Supporting Information

Pd-Catalyzed Hydroamination of Alkoxyallenes with Azole Heterocycles: Examples and Mechanistic Proposal

Ivan Bernar,[†] Béla Fiser,^{‡,§} Daniel Blanco-Ania,[†] Enrique Gómez-Bengoa^{*,‡} and Floris P. J. T. Rutjes^{*,†}

[†] Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

[‡] Department of Organic Chemistry I, University of the Basque Country (UPV/EHU), P.O. Box 1072, 20080 Donostia-San Sebastián, Spain

§ Institute of Chemistry, Faculty of Materials Science and Engineering, University of Miskolc, H-3515, Egyetemváros-Miskolc, Hungary

Contents

General methods	2
Synthesis of allenyl ethers from propargyl derivatives	3
General procedures for the palladium-catalyzed addition of benzyloxyallene 1a to azole heterocycles .	5
Screenings of reaction conditions for enantioselective hydroamination reactions	11
General procedures for enantioselective palladium-catalyzed hydroamination reactions	12
¹ H and ¹³ C NMR Spectra	15
Chiral HPLC chromatograms	78
CD and HT chromatograms	85
Crystal structure of (S)-3q	92

General methods

¹H and ¹³C NMR spectra were recorded on a Varian Inova 400 MHz or Bruker 500 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS), or residual solvents as the internal standard. NMR data is presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet and/or multiple resonances), coupling constant in hertz (Hz), integration. All NMR signals were assigned on the basis of ¹H NMR, ¹³C NMR, COSY, HSQC, HMBS and NOESY experiments. Mass spectra were recorded on an JEOL AccuTOF CS JMST100CS (ESI) mass spectrometer. Optical rotations were measured at 589 nm using a Perkin Elmer Polarimeter Model 241 MC. CD and HV spectra were recorded on Jasco J-815 CD spectrometer. Automatic flash column chromatography was performed using Biotage Isolera Spektra One, using SNAP cartridges (Biotage, 30–100 µm, 60 Å), 10–50 g. TLC-analysis was conducted on Silicagel F₂₅₄ (Merck KGaA) with detection by UV-absorption (254 nm) where applicable, and by dipping into a solution of KMnO₄/Na₂CO₃/NaOH in water followed by charring at ca. 150 °C. The chiral HPLC measurements were performed on a Shimadzu LC2010C Analytical HPLC system equipped with a Diacel Chiralpak OD-H or Phenomenex Lux 3u Cellulose-1 column using the stated eluents. Melting points were analyzed with a Büchi melting point B-545. IR spectra were recorded on an ATI Mattson Genesis Series FTIR spectrometer or a Bruker Tensor 27 FTIR spectrometer. DCM, THF and toluene were freshly distilled. Molecular sieves (4 Å) were flame activated under vacuum prior to use. All inert reactions were carried out under argon atmosphere using flame-dried flasks.

Synthesis of allenyl ethers from propargyl derivatives

Scheme 1. Synthesis of Propargyl Ethers

General procedure A:¹ Propargyl alcohol (1.0 g, 17.8 mmol, 1.0 equiv.) was added dropwise at 0 °C to a suspension of sodium hydride (780 mg, 60% dispersion in mineral oil, 19.6 mmol, 1.1 equiv.) in THF (40 mL) and the reaction mixture was allowed to warm up to room temperature in 1 h. Tetrabutylammonium iodide (330 mg, 0.9 mmol, 0.05 equiv.) and corresponding benzyl bromide (19.6 mmol, 1.1 equiv.) were added to the mixture successively. After completion of the reaction (TLC), the mixture was filtered over a diatomaceous-earth pad and concentrated. Obtained crude product was used directly in the next step without further purification.

General procedure B:² Mixture of the corresponding phenol (17.8 mmol, 1.0 equiv.) and anhydrous Cs_2CO_3 (6.9 g, 21.4 mmol, 1.2 equiv.) in DMF (40 mL) was heated to 60 °C for half an hour under inert atmosphere. The reaction mixture was then cooled to room temperature and propargyl bromide (3.4 g, 80 wt% solution in toluene, 23.1 mmol, 1.3 equiv.) was added slowly. After completion of the reaction (TLC), the mixture was diluted with ether and washed at least 3 times with brine. Obtained crude product after solvent evaporation was used directly in the next step without further purification.

