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METHODS 

Preparation of PS wrinkles. PS wrinkles were formed on biaxially pre-strained, thermoplastic 

PS films (Grafix shrink film) by surface wrinkling.(1, 2) PS films were treated with a plasma in a 

reactive ion etching (RIE) system for different exposure times with the gas CHF3 at a flow rate of 

20 sccm, power of 70 W, and pressure of 20 Pa. By changing the CHF3 time, we controlled wrinkle 

wavelength continuously.(3) Chemically treated PS was then heated in a convection oven at 125 °C 

to relieve the pre-strain of the PS substrate. The amount of strain was tuned by controlling the PS 

heating time. Returning the PS to room temperature stopped the shrinking process. The strain ε 

was determined by measuring the area of a box drawn on the substrate prior to and after shrinking 

and using ε = (A0-Af)/A0, in which A0 is the initial area and Af is the final area. The maximum strain 

that can be applied to a PS film was 0.85-0.9.  

Fabrication of PDMS wrinkle molds.  For maximization of surface hydrophobicity, PS wrinkles 

were treated with an SF6 plasma for 1 min.(2) RIE conditions (flow rate, power and pressure) for 

SF6 treatment were the same as those of the CHF3 gas. For PDMS wrinkles, we poured a mixture 

of pre-polymer (A/B = 1:10, Sylgard 184, Dow Corning) onto SF6-treated PS wrinkles and cured 

the materials at 70 °C for 2 h.  

Fabrication of quasi-random nanostructures by wrinkle lithography. An amorphous Si (a-Si) 

thin film was coated with 12-nm Al2O3 by atomic layer deposition (ALD). A thin film (75-150 nm) 

of Shipley 1805 photoresist (PR) was then spin cast on top of the Al2O3. The wrinkle patterns were 

then transferred from the PDMS stamps to the PR surfaces using solvent assisted nanoscale 

embossing (SANE).(4) Directional O2 plasma in the RIE (flow rate of 50 sccm, at a power of 70 

W, and a pressure of 20 Pa) reduced the thickness of the PR wrinkle patterns and exposed the 

underlying Al2O3 only in the valleys of wrinkles where the PR was thinnest. The exposed Al2O3 
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areas can be controlled by changing the O2 plasma time to produce discontinuous PR masks with 

varying fill factors. Wet-etching of Al2O3 through the PR masks removes the exposed areas of 

Al2O3 isotropically. The etching temperature and time was fixed at 70°C and 170 s, respectively, 

to avoid under- and over-etching. After the wet etch, the PR masks were removed using acetone, 

and the 3D wrinkle structures were transferred to a 2D Al2O3 mask. The Al2O3 served as a deep 

reactive ion etching (DRIE) mask for etching into the Si to create the desired quasi-random pattern 

in 3D. For DRIE, we used CF4 (25 sccm) and O2 (3 sccm) gases at a power of 100 W under a 

pressure of 13.3 Pa. 

Characterization of surface wrinkle patterns. PS wrinkles and PDMS stamps were coated with 

a layer of AuPd (thickness ca. 8 nm) for SEM imaging. Quasi-random structures at each stage of 

wrinkle lithography was imaged with SEM (without coating of AuPd) and tapping-mode atomic-

force microscopy (AFM). The broadband absorbance spectra on quasi-random a-Si patterns were 

measured from 400 to 1200 nm using a LAMBDA 1050 spectrophotometer (PerkinElmer) or Cary 

5000 UV− vis−NIR spectrophotometer (Agilent Technologies). 

SDF-based representation of quasi-random structures. The spectral density function (SDF) 

was used to represent and model the quasi-random nanostructures formed by wrinkle lithography. 

The underlying mathematical correlations between the structural spatial functions of the patterns 

and their Fourier spectrum have been well established based on the Winner-Khinchin theorem.(5) 

Therefore, SDF calculated from the Fourier spectrum can describe the degree of order versus 

disorder of the quasi-random structures in the spatial frequency (k) domain.(6)  Since typical SDFs 

have less than four characteristic parameters, the SDF-based structural representation significantly 

reduces design dimensionality, which allow fast explorations of optimal quasi-random 

nanostructures. For example, following equation characterizes the SDF of the 3D morphology 
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formed in micro-emulsions of oil, water and surfactant:(7) 

                                              
1

2 2 4 2 2 4 2
0 2 cos 2p k C k k k k b t b



      
 

                          

Three parameters, i.e. k0, b, and t governs this SDF (p(k)) with C as the normalization constant. 

