̂ = direct residual variance; 

diη
σ̂ = direct-indirect residual covariance; 

2

iη
σ̂ = indirect residual variance. The ratio of the parameter estimate 

relative to its standard error is given in parenthesis. For MLD, the parameter estimates refer to the (arcsine) transformed and rescaled observations (see footnote e of Table 1). 
b
 Modeling indirect effects as a combined effect used: for genetic effects, the neighbor positions identified as contributing most to IGEs (i.e. see "Neighbors kept in RN" in Table 1); and for residual 

effects, the neighbors appearing to be dominant at the residual level (i.e. based on the magnitude of the FA1 loadings relative to their standard errors, as estimated under the FN_1 model; see Table 

S2). In the latter case, the neighbor positions considered in the reduced set of immediate neighbors of a focal tree were: K6 and K8 for MLD; K5 and K7 for DBH at age 2 years; K3, K4 and K6 for DBH 

at age 4 years; and K2, K3, K4 and K6 for DBH at age 8 years.    
c
 ∆LogL = llR(M1) - llR(M2), where llR is the model's REML log-likelihood, M1 is the model considering indirect effects at both heritable and non-heritable levels (i.e. as presented in the table above), 

and M2 is the model considering indirect effects at the heritable level only (i.e. see the columns pertaining to "Reduced set of immediate neighbors" of Table 2). As indicated by the magnitude of 

∆Log, a two-tailed likelihood-ratio test of the overall significance of the indirect effects at the non-heritable level (and involving a joint test of significance for 
diη

σ̂  and 
2

iη
σ̂ ) leads to non-significant 

results (P > 0.05; 2 df) for all traits and ages.  
d
 The 

2

iη
σ̂  estimate was allowed to be negative. Negative estimates of variance components may occur when the inherent variability is low and/or there is an expected negative intraclass correlation 

(Oliveira et al., 2016). A negative intraclass correlation may reflect the presence of competition among group members for a fixed resource, with the resulting within-unit (or within-group) negative 

correlation being captured by a negative variance component estimate (Kenny et al,. 2002; Pryseley et al,. 2011; Oliveira et al., 2016). In these circumstances, constraining an estimate of a variance 

component to be positive may result in misleading conclusions (Kenny et al., 2002; Molenberghs and Verbeke, 2011; Pryseley et al., 2011; Oliveira et al., 2016). For DBH at a given age, modeling 

the variance-covariance matrix for the independent residuals in η  resulted in estimates of FA1 loadings that had opposite signs for the neighbor positions used in the reduced set (see Table S2); this 

may be translated as negative correlations among the indirect non-heritable effects themselves, which could have been captured in the negative 
2

iη
σ̂  estimates obtained for DBH. This dissimilarity 

among indirect non-heritable effects was not apparent for MLD (i.e. no negative dependence seemed to occur for the neighbor positions used in the reduced set, as the corresponding FA1 loadings 

did not have opposite signs; see Table S2), and thus the negative 
2

iη
σ̂  estimates obtained for MLD could be mainly attributed to a low inherent variability for indirect non-heritable effects in the 

studied trial. 
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Table S4  Estimates over time for the total heritable variance (���� ( TBV )), as well as for the contributions to ���� ( TBV ) due to direct and indirect genetic effects,  

based on additive genetic (co)variance components estimated from a univariate model in which IGEs were modeled as a combined effect, using either full  

(FS) or reduced (RS) sets of immediate neighbors of a focal tree. Absolute and relative (i.e. Estimate/ 2
pσ̂  ) values of the parameter estimates are presented,  

and their respective standard errors are provided in parenthesis. 
a,
 
b, c,

 
d
 

 

  MLD (2 years) DBH (2 years) DBH (4 years) DBH (8 years) 

  Estimate Estimate/ 2
pσ̂  Estimate Estimate/ 2

pσ̂  Estimate Estimate/ 2
pσ̂  Estimate Estimate/ 2

pσ̂  

Total heritable variance (���� ( TBV )) 

 

 FS 

 

RS 

141.07 

(± 22.51) 

115.58  

(± 18.43) 

0.748 

(± 0.094) 

0.608 

(± 0.074) 

21.12 

(± 9.52) 

41.45 

(± 11.27) 