{[(Prop-2-yn-1-yl)oxy]methyl}benzene 13a was prepared in 90% yield through the general procedure A. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.47$ (t, J = 2.4 Hz, 1 H), 4.17 (d, J = 2.4 Hz, 2 H), 4.61 (s, 2 H), 7.27–7.39 (m, 5 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 57.1, 71.4, 74.5, 79.4, 127.5, 128.1, 128.3, 137.2$. These data are identical to those reported previously.³

[(Prop-2-yn-1-yl)oxy]benzene 13b was prepared in 78% yield through the general procedure B. ¹H NMR (400 MHz, CDCl₃): δ = 2.52 (t, *J* = 2.4 Hz, 1 H), 4.70 (d, *J* = 2.4 Hz, 2 H), 6.96–7.03 (m, 3 H), 7.28–7.31 (m, 2 H). ¹³C NMR (400 MHz, CDCl₃): δ = 55.6, 75.4, 78.6, 114.8, 117.8, 121.5, 129.4, 157.4. These data are identical to those reported previously.2

1-Bromo-4-{[(prop-2-yn-1-yl)oxy]methyl}benzene 13c was prepared through the general procedure A. The mixture residue was purified by column chromatography on silica gel (*n*-heptane/EtOAc 20:1 \rightarrow 10:1) to afford the product as yellow oil in 81% yield. ¹H NMR (400 MHz, CDCl₃): δ = 2.47 (t, *J* = 2.4 Hz, 1 H), 4.17 (d, *J* = 2.3 Hz, 2 H), 4.56 (s, 2 H), 7.21–7.25 (m, 2 H), 7.45–7.50 (m, 2 H). ¹³C NMR (400 MHz, CDCl₃): δ = 57.2, 70.7, 74.8, 79.3, 121.8, 129.6, 131.5, 136.3. **IR** (CHCl₃): v = 482, 630, 801, 1011, 1070, 1488, 2852, 2922 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₀H₉BrONa (M + Na)⁺ 246.9729, found 246.9725.

1,3-Dimethoxy-5-{[(prop-2-yn-1-yl)oxy]methyl}benzene 13d was prepared in 94% yield through the general procedure A. ¹H **NMR** (400 MHz, CDCl₃): δ = 2.47 (t, *J* = 2.4 Hz, 1 H), 3.79 (s, 6 H), 4.17 (d, *J* = 2.4 Hz, 2 H), 4.56 (s, 2 H), 6.40 (t, *J* = 2.3 Hz, 1 H), 6.52 (d, *J* = 2.3 Hz, 2 H). ¹³C **NMR** (400 MHz, CDCl₃): δ = 55.3, 57.0, 71.5, 74.6, 79.6, 100.0, 105.7, 139.6, 160.9. These data are identical to those reported previously.⁴

1-[(Prop-2-yn-1-yl)oxy]naphthalene 13e was prepared in 84% yield through the general procedure B. ¹H NMR (400 MHz, CDCl₃): $\delta = 2.54$ (t, J = 2.4 Hz, 1 H), 4.89 (d, J = 2.4 Hz, 2 H), 6.94 (d, J = 7.6 Hz, 1 H), 7.38 (t, J = 8.0 Hz, 1 H), 7.45–7.52 (m, 3 H), 7.78–7.82 (m, 1 H), 8.24–8.30 (m, 1 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 56.1$, 75.5, 78.6, 105.5, 121.2, 122.0, 125.4, 125.5, 125.6, 126.5, 127.4, 134.5, 153.3. These data are identical to those reported previously.2

¹ Achard T.; Lepronier A.; Gimbert Y.; Clavier H.; Giordano L.; Tenaglia A.; Buono G. Angew. Chem. Int. Ed. 2011, 15, 3552.

² Efe C.; Lykakis I. N.; Stratakis M. Chem. Commun. 2011, 47, 803.

³ Ishikawa T.; Mizuta T.; Hagiwara K.; Aikawa T.; Kudo T.; Saito S. J. Org. Chem. 2003, 68, 3702.

⁴ Lee J. W.; Kim J. H.; Kim B.-K.; Shin W. S.; Jin S.-H. Tetrahedron 2006, 62, 894.