Usually, the governing parameters of SDF associate with physical properties of the structures in 

real-space. For instances, in this system, the length scale is set by (E[k2])1/2 = (b2+2bk0cost)1/2 

where E[] denotes the mean value. The minimum feature size is determined by the value of k as 

p(k) converges to zero and the main quasi-periodicity is determined by the value of k that 

maximizes p(k). These physical properties that are usually determined by the fabrication 

processing conditions would affect the functional performances of the structure. Therefore, the 

SDF representation of quasi-random nanostructure bridges the gap in process-structure and 

structure-performance relations, and provides the foundation for concurrent design of the structure 

and fabrication conditions. 

Genetic algorithm for optimization search. We used genetic algorithm (GA) to update the 

structural parameters of wrinkle patterns in the iterative search of the optimal solution. Mimicking 

natural evolution with the underlying idea of survival-of-the-fittest, GA is a stochastic, global 

search algorithm.(8) The stochasticity of GA enables the convergence toward optimums despite 

the strong design nonlinearity (i.e., the existence of large numbers of local optimums) in 

nanophotonic optimization problems.(9, 10) However, GA is usually inefficient to solve the 

structural optimization problems due to the large numbers of design variables, especially, for the 

case of pixelated representation.(11) We overcame this problem by using SDF-based 

representation for the nanowrinkle patterns, which depends only on three variables of λ, f and t. 

The variables were coded using the binary notation and were regarded as the chromosomes in GA. 
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A population of the chromosomes went through the iterative operation of selection, recombination, 

and mutation and converged to the optimized broadband, light trapping structure.  

Although GAs with different strategies of selection, recombination, and mutation have been 

developed, we used the strategy of self-adaptive mutation.(12) Here, the designs mutate by adding 

a random parameter with normally distribution to each design variable. The mutation strength (i.e., 

standard deviation of the normal distribution) was self-adaptive and varied during the optimization 

process. The strength increased as the optimization converged. We observed this self-adaptive 

control of the mutation in the history plot (Fig. 4A) where larger fluctuations occurred at the late 

stage of the optimization (converged regime, number of evaluations = 186) compared to the 

beginning stage (linear regime, before 130th evaluation). In this work, the self-adaptive GA search 

was performed using the commercial optimization software iSight from Dassault Systemes. 

Finite-difference time-domain simulation. Finite-difference time-domain (FDTD) calculations 

based on commercial software (FDTD Solution, Lumerical Inc., Vancouver, Canada) were used 

to simulate the light-trapping performance and the near-field distribution of optimized a-Si 

nanostructures (λ = 550 nm, f = 52%, t = 210 nm) in a 3 m × 3 m window. The total thickness 

of the a-Si slab was set as T = 700 nm on top of the silver backing layer. To ensure no transmission 

though the system, we set the thickness of the Ag layer as 300 nm. A uniform mesh size of 6 nm 

(x, y and z directions) was used to improve the spatial resolution of the fields. The simulation had 

periodic boundary conditions in the x-y direction and a perfectly matched layer (PML) in z. The 

frequency dependent real and imaginary dielectric constants for amorphous silicon were taken 

from reference. (13)  
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Formation of Al2O3 quasi-random pattern on a-Si substrate 

  

  

Fig. S1. Formation of two-dimensional, quasi-random Al2O3 mask on a-Si substrate. SEM 

images of (A) quasi-random PR mask on Al2O3 surface before wet-etching, (B) quasi-random 

Al2O3 mask on the surface of a-Si after wet-etching and lift-off the PR mask, (C) quasi-random 

a-Si pattern in 3D after DRIE and subsequent etching of the Al2O3 mask. 
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Rigorous coupled wave analysis of broadband light-trapping device 

We evaluated the light absorption (A) of the nanowrinkle pattern using:  

 
𝐴(𝜀) =

𝐼 − 𝑅(𝜀) − 𝑇(𝜀) − 𝐷(𝜀)

𝐼
 

(S1) 

where I is the incidence, R and T are the zeroth-order reflection and transmission respectively, D 

denotes the deflected higher order reflection and transmission, and ε represents the permittivity 

distribution. Predicting the light absorption of the structure requires calculation of the interaction 

between electromagnetic wave and the system, for which we used a stable Rigorous Coupled Wave 

Analysis (RCWA) method developed in literature.(14-16) This method obtains the exact solution 

of Maxwell’s equations for the electromagnetic diffraction by grating structures. Moreover, the 

algorithm has the advantages of good convergence and relatively simple implementation for 

analyzing periodic structures by only considering a unit cell with infinite-repeating boundary 

conditions. RCWA has been applied in the analysis of various systems, such as metal-dielectric 

multilayer structures(17) and nanowire enhanced biosensors.(18) 

To analyze the reflection, transmission and deflection through a multilayered dielectric stack 

using RCWA, Fourier expansions of electric, magnetic field and the permittivity were made to 

achieve an algebraic eigenvalue system for each layer.(15, 19) In the simulation of our quasi-

random light-trapping structures, we assume that there is no geometric variation in the vertical 

direction of the wrinkle patterns. Thus, the system of light-trapping device consists of three layers: 

(1) wrinkle patterned a-Si, (2) a-Si thin-film without the pattern, and (3) Ag layer at the bottom.  

