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SI Appendix 1: Experimental Localization of a Hopf Bifurcation

Hartigans’ dip statistic was employed to experimentally identify the stiffness value at which a supercritical

Hopf bifurcation occurred in an actual hair bundle (1-3). The position distribution for a quiescent bundle

is unimodal, whereas a spontaneously oscillating bundle yields a multimodal distribution. Larger values

of the dip statistic arise from multimodal distributions; unimodal distributions possess smaller values. The

transition from unimodal to multimodal, which occurs when the dip statistic reaches a statistically significant

value, signals a bifurcation. Setting the p-value threshold at 0.01 yielded statistically significant dip values,

and thus indicated spontaneous oscillations, for stiffnesses less than 710 µN·m -1 (Figure S1).
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Figure S1. Experimental localization of a supercritical Hopf bifurcation in an actual hair bundle. (A) To the left of the

dashed line at 710 µN·m -1 the hair bundle oscillates spontaneously. (B) The dependence of a hair bundle’s root-mean-square

magnitude of oscillation on load stiffness. In qualitative agreement with the behavior expected in the vicinity of a supercritical

Hopf bifurcation, the bundle’s movement rises as its operating point is poised deeper within the oscillatory region. Each data

point represents the average over a 10 s interval. Error bars were acquired using 1000 bootstrap repetitions.

SI Appendix 2: Hopf Bifurcation Curves without Homeostasis

A two-dimensional dynamical system exhibits a Hopf bifurcation when Tr[J(~a∗)] = 0 and det[J(~a∗)] > 0,

in which J(~a∗) is the system’s Jacobian matrix evaluated at the fixed point ~a∗. Steady-state values of

variables are indicated by a superscript or subscript asterisk ∗ (4). Letting Tn = Tr[J(~a∗)
n], these conditions
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can also be expressed as T1 = 0 and T2 < 0. For Model I without homeostasis, a curve of Hopf bifurcations

is given by (5)

Fc,H±(k) = ±

[
(k − a(1− b))

(
a− α− k
3(1− b)2

)1/2
+ (1− b)3

(
a− α− k
3(1− b)2

)3/2]
, (1)

when

k >
α

b
(1− b). (2)

Adjusting the adaptation rate α changes the size of the oscillatory region (Figure S2A).

Fc,H±(k) crosses the Fc = 0 axis at k = (1− b)(2a+ α)/(2 + b) and at k = a− α. The area enclosed by

Fc,H±(k) between these intersection points is

Areai(α, b) = 2

∫ a−α

(1−b)(2a+α)/(2+b)

Fc,H+(k) dk

=
8(ab− α)5/2

5|1− b|(2 + b)3/2
. (3)

From the above expression we see that the Hopf bifurcation curve forms a closed loop when α < ab; when

α = ab the endpoints of the integration interval coincide, and when α > ab the real parts of Fc,H±(k) intersect

the Fc = 0 axis only at k = (1 − b)(2a + α)/(2 + b). Equation (3) quantifies how changing the adaptation

rate α or strength b affects the size of the oscillatory region (Figure S2B). As long as the underdamped

region does not become too small (Supplemental Material S5), the area enclosed by a contour of constant

peak sensitivity increases monotonically as the oscillatory region grows (Figure S2C).

For Model II without homeostasis, and letting

kH(P ∗o ) =
1

δλy
(P ∗o (1− P ∗o )(Dkgs(λx + λy)− fSλx)− δkesλx − δkgs(λx + λy)) , (4)

a Hopf bifurcation occurs when

Fc,H(P ∗o ) =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − kH(P ∗o )

(
1 +

kgs

kes

))
+kH(P ∗o )

(
kgs

kes
DP ∗o − xes +

f

kes
(1− SP ∗o )

)
−kgsDP

∗
o , (5)

so long as

λx[(1−P ∗o )P ∗o (fS−Dkgs)+δ(kes +kgs)]
2−λykgs(D(1−P ∗o )P ∗o −δ)[(1−P ∗o )P ∗o (fS−Dkgs)+δkgs] < 0. (6)

In the above equations, P ∗o is the steady-state channel open probability. Given a point (k, Fc) in the

state diagram and values for all the other parameters, P ∗o can be found by solving the following equation
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numerically:

Fc =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − k

(
1 +

kgs

kes

))
+ k

(
kgs

kes
DP ∗o − xes +

f

kes
(1− SP ∗o )

)
− kgsDP

∗
o . (7)

Alternatively, P ∗o at the Hopf bifurcation can be found from equation (4):

P ∗o,H±(k) =
1

2

[
1±

√
(Dkgs − 4δ)(λx + λy)− fSλx − 4δ(kesλx + λyk)

Dkgs(λx + λy)− fSλx

]
. (8)

Using P ∗o,H±(k), it is possible to express the Hopf bifurcation curve in terms of the two functions

Fc,H1(k) =
1

δ
ln

[
AP ∗

o,H+(k)

1 − P ∗
o,H+(k)

](
kgs − k

(
1 +

kgs

kes

))
+ k

(
kgs

kes
DP ∗

o,H+(k) − xes +
f

kes
(1 − SP ∗

o,H+(k))

)
− kgsDP

∗
o,H+(k), (9)

Fc,H2(k) =
1

δ
ln

[
AP ∗

o,H−(k)

1 − P ∗
o,H−(k)

](
kgs − k

(
1 +

kgs

kes

))
+ k

(
kgs

kes
DP ∗

o,H−(k) − xes +
f

kes
(1 − SP ∗

o,H−(k))

)
− kgsDP

∗
o,H−(k). (10)

Adjusting the adaptation-motor strength f changes the location and size of the self-oscillation region (Figure

2SD).