Allene substrates **1a**, **1c**–**f** were prepared according to the literature.⁵ Allene **1b** was directly purchased from Sigma Aldrich.

General procedure: Potassium *tert*-butoxide (3.0 mmol, 0.3 equiv.) was added at room temperature to a solution of propargyl ether **13a–e** (10 mmol, 1 equiv.) in THF (25 mL). The suspension was stirred at room temperature for the appropriate time (6–12 h, TLC), then filtered through a diatomaceous-earth pad and washed with *n*-heptane. The solvent mixture was removed *in vacuo* and the crude residue was purified by column chromatography as indicated.

{[(Propa-1,2-dien-1-yl)oxy]methyl}benzene 1a. Column chromatography (*n*-heptane/EtOAc 20:1 \rightarrow 10:1; silica gel was washed with 1% NEt₃ before running column) afforded the product 4a as a slightly yellow oil (80%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.61$ (s, 2 H), 5.48 (d, J = 6.0 Hz, 2 H), 6.84 (t, J = 5.9 Hz, 1 H), 7.28–7.38 (m, 5 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 70.6, 91.1, 121.6, 127.7, 127.8, 128.3, 137.3, 201.3$. These data are identical to those reported previously.⁵

[(Propa-1,2-dien-1-yl)oxy]benzene 1c. Column chromatography (*n*-heptane/EtOAc 40:1 \rightarrow 20:1; silica gel was washed with 1% NEt₃ before running column) afforded the product 4c as a slightly yellow oil (86%). ¹H NMR (400 MHz, CDCl₃): δ = 5.45 (d, *J* = 5.9 Hz, 2 H), 6.85 (t, *J* = 5.9 Hz, 1 H), 7.03–7.10 (m, 2 H), 7.28–7.35 (m, 3 H). ¹³C NMR (400 MHz, CDCl₃): δ = 89.5, 116.7, 122.7, 129.5, 202.8. These data are identical to those reported previously.⁶

1-Bromo-4-{[(propa-1,2-dien-1-yl)oxy]methyl}benzene 1d. Column chromatography (*n*-heptane/EtOAc 20:1; silica gel was washed with 1% NEt₃ before running column) afforded the product **4d** as a slightly yellow oil (82%). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.56$ (s, 2 H), 5.47 (d, J = 5.7 Hz, 2 H), 6.81 (t, J = 6.0 Hz, 1 H), 7.20–7.25 (m, 2 H), 7.44–7.51 (m, 2 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 69.6$, 91.7, 121.5, 121.9, 129.3, 131.4, 136.6, 201.2. These data are identical to those reported previously.⁷

1,3-Dimethoxy-5-{[(propa-1,2-dien-1-yl)oxy]methyl}benzene 1e. Column chromatography (*n*-heptane/EtOAc 40:1 \rightarrow 20:1; silica gel was washed with 1% NEt₃ before running column) afforded the product **4e** as a slightly yellow oil (90%). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 3.79$ (s, 6 H), 4.55 (s, 2 H), 5.48 (d, J = 6.0 Hz, 2 H), 6.40 (t, J = 2.3 Hz, 1 H), 6.51 (dt, J = 0.5, 2.3 Hz, 2 H), 6.83 (t, J = 5.9 Hz, 1 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 55.3$, 70.5, 91.2, 100.0, 105.4, 121.5, 139.6, 160.8, 201.2. IR (CHCl₃): $\nu = 832$, 1153, 1205, 1461, 1598, 2838, 2936 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₂H₁₄O₃Na (M + Na)⁺ 229.0835, found 229.0833.

1-[(Propa-1,2-dien-1-yl)oxy]naphthalene 1f. Column chromatography (*n*-heptane/EtOAc 40:1 \rightarrow 20:1; silica gel was washed with 1% NEt₃ before running column) afforded the product 4f as a slightly yellow oil (78%). ¹H NMR (400 MHz, CDCl₃): δ = 5.48 (d, *J* = 5.9 Hz, 2 H), 7.00 (t, *J* = 5.8 Hz, 1 H), 7.09 (d, *J* = 7.5 Hz, 1 H), 7.34–7.57 (m, 4 H), 7.76–7.85 (m, 1 H), 8.21–8.31 (m, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 89.6, 109.5, 118.1, 121.9, 122.5, 125.5, 125.7, 126.5, 127.5, 134.6, 153.1, 203.0. These data are identical to those reported previously.⁸

⁵ Helms M.; Schade W.; Pulz R.; Watanabe T.; Al-Harrasi A.; Fisera L.; Hlobilova I.; Zahn G.; Reissig H.-U. *Eur. J. Org. Chem.* **2005**, *6*, 1003.