The orders of Fourier components considered in each analysis determine the accuracy of the results. 

Although higher orders of Fourier components can lead to more accurate transmission and 

reflection, the computation time increases significantly. Here, an order of 21 was selected by 

considering the trade-off between calculation accuracy and speed. Assuming the scattering layer 
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is discretized by a N-by-N grid mesh, we can calculate the Fourier components of the permittivity 

by: 

     
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Solving the eigenvalue problem in each layer results in the so-called scattering matrix (S matrix, 

Fig. S2), and the S matrix for the entire multi-layer system can be obtained by: 

1 2 nS S S S        (S3) 

Input [A1, B1] and output [A2, B2] are related by the Poynting’s theorem: 

1 2

1 2

A A
S

B B

   
    

   
     (S4) 

Therefore, the obtained B1 and A2 vectors yield R, T and D of the multi-layer system in Equation 

S1. 

We note that RCWA assumes a periodic boundary condition over the input structure (the unit 

cell). In our calculation, we set the length of the unit cell structure as 3000 nm. Since SDF provides 

information regarding the distribution of spatial frequency of the structure, different real-space 

  

Fig. S2. Schematic illustration of RCWA algorithm for multi-layered system 
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structures reconstructed from the same SDF are statistically equivalent in reciprocal space. The 

characteristics of the reciprocal space of the structure determine their performance for photon 

management.(20) Therefore, the light-trapping performance of a quasi-random structure 

consisting of statistically equivalent unit cells with different real-space geometries is theoretically 

the same as that of a structure as a periodic arrangement of the same unit cell.  
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Process-Structure mapping 

Design of quasi-random nanostructures from wrinkle lithography is defined by three variables, 

wrinkle wavelength (λ) that determines SDF, materials filling ratio (f), and feature depth (t). We 

can control these three parameters independently by varying the fabrication processing conditions: 

CHF3 time (tCHF3) for λ, O2 etching time (tO2) for f, DRIE time (tDRIE) for t. We obtained the linear 

relation of the process-structure mapping for each pair of structure-processing parameters from the 

data in Fig. S3. Equations S5 show mathematical expressions of the linear fittings. From the 

process-structure mapping, we can identify combinations of processing conditions (tCHF3, tO2, tDRIE) 

for a given nanostructure design, which enables concurrent design of structure and processing.  

tCHF3 = 0.2087 · λ – 37.5758 

tO2 = -36.86 · f + 71.63                                                       (S5) 

tDRIE = 0.325 · t – 2.7451 

  

  

Fig. S3. Process-structure mapping in wrinkle lithography. Linear relations of (A) wrinkle 

wavelengths (λ) and CHF3 time, (B) O2 etching time and material filling ration (f) and (C) DRIE 

time and the thickness of a-Si patterns. 
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Comparison of SDFs from PDMS and a-Si wrinkle patterns 

We confirmed that the degree of order versus disorder of the nanowrinkle pattern on PDMS 

stamp was preserved in the final patterned structure on a-Si by analyzing the corresponding SDFs. 

Fig. S4A-B show binarized SEM images of the PDMS wrinkle and the a-Si pattern. Using the 

corresponding Fourier spectra, we obtained the normalized SDFs for comparison (Fig. S4C). The 

SDFs from the PDMS stamp and a-Si pattern matched well with each other, indicating that the 

quasi-random patterns were successfully transferred from the template to target material. 

 

  

  

Fig. S4. SDF-based analysis of the preservation of degree of order/disorder during wrinkle 

lithography. Binarized SEM images of (A) PDMS wrinkle stamp and (B) resulting a-Si pattern 

by wrinkle lithography. (C) SDFs from the images in (A) and (B). 
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Truncated Gaussian distribution function as a SDF of multiscale wrinkle patterns 

We analyzed wrinkle patterns with different wavelengths ranging from 180 nm to 2000 nm 

using the SDF formulation. We numerically derived that SDFs p(k) of the quasi-random patterns 

in a-Si followed a hill shape truncated from a Gaussian distribution function. Here, both mean (µ) 

and standard deviation (σ) of this Gaussian distribution function depended on wrinkle wavelength 

(λ) as µ  = km = 1/λ and σ = 0.958/λ + 0.00017 where the r-square (coefficient of determination) for 

the fitting was 0.98. Fig. S5 shows SDF fitting results for different λ of 180 nm, 450 nm, 650 nm 

and 2000 nm.  