There are lines of saddle-node bifurcations that are not shown in Figures 1-3 of the main text or in

Figures S2-S4, but are discussed in SI8. These bifurcations give rise to multiple fixed points so that a

bistable region, for which there are two stable fixed points, exists in the bundle’s state diagram near where

the Hopf bifurcation curve crosses itself (Figures S6-S8). This crossing does not signify a higher-order

bifurcation, but rather indicates Hopf bifurcations in two separate fixed points that happen to occur at the

same operating points. As discussed above, the location of the Hopf bifurcation curve’s crossing depends on

parameter values. Higher-order bifurcations are present near this crossing point and are discussed elsewhere

(5).

The functions Fc,H1(k) and Fc,H2(k) intersect at two values of k. One value, which bounds the region of

spontaneous oscillations on the right, is

kR =
kgs(λx + λy)(D − 4δ)− λx(fS + 4kesδ)

4δλy
. (11)

The second value, kL, which bounds the region of spontaneous oscillations on the left, can be found nu-

merically. The area enclosed by the Hopf bifurcation loop can then be calculated numerically from the

integral

Areaii(f, S) =

∫ kR

kL

[Fc,H1(k, f, S)− Fc,H2(k, f, S)] dk. (12)

Note that Fc,H1(k, f, S) ≥ Fc,H2(k, f, S) on the interval k ∈ [kL, kR]. Changing the adaptation-motor strength

f or efficacy of Ca2+ inhibition S affects the size and location of the oscillatory region (Figure S2E). As
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the size of the oscillatory region grows, the area enclosed by a curve of constant peak sensitivity increases

(Figure S2F ), as long as the underdamped region does not become too small (Supplemental Material S5).

In both models, the area contained within a contour of constant peak sensitivity, quality factor, or

compressive range is calculated numerically.
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Figure S2. Hopf bifurcation curves without homeostasis. (A) Hopf bifurcation curves in the state diagram of Model I for

various values of the adaptation rate α. (B) Area enclosed by the Hopf bifurcation loop as a function of adaptation strength

b and adaptation rate α. Darker shades of red indicate larger areas and each contour is labeled with its area. The blue line

marks where α = ab. In the white region of the plot, for which α > ab, the Hopf bifurcation curve does not encircle a bounded

region of state space. (C) Area contained within peak-sensitivity contours relative to that contained in contours when α = 1,

as a function of the peak sensitivity and of the normalized area of the oscillatory region, Areai(α, b)/Areai(1, b). α ranges from

1.0, at a normalized area of 1, to 0.5 at the maximum normalized area shown. Darker shades of blue indicate larger areal

ratios. (D) Hopf bifurcation curves in Model II for various values of the adaptation-force strength f . (E) Area enclosed by the

Hopf bifurcation loop as a function of motor strength f and of the strength of Ca2+-mediated inhibition S. Darker shades of

red indicate larger areas and each contour is labeled with its area in units of 10-15 N2·m -1. The Hopf bifurcation curve does

not enclose a bounded region for values located in the white region of the plot. As f increases from 80 pN, the area of the

oscillatory region initially increases to a maximum and then decreases for large enough values of f . (F ) Area contained within

peak-sensitivity contours relative to that contained in the contours when f = 250 pN, as a function of the peak sensitivity and

of the normalized area of the oscillatory region, Areaii(f, S)/Areaii(250pN, S). f ranges from 250 pN at a normalized area of 1

to 180 pN at the maximum normalized area shown. The calculations in panels C and F exclude the area of the self-oscillation

region. All parameter values are listed in Tables S1 and S2.

4



SI Appendix 3: Hopf Bifurcation Curves with Homeostasis

Hopf bifurcations occur in a three-dimensional dynamical system when

T3 = T 3
1 and T2 < T 2

1 . (13)

In Model I, when the steady-state adaptation rate α∗ exceeds zero, the system’s fixed points are given by

α∗ > 0⇒



f∗ = b x∗

α∗ = α0 − βαx2
∗

Fc = kx∗ − a(1− b)x∗ + (1− b)3x3
∗.

At these fixed points, a Hopf bifurcation occurs when

Fc,H±(k) = ±

[
(k − a(1− b))

(
a− α0 − k

3(1− b)2 − βα

)1/2
+ (1− b)3

(
a− α0 − k

3(1− b)2 − βα

)3/2]
(14)

and when

k >
3α0(1− b)3 − aβα(1− b)

3b(1− b)2 − βα
. (15)

Note that setting βα = 0 reproduces Eqs. (1) and (2). Adjusting the homeostasis strength βα shifts the

position and size of the Hopf bifurcation curve; βα = 0 corresponds to inactive homeostasis (Figure S3A).

The values of the parameters a, b, α0, τα, and βα need to be determined, a choice guided by the effect

that each parameter has on the self-oscillation region. The Hopf bifurcation curve, Fc,H(k), crosses Fc = 0

at

[k0] =

{
(1− b)3(2a+ α0)− a(1− b)βα

2− 3b+ b3 − βα
, a− α0

}
.

The area of the region of spontaneous oscillation is then

Area I(b, βα) = 2

∫ [k0]2

[k0]1

Fc,H+(k) dk

=
8

15
|3(1− b)2 − βα|

(ab− α0)5/2

(2− 3b+ b3 − βα)3/2
. (16)

The above expression is valid only if b > α0/a and βα < α0(2+b)(1−b)2/(ab). If b = α0/a, then [k0]1 = [k0]2

and a Hopf bifurcation loop does not exist at smaller values of b. At βα = α0(2 + b)(1 − b)2/(ab), [k0]1

collides with two Bogdanov-Takens points, and the Hopf bifurcation does not form a closed loop when

βα > α0(2+ b)(1− b)2/(ab). Dividing Area I(b, βα) by Area I(b, 0), the area of the oscillatory region when the

homeostatic mechanism is inactive, yields the dilation factor, or relative increase in area effected by setting
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the homeostasis parameter to βα:

Area I(b, βα)

Area I(b, 0)
=
|3(1− b)2 − βα|(2− 3b+ b3)3/2

3(1− b)2(2− 3b+ b3 − βα)3/2
. (17)

The dilation factor depends on only the parameters b and βα and is independent of a, α0, and τα. Therefore,

a was set to 3.5 (5), α0 was set to 1 for simplicity, and τα was set to 1000 to ensure separation between the

timescale governing the homeostatic mechanism and the other timescales present in the system: homeostasis

was assumed to be a relatively slow process.