0.086 

(± 0.037) 

0.168 

(± 0.042) 

18.34 

(± 14.77) 

40.54 

(± 15.07) 

0.035 

(± 0.028) 

0.077 

(± 0.027) 

38.07 

(± 31.87) 

80.98 

(± 32.11) 

0.026 

(± 0.022) 

0.056 

(± 0.021) 

 

Contribution to ���� ( TBV ) due to direct genetic effects 

 
2

daσ̂  FS 

 

RS 

80.17 

(± 14.0) 

84.93 

(± 14.62) 

0.425 

(± 0.058) 

0.447 

(± 0.059) 

91.27 

(± 16.18) 

90.32 

(± 15.26) 

0.373 

(± 0.056) 

0.367 

(± 0.045) 

218.12 

(± 29.60) 

218.29 

(± 28.68) 

0.415 

(± 0.047) 

0.413 

(± 0.045) 

708.05 

(± 72.62) 

643.50 

(± 68.86) 

0.483 

(± 0.039) 

0.442 

(± 0.038) 

 

Contributions to ���� ( TBV ) due to indirect genetic effects  

 

2( diagdiagcolcolrowrow fnfnfn       ++ )
diaσ̂  

 

FS 

 

RS 

49.52 

(± 9.97) 

27.47 

(± 5.53) 

0.263 

(± 0.047) 

0.144 

(± 0.026) 

-108.94 

(± 16.79) 

-62.25 

(± 8.19) 

-0.445 

(± 0.061) 

-0.253 

(± 0.029) 

-402.60 

(± 41.68) 

-273.60 

(± 24.17) 

-0.765 

(± 0.067) 

-0.517 

(± 0.038) 

-1394.8 

(± 103.1) 

-955.98 

(± 62.34) 

-0.951 

(± 0.055) 

-0.657 

(± 0.032) 

2
      )( diagdiagcolcolrowrow fnfnfn ++

2

ia
σ̂  

FS 

 

RS 

 

11.38 

(± 4.24) 

3.18 

(± 1.26) 

0.060 

(± 0.022) 

0.017 

(± 0.007) 

38.79 

(± 9.57) 

13.38 

(± 2.94) 

0.158 

(± 0.039) 

0.054 

(± 0.012) 

202.82 

(± 32.58) 

95.85 

(± 13.46) 

0.385 

(± 0.061) 

0.181 

(± 0.026) 

724.82 

(± 87.80) 

393.46 

(± 43.56) 

0.494 

(± 0.059) 

0.271 

(± 0.030) 
 
a
 The reduced set (RS) comprises the neighbor positions that were found to contribute most to IGEs (i.e. see "Neighbors kept in RN" in Table 1).  

b
 Results obtained from modeling IGEs as a combined effect by using all eight immediate neighbors of a focal tree were previously reported by Costa e Silva et al. (2013) for MLD at  

age 2 years, and DBH at ages 2 and 4 years. However, the results provided above for the full set of neighbor positions differ slightly to those presented in Costa e Silva et al. (2013), as  

some parents have been subsequently re-allocated to the factorial to improve the number of families per parent and geographic focus of the parents in the diallel (see Materials and Methods). 
c
 For MLD, the parameter estimates refer to the (arcsine) transformed and rescaled observations (for more details, see footnote e of Table 1). 

d
 For 2

daσ̂ , the absolute values of the estimates are also shown in Table 2.  
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3. Supplementary figures 

 

 

 

Figure S1  Proposed pathway for analyses to model indirect effects at the heritable and non-heritable 

levels in forest genetic trials. The models correspond to: FN_1, modeling indirect effects at both the 

heritable and non-heritable levels, using all eight immediate neighbors of a focal tree; FN_2: modeling 

indirect effects at the heritable level only, using all eight immediate neighbors of a focal tree; RN_1 

modeling indirect effects at both the heritable and non-heritable levels, using subsets of the neighbor 

positions; and RN_2 modeling indirect effects at the heritable level only, using subsets of the neighbor 

positions. Note that "RN_2" corresponds to the acronym "RN" used in the sequence of analyses followed 

to model indirect effects for the MLD and DBH data measured in the Eucalyptus globulus trial (see Figure 

1). 
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