 

  

Fig. S5. Fitting results of the SDFs of a-Si quasi-random patterns having different 

wavelengths. SDFs follows truncated Gaussian distribution functions for wrinkle wavelength 

of (A) 180 nm, (B) 450 nm, (C) 650 nm and (D) 2000 nm. The blue curves denote the measured 

SDFs and the red curve show the fitted truncated Gaussian distribution functions. 
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Reconstruction of SDFs using Gaussian random field modeling 

Reconstruction of SDFs is necessary for structure-performance simulations in the iterative 

optimization process.  We developed a method based on Gaussian random field (GRF) modeling 

to reconstruct nanowrinkle patterns in real-space based on SDF representation. A standard GRF 

(Y(r)) is a random field with each point r marginally following a standard Gaussian distribution. 

The GRF over a n-dimensional space is completely governed by the field-field correlation function 

g(r1, r2) in Equation S6. 

                               
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                                                                                                                  (S7) 

Defined as the statistical correlation between two points over the random field, g(r1, r2) describes 

fluctuation characteristics of the GRF. In Equation S6, J are Bessel functions of the first kind, and 

p(k) is the spectral density function (SDF). Equation S6 shows the analytical relationship between 

GRF Y(r) and SDF p(k). Once GRF is generated, we can obtain the quasi-random structure in real-

space dictated by Z(r) (Equation S7) by level-cutting GRF Y(r) at α, whose value is determined 

by desired material filling ratio. Fig. S6 illustrates the reconstruction process based on a delta-

function (Fig. S6A) as SDF.  A GRF is first constructed based on this targeting SDF. After level-

cutting the random field by 50% material filling ratio, we achieved the reconstruction in real-space 

(Fig. S6C). We confirmed that the Fourier spectrum of the reconstruction (inset) matches with the 

original SDF. 
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Fig. S7 demonstrates the capability of the GRF-based method to reconstruct various real-space 

structures to target different SDFs. Fig. S7A shows the reconstruction process of SDF which 

follows a truncated Gaussian distribution. The reconstructed structure in real-space with the 

material filling ratio of 60% shows a Fourier spectrum (inset) corresponding to the target SDF. Fig. 

S7B depicts the case of an SDF that has a two-step shape. Here, the material filling ratio was set 

at 50% and the reconstructed structure possessed a double-band Fourier spectrum matching the 

target SDF. Lastly, the three-delta SDF in Fig. S7C produced the reconstruction with a triple-ring 

Fourier spectrum. The material filling ratio was set as 40% for this case. Based on these case 

studies, we conclude that our reconstruction method can deal with SDFs of arbitrary forms 

including quasi-random wrinkle patterns showing SDF with truncated Gaussian distribution. 

  

Fig. S6. Real-space quasi-random structure reconstruction based on SDF using Gaussian 

random field modeling. (A) Delta function as a sample SDF. (B) Gaussian random field. (C) 

Reconstructed structure in real-space. 
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Fig. S7. Real-space quasi-random structure reconstruction using Gaussian random field 

modeling for different forms of SDFs. Reconstruction of SDFs following (A) truncated 

Gaussian distribution, (B) two-step shape, (C) three-delta function.  
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Broadband light trapping on quasi-random nanostructures with identical SDF 

Quasi-random structures with different real space geometries but very similar Fourier 

spectrums originating from the same SDF showed the same absorption performance. Figure S8 

highlights an optimized quasi-random light-trapping structure using the SDF-based representation 

and reconstruction. Here, the thickness of the quasi-random light- trapping structure (t1) was set as 

100 nm, and the total thickness of a-Si layer was set as 600 nm. The light-trapping nanostructure 

was optimized under normal-incidence light of 650 nm. We assumed that the quasi-random 

 

Fig. S8. SDF based design of quasi-random light-trapping structures. (A) Optimized step-

shaped SDF for light-trapping nanostructures. (B, C) Real-space structures reconstructed from 

the optimized step-shaped SDF using random disk packing algorithm. (D, E, F) Real-space 

structures reconstructed from the optimized step shaped SDF using Gaussian random field 

modeling. (G) RCWA absorption performance validation of 50 different structures 

reconstructed from the optimized step shaped SDF. 
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structures follow a step shaped SDF shown in Fig. S8A governed by the spatial frequencies on the 

two ends. These two frequencies with the material filling ratios of the structure were optimized for 

maximal light absorption. The optimized step shaped SDF shown in Fig. S8A starts at 1.8 μm-1 

and ends at 3 μm-1 with the material filling ratio of 78%. Based on this solution, five designs with 

different real-space geometries were reconstructed at 2 μm-by-2 μm scale; the structures in the Fig.  