The dilation factor depends on the parameters b and βα, the adaptation strength and homeostasis strength

respectively (Figure S3B). The value of b was set to 0.35 and that of βα to 3/4. This choice of values for b

and βα yields a dilation factor greater than three. Although greater dilation factors are possible, the values

selected render the increase in area robust to variations in b or βα. We note, however, that the specified

parameter values do not optimize the dilation factor or its robustness to changes in parameter values. In

this work we avoid optimization to illustrate that a biological system might not need to exert tight control

over parameter values to achieve its performance specifications. A summary of the parameter values used in

Model I is given in Table S1.

Table S1: Parameter Values in Model I

a 3.5 b 0.35 τα 103

α0 1 ∗ βα 0.75

∗ βα = 0 when homeostasis is off

Larger dilation factors effect greater areal ratios for the peak sensitivity (Figure S3C).

For Model II, fixed points are found from

f∗ = f0 − βfP ∗o

kesy∗ = kgs

(
1

δ
ln

[
AP ∗o

1− P ∗o

]
−DP ∗o

)
+ kesxes − (f0 − βfP ∗o )(1− SP ∗o )

kx∗ = Fc − kgs

(
1

δ
ln

[
AP ∗o

1− P ∗o

]
−DP ∗o

)
,

x∗ = y∗ +
1

δ
ln

[
AP ∗o

1− P ∗o

]
,

⇒ Fc =
1

δ
ln

[
AP ∗o

1− P ∗o

](
kgs − k

(
1 +

kgs

kes

))
+k

(
kgs

kes
DP ∗o − xes +

1

kes
(f0 − βfP ∗o )(1− SP ∗o )

)
−kgsDP

∗
o . (18)

Given a point (k, Fc) in state space and values for all the other parameters, Eq. (18) can be solved numerically

for P ∗o , and f∗ = f0 − βfP ∗o then follows.
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A Hopf bifurcation occurs for Model II when

Fc,H(P ∗
o ) =

1

δ
ln

[
AP ∗

o

1 − P ∗
o

](
kgs − kH(P ∗

o )

(
1 +

kgs

kes

))
+ kH(P ∗

o )

(
kgs

kes
DP ∗

o − xes +
1

kes
(f0 − βfP

∗
o )(1 − SP ∗

o )

)
− kgsDP

∗
o , (19)

in which

kH(P ∗
o ) = −

1

2

(
c1 −

√
c21 − 4c2

)
, (20)

c1 =
{
τ2f P̂

2(Dkgs − f0S + βfP
∗
o S)[Sλx(βfP

∗
o − f0) +DkgsλT ] + δ2[kgsλyτf (2λy + 2kesτf + kgsτf ) + λx(λy + τfkes + τfkgs)

2]

+τf P̂ δ
(
S(f0 − βfP0)[kgsλyτf + 2λx(λy + τfkes + τfkgs)] − 2DkgsλT [λy + τf (kes + kgs)]

)}/
(
δλyτf [τf P̂ (f0S + βfP

∗
o S −Dkgs) + δλy + τf δ(kes + kgs)]

)
,

c2 =
{
λ2xτfβ

2
f P̂

2P ∗
o S(2P ∗

o S−1)+βfλxP̂
(
λxλyδ(1−2P ∗

o S)−τf (3P ∗
o S−1)[P̂ (f0Sλx−DkgsλT )+kesλxδ+kgsλT δ]−τ2f keskgsP

∗
o S[δ+DP̂ ]

)
+
(
P̂ [f0Sλx −DkgsλT ] + kgsλT δ + kesλxδ

)(
τf P̂ [f0Sλx −Dkgs(λT + kesτf )] + δ[kgsτf (λT + τfkes) + λx(λy + τfkes)]

)}/
(
δλyτf [τf P̂ (f0S + βfP

∗
o S −Dkgs) + δλy + τf δ(kes + kgs)]

)
,

P̂ = P ∗
o (1 − P ∗

o ), and λT = λx + λy ,

as long as

kH(P ∗
o ) >

P ∗
o (1 − P ∗

o )[Dkgs(λx + λy + kesτf ) − f0Sλx + βf (1 − 2P ∗
o S)λx] − kgsδ(λx + λy) − kesδ(λx + kgsτf )

τfP ∗
o (1 − P ∗

o )(f0S −Dkgs − βfP ∗
o S) + λyδ + τf δ(kes + kgs)

. (21)

Setting βf = 0 reproduces the parametric curve
(
kH(P ∗o ), Fc,H(P ∗o )

)
found in the absence of homeostasis.

Changing the homeostasis strength βf shifts the position and size of the Hopf bifurcation curve (Figure

S3D).

Values for the parameters kgs, kes, δ, D, N , A, T , ∆G, and xes were taken from (5) or (6) and are based

on biophysical measurements or estimates of hair bundle parameters in sacculi of American bullfrogs. The

value for S was chosen to ensure the existence of a region of spontaneous oscillation for a broad range of

myosin-motor strengths f (Figure S2E). Values for λx and λy were chosen to ensure that the maximum

frequency of spontaneous oscillations was less than 200 Hz. Choices for the remaining parameters, f0 and

βf , are described below.

When βf 6= 0 it is not possible to express the parametric curve
(
kH(P ∗o ), Fc,H(Po∗)

)
in terms of a set

of elementary functions. Therefore, the parametric equations, kH(P ∗o ) and Fc,H(Po∗), and Stokes’s theorem

were used to calculate the area enclosed by the Hopf bifurcation loop for various values of f0 and βf . Let ~U

be a vector field with ~∇× ~U a unit vector field perpendicular to the surface Σ. Stoke’s theorem then states

that ∮
∂Σ

~U · d~r =

∫∫
Σ

~∇× ~U · d~Σ = Σ,
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in which ∂Σ is the boundary curve of Σ with the normal vector field d~Σ and ~r is a parameterization of ∂Σ.