⁶ Ocello R.; De Nisi A.; Jia M.; Yang Q.-Q.; Monari M.; Giacinto P.; Bottoni A.; Miscione G. P.; Bandini M. Chem. Eur. J. 2015, 21, 18445.

⁷ Reddy M. N.; Swamy K. C. K. Synthesis **2014**, 46, 1091.

⁸ Moghaddam F.M.; Emami R. Synth. Comm. 1997, 27, 4073.

General procedures for the palladium-catalyzed addition of benzyloxyallene 1a to azole heterocycles

Scheme 3. Scope of the Azole Heterocycles

General procedure: The reaction was performed in a 5.0 mL Schlenk tube under Argon. $Pd_2(dba)_3$ (6.9 mg, 0.0075 mmol, 0.025 equiv.) and 1,3-bis(diphenylphosphino)propane (6.2 mg, 0.015 mmol, 0.05 equiv.) were solved in dry tetrahydrofuran (3.0 mL). Azole heterocycle (0.36 mmol, 1.2 equiv.) and benzyloxyallene **1a** (43.9 mg, 0.3 mmol, 1.0 equiv.) were added and the flask was sealed. The reaction mixture was stirred at 60 °C for the appropriate time (3–18 h). After cooling down to room temperature, the solvent was removed in vacuo and the crude residue was purified by column chromatography as indicated.

1-[1-(Benzyloxy)allyl]-1*H***-imidazole** (**3a**). Imidazole (24.5 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 3 h. The solvent was removed in vacuo and the crude residue was filtrated over diatomaceous-earth pad with *n*-heptane to afford the product **3a** as slightly yellow oil (60 mg, 93%).

R_F (silica gel, *n*-heptane): 0.43 (UV, KMnO4-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 4.34 (d, *J* = 11.9 Hz, 1 H), 4.53 (d, *J* = 11.9 Hz, 1 H), 5.39 (ddd, *J* = 0.9, 1.5, 10.5 Hz, 1 H), 5.41 (ddd, *J* = 0.9, 1.6, 17.2 Hz, 1 H), 5.90 (dt, *J* = 1.5, 4.3 Hz, 1 H), 6.04 (ddd, *J* = 4.3, 10.5, 17.2 Hz, 1 H), 7.06 (t, *J* = 1.3 Hz, 1 H), 7.14 (t, *J* = 0.9 Hz, 1 H), 7.27–7.40 (m, 5 H), 7.63 (t, *J* = 1.0 Hz, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 69.7, 84.3, 116.9, 127.9, 128.2, 128.6, 130.0, 134.1, 136.3. **IR** (CHCl₃): v = 700, 741, 811, 1062, 1218, 1496, 2873, 3031 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₃H₁₅N₂O (M + H)⁺ 215.1184, found 215.1179.

1-[1-(Benzyloxy)allyl]-1*H***-imidazole-2-carbaldehyde (3b)**. Reaction was conducted according to the general procedure using Pd₂(dba)₃ (23.0 mg, 0.025 mmol, 0.025 equiv.), 1,3-bis(diphenylphosphino)propane (20.5 mg, 0.05 mmol, 0.05 equiv.), imidazole-2-carbaldehyde (115.0 mg, 1.2 mmol), benzyloxyallene (146.0 mg, 1.0 mmol), in THF (10.0 mL) and heated for 4 h. Column chromatography (*n*-heptane/EtOAc 20:1 \rightarrow 4:1) afforded product **3b** as a slightly yellow oil (223.0 mg, 92%).