S8B-C were generated using random disk packing method, and the structures in the Fig. S8D-F 

were generated using Gaussian random field modeling. Despite different real-space morphologies, 

all designs showed similar ring-shaped Fourier spectra and achieved equally optimized light-

trapping performance. Including these five samples, 50 different real-space patterns were 

generated from the optimized SDF, and evaluated using RCWA. Figure S8G shows that the 

designs achieved an average absorption of 0.88, a 225% enhancement compared with the 

unpatterned cell. There is less than 4% variance of the absorptions of these designs. From this test 

case, we confirmed that structures with different real space geometries and the same SDF can 

achieve similar absorption performance. 
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Broadband optimization of average absorption enhancement factor 

Broadband optimization maximizes the average absorption enhancement factor, defined as the 

ratio between the predicted absorption and the single-path absorption averaged over different 

wavelengths (Equation S8). 

                                                                    
 
 

,n

i

w
i

w iS

n
A w

A w


Z
                     (S8) 

In this equation, A(Z, wi) denotes the absorption of the structure Z at incident wavelength wi 

evaluated by RCWA, and AS(wi) denotes the single-path absorption at incident wavelength wi. (21, 

22) Here, the absorption enhancement factor describes the light-trapping efficiency of the quasi-

random wrinkle patterns. Fig. S9 shows the enhancement factor of the initial design and the 

optimized design in the weak absorbing spectrum of a-Si. Notably, the structural optimization 

increased the averaged enhancement factor from 1.6 to 4.7 as confirmed in the optimization history 

plot (Fig. 4A). 

  

  

Fig. S9. Absorption enhancement factor of the initial design and optimized design of 

nanowrinkle patterns.  
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Evolving process of structural parameters during broadband optimization 

 Due to the self-adaptive control of mutation strength (Methods), the values of the three design 

variables fluctuated during the broadband optimization (Fig. S10). We observed that the 

fluctuation increased after the optimal design was identified. As the optimization is approaching 

the convergence, the level of fluctuation increased due to the increased mutation strength 

controlled by the self-adaptive mutation. Such a strategy reduces the likelihood of the optimization 

being trapped at a local optimum with relatively low performance. 

 

 

 

 

 

 

 

  

Fig. S10. Optimization history plot for different structural parameters. (A) Wrinkle 

wavelength (λ), (B) material filling ratio (f) and (C) feature depth (t) as a function of 

performance evaluation numbers. The red circle in the plots denotes the optimized solution. 
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SDFs of local areas on wafer-scale optimized quasi-random nanostructures 

 

 

Fig. S11. SDF analysis of different local areas from the optimized quasi-random a-Si 

structure. (A) SEM images of large-area, quasi-random structure on a-Si film consisting of 

different local structures.  (B-F) Five local patches of from the quasi random pattern in (A). 

(G) The calculated SDFs of the structures in (B-F) are plotted for comparison. Local patches 

with different colored boxes in (A) correspond with those in (B-F). Dotted circles in (A) show 

local defects formed by wrinkle lithography. 



 

21 

Calculation of near-filed distribution by finite-difference time-domain (FDTD) simulations 

 

 

 

 

 

 

Fig. S12. Broadband, light-trapping on quasi-random a-Si structure simulated by FDTD. 
(A) Absorption spectrum of the optimized structure in Fig. 4B calculated by RCWA (left) and 

FDTD (right). Calculated near-field intensity profile (top and side views) obtained at a light 

wavelength (B) λ = 800 nm, (C) λ = 890 nm, (D) λ = 1040 nm and (E) λ = 1190 nm. The 

normalization on the color scale is made with respect to the highest value of wavelength λ = 

800 nm for direct comparison. The side field profiles correspond with the dot lines in the top 

images. 
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Additional surface roughness on the quasi-random a-Si patterns 

 

 

 

 

 

  

Fig. S13. Additional surface roughness on the quasi-random a-Si pattern. (A) AFM images 

of quasi-random patterns by wrinkle lithography and side profiles. Blue boxes show the 

additional surface roughness on the patterned structures. The additional roughness (RMS) was 

approximately 9 nm (DRIE time of 50s), 10 nm (DRIE time of 70s) and 10 nm (DRIE time of 

90s). (B) SEM image showing the additional surface roughness on the bottom and the step 

edges of the patterns. 
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