The Hopf bifurcation curve is given by:

~r =
(
kH(P ∗o , f0, βf ), Fc,H(P ∗o , f0, βf ), 0

)
,

in which P ∗o is a variable and f0 and βf are parameters. The differential tangent-vector field along the curve

~r is then

d~r =
∂

∂P ∗o

(
kH(P ∗o , f0, βf ), Fc,H(P ∗o , f0, βf ), 0

)
dP ∗o ,

meaning the area of a surface Σ can be found by line integration around the boundary of Σ. We can use

various vector fields, ~U , in our line integral. Two simple examples are

~U =
(

0, kH(P ∗o , f0, βf ), 0
)

or ~U =
(
− Fc,H(P ∗o , f0, βf ), 0, 0

)
.

The area enclosed by the Hopf bifurcation loop is then given by

Area II(f0, βf ) =

∫ [P∗
o ]2

[P∗
o ]1

kH(P ∗o , f0, βf )
∂

∂P ∗o
Fc,H(P ∗o , f0, βf ) dP ∗o (22)

or Area II(f0, βf ) = −
∫ [P∗

o ]2

[P∗
o ]1

Fc,H(P ∗o , f0, βf )
∂

∂P ∗o
kH(P ∗o , f0, βf ) dP ∗o , (23)

in which [P ∗o ]1 and [P ∗o ]2 are the values of the parameter P ∗o where the Hopf bifurcation curve crosses itself.

These values are found numerically. Three fixed points exist at this intersection, two of which, corresponding

to [P ∗o ]1 and [P ∗o ]2, are stable. As P ∗o is increased from [P ∗o ]1, the bundle crosses a saddle-node bifurcation,

beyond which the fixed point associated with [P ∗o ]1 persists whereas the fixed point associated with [P ∗o ]2

vanishes. As P ∗o is increased further toward [P ∗o ]2, the remaining stable fixed point shifts continuously toward

the fixed point originally associated with [P ∗o ]2. When P ∗o nears [P ∗o ]2, the bundle again crosses a saddle-node

bifurcation, at which point the fixed point originally associated with [P ∗o ]1 materializes. Integrating along

the Hopf bifurcation curve from [P ∗o ]1 to [P ∗o ]2 tracks the bundle’s position as it transitions smoothly from

the [P ∗o ]1 fixed point to the [P ∗o ]2 fixed point.

The dilation factor of the self-oscillation region,

Area II(f0, βf )

Area II(f0, 0)
, (24)

depends on the homeostasis strength βf and on the adaptation-motor strength f0 in the absence of home-

ostasis (Figure S3E). The value of f0 was chosen to be 220 pN and βf was set to 110 pN. This choice of

8



parameter values results in a more than tenfold dilation factor while striking a balance with the robustness

of this dilation factor to changes in f0 or βf . Once again, the parameter values were not optimized; other

choices would yield a larger dilation factor as well as render this increase more robust to changes in f0 and

βf . Unless otherwise stated, Table S2 gives the parameter values used in Model II. Increases in the dilation

factor yield larger peak-sensitivity areal ratios (Figure S3F ). We conclude that increasing the size of the os-

cillatory region enhances the robustness of the bundle’s ability to detect signals, as long as the underdamped

region is not made too small (Supplemental Material S5).
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Figure S3. Hopf bifurcation curves with homeostasis. (A) Hopf bifurcation curves in the state diagram of Model I for various

values of homeostatic strength βα. (B) Dilation factor, Eq. (17), as a function of the strength of adaptation b and homeostasis

strength βα. Darker shades of red indicate larger dilation factors. The × symbol marks the chosen values of b = 0.35 and

βα = 0.75. The blue curves bound the set of values at which a closed Hopf bifurcation loop exists. (C) Peak-sensitivity areal

ratios as a function of the peak sensitivity and of the oscillatory region’s dilation factor. Darker shades of blue indicate larger

areal ratios. βα ranges from 0 at a dilation factor of 1 to 0.75 at the maximum dilation factor shown. (D) Hopf bifurcation

curves in the state diagram of Model II for various values of βf . (E) Dilation factor, Eq. (24), as a function of the baseline

motor strength f0 and homeostasis strength βf . Darker shades of red indicate larger dilation factors. The region encircled by a

Hopf bifurcation curve is bounded at all values shown. The chosen values for f0 = 220 pN and βf = 110 pN are marked by the

× symbol. (F ) Peak-sensitivity areal ratios as a function of the peak sensitivity and of the oscillatory region’s dilation factor.

Darker shades of blue indicate larger areal ratios. βf ranges from 0 at a dilation factor of 1 to 110 pN at the maximum dilation

factor shown. The areal ratio calculations in panels C and F exclude the area of the self-oscillation region. Parameter values

are listed in Tables S1 and S2.
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Table S2: Parameter Values in Model II

kgs 816 µN·m -1 kes 150 µN·m -1

λx 500 nN·s·m -1 λy 2500 nN·s·m -1

∗ δ 5.16 nm D 49 nm
† A 2.53 S 0.5

N 50 T 295 K

∆G 10 kBT kB 1.4× 10 -23 J·K-1

xes 0 m τf 0.2 s
‡ βf 110 pN f0 220 pN

∗ δ = NkBT/(Dkgs)

† A = exp[(∆G+ kgsD
2)/(2NkBT )]

‡ βf = 0 when homeostasis is off

SI Appendix 4: Linear Sensitivity and Quality Factor

In Model I, the peak sensitivity of the linearized system is∣∣χ0(ωR)
∣∣ =

∣∣∣∣ α∗ + iωR

α∗â b+ (α∗ + iωR)(k − â+ iωR)