R_F (silica gel, *n*-heptane/EtOAc = 1:1): 0.69 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 4.49 (d, *J* = 11.5 Hz, 1 H), 4.54 (d, *J* = 11.5 Hz, 1 H), 5.35 (ddd, *J* = 0.9, 1.4, 10.5 Hz, 1 H), 5.40 (ddd, *J* = 0.9, 1.5, 17.2 Hz, 1 H), 5.98 (ddd, *J* = 4.5, 10.5, 17.2 Hz, 1 H), 6.98 (dt, *J* = 1.4, 4.6 Hz, 1 H), 7.24–7.28 (m, 2 H), 7.30–7.36 (m, 4 H), 7.47 (t, *J* = 1.0 Hz, 1 H), 9.83 (d, *J* = 1.0 Hz, 1 H). ¹³**C** NMR (400 MHz, CDCl₃): δ = 71.1, 84.8, 119.0, 122.7, 127.9, 128.2, 128.5, 132.4, 134.1, 136.2, 182.5. IR (CHCl₃): ν = 700, 754, 831, 1069, 1406, 1688, 2844, 3032 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₄H₁₅N₂O₂ (M + H)⁺ 243.1134, found 243.1128.

1-[1-(Benzyloxy)allyl]-1*H***-imidazole-4,5-dicarbonitrile (3c).** Imidazole-4,5-dicarbonitrile (42.5 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 4 h. Column chromatography (*n*-heptane/EtOAc 20:1 \rightarrow 4:1) afforded the product **3c** as slightly yellow oil (71.4 mg, 90%).

R_F (silica gel, *n*-heptane/EtOAc = 2:1): 0.44 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 4.60 (d, *J* = 11.9 Hz, 1 H), 4.68 (d, *J* = 11.9 Hz, 1 H), 5.59 (dd, *J* = 1.3, 10.3 Hz, 1 H), 5.60 (dd, *J* = 1.3, 17.2 Hz, 1 H), 5.88 (dt, *J* = 1.3, 4.9 Hz, 1 H), 6.02 (ddd, *J* = 4.9, 10.4, 17.1 Hz, 1 H), 7.24–7.28 (m, 2 H), 7.28–7.40 (m, 5 H), 7.80 (s, 1 H). ¹³**C** NMR (400 MHz, CDCl₃): δ = 72.0, 86.8, 107.6, 110.7, 111.3, 122.1, 123.8, 128.1, 128.9, 130.0, 131.6, 134.6, 139.7. **IR** (CHCl₃): v = 699, 738, 803, 1023, 1343, 1454, 1655, 2241, 2922, 3032 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₅H₁₃N₄O (M + H)⁺ 265.1089, found 265.1082.

1-[1-(Benzyloxy)allyl]-3,5-dimethyl-1*H*-pyrazole (3d). 3,5-Dimethylpyrazole (34.6 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 4 h. Column chromatography (*n*-heptane/EtOAc $10:1 \rightarrow 1:1$) afforded the product 3d as slightly yellow oil (57.4 mg, 79%).

R_F (silica gel, *n*-heptane/EtOAc = 10:1): 0.22 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 2.22 (s, 3 H), 2.24 (s, 3 H), 4.42 (d, *J* = 11.9 Hz, 1 H), 4.46 (d, *J* = 12.0 Hz, 1 H), 5.34 (ddd, *J* = 1.2, 1.7, 10.5 Hz, 1 H), 5.36 (ddd, *J* = 1.2, 1.7, 17.3 Hz, 1 H), 5.86 (s, 1 H), 5.90 (dt, *J* = 1.7, 4.3 Hz, 1 H), 6.15 (ddd, *J* = 4.4, 10.6, 17.3 Hz, 1 H), 7.25–7.35 (m, 5 H). ¹³C NMR (400 MHz, CDCl₃): δ = 11.4, 13.5, 69.5, 88.2, 107.1, 118.2, 127.8, 127.9, 128.4, 134.3, 137.1, 139.6, 147.9. **IR** (CHCl₃): ν = 699, 737, 824, 1066, 1314, 1456, 1559, 2843, 3032 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₅H₁₉N₂O (M + H)⁺ 243.1497, found 243.1493.

1-[1-(Benzyloxy)allyl]-4-nitro-1*H***-imidazole (3ea)**. 4(5)-Nitroimidazole (40.7 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 4 h. Ratio C-4/C-5 > 99:1 was determined by ¹H NMR spectroscopy. Crude product was filtered with CH₂Cl₂ through a diatomaceous-earth pad affording the product **3ea** as slightly yellow oil (73.9 mg, 95%).