∣∣∣∣, or

∣∣χ0(ωR)
∣∣ =

√
α2
∗ + ω2

R

ω4
R + ω2

R[k2 + α2
∗ − 2â(k + α∗b) + â2] + α2

∗[k − â(1 − b)]2
, (25)

in which α∗ = α0 − βαx2
∗, â = a− 3(1− b)2x2

∗, and the resonant frequency ωR is

ωR =

√
−α2

∗ +
√
â b[â(b− 2) + 2(k + α∗)]α2

∗ . (26)

The quality factor Q is given by ωR/(ω+ − ω−), in which ω± is found by solving
∣∣χ0(ω±)

∣∣ =
∣∣χ0(ωR)

∣∣/√2

for ω±

ω± =√
2 − (â− k)2 + 2α∗âb− α2

∗ ±
√

[2 − (â− k)2]2 + 4α∗âb[2 − (â− k)2] + 2[2 + (â− k)(â(4b− 1) + k)]α2
∗ − 4âbα3

∗ + α4
∗

2
. (27)

The peak sensitivity of the linearized system for Model II is given by

∣∣χ0(ωR)
∣∣ =

∣∣∣∣∣ β̂f + (kesδ + k̂gsδ + f∗Ŝ + iωRδλy)(1 + iωRτf )

(k + k̂gs + iωRλx)[β̂f + (kesδ + k̂gsδ + f∗Ŝ + iωRδλy)(1 + iωRτf )] − k̂gs[β̂f + (k̂gsδ + f∗Ŝ)(1 + iωRτf )]

∣∣∣∣∣ , (28)

in which f∗ = f0−βfP ∗o , k̂gs = kgs[1−DP ∗o (1−P ∗o )/δ], β̂f = βf (1−P ∗o )(1−P ∗o S)P ∗o , and Ŝ = SP ∗o (1−P ∗o ).

Analytical expressions exist for ωR, ω±, and Q, but are omitted here to conserve space.

SI Appendix 5: Underdamped Region

All calculations were performed within the underdamped region of the state diagram, the set of operating

points at which the bundle exhibits ringing in response to small force steps. Outside the underdamped region

the bundle exhibits little amplification of periodic stimuli. The boundary of the underdamped region occurs

when the discriminant of the Jacobian’s characteristic polynomial is equal to zero, whereupon the system is

critically damped.
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The boundary of the underdamped region in Model I is given by

kU±(x∗) = a+ α0 − x2
∗[3(1− b)2 + βα]± 2

√
b[a− 3(1− b)2x2

∗][α0 − x2
∗βα], (29)

Fc,U±(x∗) = [kU±(x∗)− a(1− b)]x∗ + (1− b)3x3
∗. (30)

Figure S6 depicts the underdamped region for the homeostasis off (βα = 0) and on (βα = 3/4) conditions.

For Model II, when homeostasis is inactive, the boundary of the underdamped region is given by

kU±(P ∗
o ) = (31)

kgs[D(1 − P ∗
o )P ∗

o − δ](λy − λx) + λx[f0(1 − P ∗
o )P ∗

o S + kesδ] ± 2
√
kgs[D(1 − P ∗

o )P ∗
o − δ][(1 − P ∗

o )P ∗
o (f0S −Dkgs) + kgsδ]λyλx

λyδ
,

Fc,U± =
1

δ
ln

[
AP ∗

o

1 − P ∗
o

](
kgs − kU±(P ∗

o )

(
1 +

kgs

kes

))
+ kU±(P ∗

o )

(
kgs

kes
DP ∗

o − xes +
f

kes
(1 − SP ∗

o )

)
− kgsDP

∗
o . (32)

When homeostasis is active, the expression for kU±(P ∗o ) is very large, and is therefore omitted to conserve

space. Curves bounding the underdamped region are shown in Figure S7.

SI Appendix 6: Trade-off between Quality Factor and Decay Time

As the sharpness of a system’s frequency selectivity Q increases, so does the time needed for that system

to reach a steady state. For small perturbations, the timescales of a system’s response are given by the

real parts of the negative reciprocals of the Jacobian matrix’s eigenvalues. In Model I, the eigenvalues are

ξα = −1/τα and

ξ± =
1

2

[
a−k−α0+x2∗(βα−3(1−b)2)±

√(
k − a+ α0 + x2∗[3(1 − b)2 − βα]

)2 − 4[k − a(1 − b) + 3(1 − b)3x2∗](α0 − x2∗βα)
]
. (33)

The relevant timescales are therefore τα and

τ = 2
[
k − a+ α0 + x2

∗(3(1− b)2 − βα)
]-1
. (34)

τα is relevant only when βα 6= 0 because stimulating the bundle does not engage the homeostatic mechanism

when βα = 0.

By a similar calculation, τ for Model II when homeostasis is off is given by

τ =
2δλxλy

f0(1− P ∗o )P ∗o Sλx + (kes + kgs)δλx + (k + kgs)δλy −Dkgs(1− P ∗o )P ∗o (λx + λy)
. (35)

As for Model I, τf is irrelevant when homeostasis is inactive.

At operating points far from the Hopf bifurcation, the timescales τα and τf substantially exceed τ and

determine the relaxation time when the bundle’s displacement x is greatly perturbed (Figure 7). Small

perturbations, however, do not engender great changes in the homeostatic variables α or f .
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In both models, τ specifies the approximate time required for the amplitude of the bundle’s response to

a small perturbation to decay by a factor of 1/e. Homeostasis increases the set of operating points at which

τ exceeds a threshold (Figure S4). Therefore, the cost of enhancing the robustness of the bundle’s frequency

selectivity is a slowed reaction to stimuli. This cost is proportionally smaller in Model II than in Model I.
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Figure S4. Homeostasis increases the time needed to reach a steady state. (A,B) The time τ , as a function of constant force

Fc and stiffness k, for the bundle’s response to a small perturbation to decay to 1/e times the initial amplitude of the response

in Model I when homeostasis is off (A) or on (B). Darker shades of red indicate larger τ values. Contours are labeled by their

respective τ values. The Hopf bifurcation curve is colored cyan and the blue curve marks the boundary of the underdamped

region. Enhanced robustness of signal detection is achieved through homeostasis by sacrificing how quickly the system can

respond to stimuli, as evidenced by the expanded areas enclosed by the τ contours. (C,D) Ratios of τ (red) and quality factor

Q (blue) values along horizontal (C) or vertical (D) slices through the reference operating points indicated in panels A and B

(apices of the white triangles). The selected slices are the same as in Figure 3. The τ ratio is similar to the Q ratio, illustrating

that the enhanced frequency selectivity attained through homeostasis coincides with a slower approach to steady state. (E−H)

Same description as panels A−D but for Model II. The τ ratio is less than the Q ratio for Model II, whereas for Model I the τ

ratio can exceed the Q ratio, demonstrating that enhanced frequency selectivity can be attained for Model II at a proportionally

lower cost in reaction time than for Model I. The contour labels in panels E and F bear units of ms. All parameter values

are listed in Tables S1 and S2. Additional bifurcation lines that occur in these regions of the state diagram are not shown

(Supplemental Material S8 and S9).
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SI Appendix 7: Compressive Range

Calculating the compressive range necessitated simulating each model’s response to sinusoidal stimulation

spanning a large range of amplitudes at many control parameter values. The driving term F0 cos[ωR(k, Fc) t],

in which F0 is the driving amplitude and the driving frequency is the bundle’s resonance frequency ωR(k, Fc)

at the control parameter values (k, Fc), was added to Eq. 1 or 4 of the main text. Mathematica’s NDSolve

function was then used to numerically solve Eqs. 1 - 3 or 4 - 7 of the main text. A maximum step size of

10 -3 in Model I and 0.25 µs in Model II was used to ensure faithful reproduction of the nonlinear response;

smaller step sizes yielded the same results. Each simulation was allowed to reach steady state, then a long

time segment of the simulation was analyzed: in Model I the length of the analyzed segment was 8.5 million

steps and in Model II it was 4 million steps or 1 s. These segments contained at least 50 stimulation cycles,

and generally many more.

The Fast Fourier transform was applied to the resulting time series, and the peak of the transform’s

absolute value at the driving frequency was found. The height of this peak divided by the magnitude of

the driving force yielded the bundle’s sensitivity at that operating point and stimulus amplitude. This

procedure was repeated for a set of stimulus amplitudes spanning the ranges depicted in Figure S5. The

stimulus amplitudes were logarithmically spaced: each was smaller than the next by a factor of
√

10, except

in the regime where the bundle’s response transitions from linear to nonlinear, for which the spacing factor

was 101/64.

A curve of sensitivity versus stimulus amplitude, termed a compression curve, was interpolated through

splines in doubly logarithmic space from the sensitivity values calculated at each operating point. The

bundle’s compressive range at this operating point was finally extracted from the bundle’s compression

curve, as described below. Spline interpolation over the compressive-range values calculated on a grid of

points in a state diagram yielded the plots shown in Figure 5.

Compressive range is defined to be the range of driving-force amplitudes over which the slope of the

sensitivity compression curve lies between -1 and -1/2 (Figure S5). Model I’s homeostatic mechanism employs

a non-saturating nonlinearity whereas the nonlinearity in Model II’s homeostatic mechanism is saturating.

This difference has two important consequences for the compressive range of Model I. First, the compressive

range does not possess an intrinsic upper bound. A value of 1 was chosen so that the compressive range in

Model I was comparable to that of Model II. Second, when homeostasis is active in Model I, the system is
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unstable for very large forcing amplitudes. When x is large, α becomes negative. If α < 0 and y > bx, y

grows exponentially quickly, which in turn causes x to grow rapidly. Choosing the maximum driving force

amplitude to be 1 ensures that the unphysical situation of α < 0 is avoided.
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Figure S5. Compression curves. (A,C,E,G) Sensitivity as a function of the amplitude of driving in Model I when homeostasis

is either off (A) or on (C), and in Model II in the absence (E) or presence (G) of the homeostatic mechanism. From red to blue,

the compression curves were generated at operating points located progressively farther away from the oscillatory region. The

bundle’s response is linearly related to the stimulus amplitude when the compression curves are flat, whereas a negative slope

indicates nonlinear compression. Compression curves are thicker when their slopes lie in the interval (-1,-1/2], or χ(F ) ∼ F ε,

in which -1 < ε ≤ -1/2. The slope of each compression curve in panels A, C, E, and G is shown in panels B, D, F , and H,

respectively. The dashed black lines in panels B, D, F , and H marks a slope of -1/2 and a slope of -2/3 is indicated by the

dashed gray lines. (A-D) Curves obtained at Fc = 0. (E-H) The curves in panels E-F were generated at operating points that

fell on the line in which P ∗
o = 0.35 and P ∗

o = 0.5 in panels G-H. Curves of the same color correspond to operating points whose

Jacobian matrices possess complex eigenvalues with the same real parts. The upper bound on the stimulus amplitude was 1

for all compressive range calculations in Model I.

SI Appendix 8: Excluded Regions

Regions of the state diagram in which multiple stable manifolds coexist were excluded from the compressive-

range calculations. Sinusoidal forcing in these regions causes the bundle to jump back and forth between

stable manifolds so that the amplitude of the bundle’s motion is not well-defined.

The bundle is bistable in a region where two stable fixed points coexist, termed the bistable region. This

region is bordered by a curve of saddle node bifurcations, which occur when det[J(~a∗)] = 0. Equations for

these bifurcation curves are given below. The two stable fixed points correspond to two equilibrium positions,

one in which the bundle is deflected by a lesser amount and a second where the bundle’s deflection is larger.

The bistable region is divided into lower and upper parts by the line Fc = 0 in Model I and by P ∗o = 1/2
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in Model II. The sensitivity and quality factor for the lower half of the bistable region were calculated at

the equilibrium position corresponding to lesser deflection, whereas the equilibrium position corresponding

to greater bundle deflection was employed in the upper half of the bistable region.

A stable fixed point coexists with a stable limit cycle within a region, termed the coexistence region,

wedged between a saddle node of limit cycles (SNLC) bifurcation curve and a subcritical Hopf bifurcation

curve. These two curves collide with each other and a supercritical Hopf bifurcation curve at a Bautin

point. A coexistence region is present in Model II whether homeostasis is on or off. In Model I, however,

a coexistence region exists when βα = 0 but is absent when βα = 3/4 (Figures S6 and S7). Bautin points

for both models were found as in (7) and SNLC-bifurcation curves were calculated numerically. Finally,

when homeostasis is active in Model I, a region exists in which the bundle exhibits multimodal oscillations

in response to periodic forcing. The sensitivity and quality factor for the linearized system were calculated

in the coexistence and multimodal-oscillation regions at the stable fixed point in each case.

The condition det[J(~a∗)] = 0 identifies both saddle node and transcitical bifurcations. In Model I, curves

along which these bifurcations occur are given by

Fc,SN(k) = ±

[
(k − a(1− b))

(
a(1− b)− k

3(1− b)3

)1/2
+ (1− b)3

(
a(1− b)− k

3(1− b)3

)3/2]
, (36)

Fc,TC(k) = ±
√
α0

βα

[
k − a(1− b) + (1− b)3α

2
0

β2
α

]
, when βα 6= 0. (37)

At Fc,SN(k) the number of x∗ solutions abruptly changes from 1 to 3, whereas at Fc,TC(k) two equilibrium

points pass through each other and exchange stability. When βα < 3(1− b)2α0/a the Hopf bifurcation curve

terminates when it intersects Fc,SN(k) at the Bogdanov-Takens points

(
kBT, Fc,BT

)
=

{
3α0(1− b)3 − aβα(1− b)

3b(1− b)2 − βα
,±2(1− b)3

(
ab− α0

3b(1− b)2 − βα

)3/2
}
. (38)

When βα > 3(1− b)2α0/a the Bogdanov-Takens points occur at

(
kBT, Fc,BT

)
=

{
a− 3

α0

βα
(1− b)2,±

[
ab

√
α0

βα
−
(
α0

βα

)3/2

(b3 − 3b+ 1)

]}
, (39)

where the Hopf bifurcation curve intersects with Fc,TC(k). Additional bifurcations are accessible when α is

zero or negative, conditions that are unphysical. These additional bifurcations are discussed at the end of

this document.

The Hopf frequency is

ωH =

√
[3(1− b)2α0 + (k − a)βα][3(1− b)2(bk − α0(1− b)) + βα(k − a(1− b))]

(3(1− b)2 − βα)2
. (40)
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ωH = 0 if k = kBT. When βα < 3α0b(1− b)2/(2α0 − ab), ωH increases monotonically from 0 at k = kBT to√
α0(α0 − ab) at k = a− α0. Otherwise, ωH achieves a maximum value of

ωH,max =
b

2

√
[aβα − 3α0(1− b)2]2

βα[βα − 3(1− b)2]
(41)

at k =
a(2− b)β2

α − 3(1− b)2(ab+ (2− b)α0)βα + 9α0b(1− b)4

2β2
α − 6b(1− b)2βα

,

which is the largest value of k at which a Hopf bifurcation occurs. Detailed state diagrams for Model I are

shown in Figure S6. Determining all global bifurcations is beyond the scope of this work.

In Model II, a saddle node bifurcation curve is described by

kSN(P ∗
o ) =

keskgs[DP ∗
o (1 − P ∗

o ) − δ]

P ∗
o (1 − P ∗

o )[f0S + βf − 2P ∗
o Sβf −Dkgs] + δ(kes + kgs)

, (42)

Fc,SN(P ∗
o ) =

1

δ
ln

[
AP ∗

o

1 − P ∗
o

](
kgs − kSN(P ∗

o )

(
1 +

kgs

kes

))
+ kSN(P ∗

o )

(
kgs

kes
DP ∗

o − xes +
1

kes
(f0 − βfP

∗
o )(1 − SP ∗

o )

)
− kgsDP

∗
o . (43)

Bogdanov-Takens points can be found for Model II numerically either from the T2 = T 2
1 condition or by

equating the components of
(
kH(P ∗o ), Fc,H(P ∗o )

)
with those of

(
kSN(P ∗o ), Fc,SN(P ∗o )

)
.

An analytical expression exists for the Hopf frequency in Model II, but is omitted here to conserve space.

Using the parameter values given in Table S2, ωH reaches a maximum value of 136 Hz when homeostasis is

inactive (βf = 0) and 169 Hz when homeostasis is active. These maximum values occur when P ∗o ≈ 1/2 in

both cases, which corresponds to the point
(
kH(1/2), Fc,H(1/2)

)
in state space. Detailed state diagrams for

Model II are shown in Figure S7.

16



C

BA

D

*
*

1.6 2.0 2.4

0.0

0.2

0.4

-0.2

-0.4

Stiffness

Fo
rc

e

*

0 2 4 6

0

1

2

3

-1

-2

-3

Stiffness

Fo
rc

e **

1.6 2.0 2.4

0.0

0.2

0.4

-0.2

-0.4

Stiffness

Fo
rc

e
*

0 2 4 6

0

1

2

3

-1

-2

-3

Stiffness

Fo
rc

e

Figure S6. Detailed state diagrams for Model I. State diagrams when homeostasis is either inactive (A,B) or active (C,D). In

all panels, the blue dashed curves bound the underdamped region, Hopf bifurcation curves are colored cyan, and saddle-node

bifurcation curves are magenta. (A,C) The entire underdamped region is shown. The brown traces depict the hair bundle’s

response to a force step when the bundle is poised at the operating point marked by brown asterisks. At these operating points

the bundle does not exhibit any ringing in response to a force step. (B,D) Magnified view of the region enclosed by the box

in panel A (B) or in panel C (D). Bogdanov-Takens points are marked by black squares. When homeostasis is inactive, the

bundle’s state diagram possesses a saddle node bifurcation of limit cycles (SNLC bifurcation) curve, shown in gray, and Bautin

points indicated by black circles. When the homeostasis strength parameter is set to βα = 3/4, the model’s state diagram lacks

Bautin points and SNLC bifurcations, but possesses transcritical bifurcations that are colored green in panels C and D. The

red traces, obtained at the operating points marked by red asterisks, depict ringing in the hair bundle’s response to a force

step. Simulating the behavior of a bundle poised at the operating points marked with orange asterisks yields the orange traces,

which confirm that the model exhibits spontaneous oscillations at operating points within the Hopf bifurcation curve. Bautin

points were calculated as in (7). The SNLC-bifurcation curve was found numerically.
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Figure S7. Detailed state diagrams in Model II. State diagrams when homeostasis is either inactive (A,B) or active (C,D). In

all panels, the blue dashed curves bound the underdamped region, Hopf bifurcation curves are colored cyan, and saddle-node

bifurcation curves are magenta. (A,C) The entire underdamped region is shown. The brown traces depict the hair bundle’s

response to a force step when the bundle is poised at the operating point marked by brown asterisks. At these operating points

the bundle does not exhibit any ringing in response to a force step. Red traces, obtained at the operating points marked by

the red asterisks, depict ringing in the hair bundle’s response to a force step. Simulating the behavior of a bundle poised at

the operating points marked with an orange asterisk yields the orange traces, confirming that the model exhibits spontaneous

oscillations at operating points within the Hopf bifurcation curve. (B,D) Magnified view of the region enclosed by the box

in panel A (B) or in panel C (D). Bogdanov-Takens points are marked by black squares, Bautin points by black circles, and

SNLC-bifurcation curves are colored gray.
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SI Appendix 9: Additional Bifurcations in Model I

So far we have assumed that α∗, the inverse of the adaptation timescale in Model I, is greater than zero.

Setting α∗ = 0 inhibits adaptation by rendering it infinitely slow. Although this work does not consider such

a scenario, the foregoing discussion is included to give a more complete description of the local bifurcations

present in Model I.

Letting α∗ = 0, we find the following fixed points:
α∗ = 0

x∗ = ±
√
α0/βα

Fc = ±k
√
α0/βα − a(±

√
α0/βα − f∗) + (±

√
α0/βα − f∗)3.

These fixed points give rise to two transcritical-bifurcation curves and four saddle node-bifurcation curves:

Fc,TC±(k) = ±
√
α0

βα

[
k − a(1− b) +

α0

βα
(1− b)3

]
, (44)

Fc,SN+(k) = ±2
(a

3

)3/2

+

√
α0

βα
, (45)

Fc,SN−(k) = ±2
(a

3

)3/2

−
√
α0

βα
. (46)

The expressions Fc,TC+(k) and Fc,SN+(k) are associated with the equilibrium point in which x∗ =
√
α0/βα,

and Fc,TC−(k) and Fc,SN−(k) with x∗ = −
√
α0/βα. We also find the following Hopf bifurcation curves:

kH+(f∗) = −3
α0

βα
−

1

2τα
+ a− 3f2∗ + 6f∗

√
α0

βα
+

1

2βα

√
2α0

[
3f2∗ (2 + b) + ab+

3bα0

βα

]
− 2f∗

√
α0

βα

[
3α0(1 + 2b) − aβα + 3f2∗βα

]
(47)

Fc,H(f∗) = kH+(f∗)
√
α0/βα − a(

√
α0/βα − f∗) + (

√
α0/βα − f∗)3, (48)

when α∗ = 0, x∗ =
√
α0/βα, and b

√
α0/βα ≤ f∗ ≤

√
a/3 +

√
α0/βα, and

kH−(f∗) = −3
α0

βα
−

1

2τα
+ a− 3f2∗ − 6f∗

√
α0

βα
+

1

2βα

√
2α0

[
3f2∗ (2 + b) − ab+

3bα0

βα

]
+ 2f∗

√
α0

βα

[
3α0(1 + 2b) − aβα + 3f2∗βα

]
(49)

Fc,H(f∗) = −kH−(f∗)
√
α0/βα + a(

√
α0/βα + f∗) − (

√
α0/βα + f∗)3, (50)

when α∗ = 0, x∗ = −
√
α0/βα, and −

√
a/3−

√
α0/βα ≤ f∗ ≤ −b

√
α0/βα.

All of the fixed points in Model I are given by the following three equations:

Fc = kf∗/b− af∗(1/b− 1) + f∗(1/b− 1)3,

Fc = k
√
α0/βα − a(

√
α0/βα − f∗) + (

√
α0/βα − f∗)3,

Fc = −k
√
α0/βα + a

√
α0/βα + f∗)− (

√
α0/βα + f∗)

3.
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Because the manifolds above are represented by cubic equations, each can contribute from one to three

fixed points. Any region of the state diagram therefore contains between three and nine fixed points. The

number of stable fixed points in each part of the state diagram is shown in Figure S8 together with the local

bifurcations present in Model I.
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Figure S8. Local bifurcations and stable fixed points in Model I, when α∗ = 0. (A) Homeostasis is on. (B) A magnified

view of the area enclosed by the gray box in panel A. In both panels Hopf bifurcation curves are colored orange, saddle node

bifurcation curves are red, and transcritical-bifurcation curves are green. The color with which each part of the state diagram

is shaded indicates the number of stable fixed points that reside there.
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