R_F (silica gel, *n*-heptane/EtOAc = 1:1): 0.42 (UV, KMnO₄-solution). ¹**H NMR** (400 MHz, CDCl₃): δ = 4.48 (d, *J* = 12.0 Hz, 1 H), 4.64 (d, *J* = 12.0 Hz, 1 H), 5.53 (ddd, *J* = 0.8, 1.5, 10.9 Hz, 1 H), 5.56 (ddd, J = 0.9, 1.5, 17.2 Hz, 1 H), 5.69 (dt, *J* = 1.4, 4.6 Hz, 1 H), 6.00 (ddd, *J* = 4.6, 10.5, 17.2 Hz, 1 H), 7.27–7.32 (m, 2 H), 7.35 – 7.42 (m, 3 H), 7.55 (d, *J* = 1.6 Hz, 1H), 7.84 (d, *J* = 1.6 Hz, 1 H). ¹³**C NMR** (400 MHz, CDCl₃): δ = 70.8, 85.8, 117.2, 120.8, 128.0, 128.8, 128.9, 132.7, 134.6. **IR** (CHCl₃): v = 700, 752, 824, 1070, 1276, 1340, 1491, 2856, 3029 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₃H₁₄N₃O₃ (M + H)⁺ 260.1035, found 260.1039.

1-[1-(Benzyloxy)allyl]-1*H*-imidazole-4-carbaldehyde (3fa). Imidazole-4(5)-carbaldehyde (34.6 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 3 h. Ratio C-4/C-5 = 95:5 was determined by ¹H NMR spectros-copy. Column chromatography (*n*-heptane/EtOAc $10:1 \rightarrow 1:2$) afforded the product **3fa** as slightly yellow oil (50.9 mg, 70%).

1-[1-(Benzyloxy)allyl]-4-methyl-1*H***-imidazole** (**3ga**) and **1-[1-(benzyloxy)allyl]-5-methyl-1***H***-imidazole** (**3gb**). 4(5)-Methylimidazole (30.0 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 3 h. Ratio C-4/C-5 = 67:33 was determined by ¹H NMR spectroscopy. Column chromatography (*n*-heptane/EtOAc 10:1 \rightarrow 1:2) afforded the product as non-separable mixture of both regioisomers **3ga** and **3gb** (55.5 mg, 81%) as a slightly yellow oil.

1-[1-(Benzyloxy)allyl]-4-iodo-1*H*-imidazole (3ha) and **1-[1-(benzyloxy)allyl]-5-iodo-1***H*-imidazole (3hb). 4(5)-Iodoimidazole (100 mg, 0.52 mmol) was treated with benzyloxyallene (85 mg, 0.57 mmol) according to the general procedure and heated for 3 h. C-4/C-5 > 54:46 was determined by ¹H NMR spectroscopy. Column chromatography (*n*-heptane/EtOAc 10:1 \rightarrow 1:2) afforded the product **3ha** (70 mg, 36%) and the product **3hb** (81 mg, 42%) as a slightly yellow oil.

3ga

Рń

BnO

3gb

Compound 3hb: $\mathbf{R}_{\mathbf{F}}$ (silica gel, *n*-heptane/EtOAc = 1:1): 0.59 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 4.45$ (d, J = 11.7 Hz, 1 H), 4.59 (d, J = 11.7 Hz, 1 H), 5.39 (ddd, J = 0.7, 1.5, 17.1 Hz, 1 H), 5.42 (ddd, J = 0.7, 1.5, 10.6 Hz, 1 H), 5.76 (dt, J = 1.5, 4.5 Hz, 1 H), 5.98 (ddd, J = 4.4, 10.6, 17.1 Hz, 1 H), 7.28–7.40 (m, 6 H), 7.77 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 70.7$, 87.8, 119.8, 128.1, 128.4, 128.7, 133.4, 135.7, 140.4. **IR** (CHCl₃): $\nu = 432$, 682, 804, 1062, 1254, 2871, 3033 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₃H₁₄IN₂O (M + H)⁺ 341.0151, found 341.0160.

1-[1-(Benzyloxy)allyl]-1H-pyrrole (3i) and 3,3-bis(benzyloxy)prop-1-ene (14). Pyrrole (24.2 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Column chromatography (n-heptane/CH₂Cl₂ 40:1 \rightarrow 10:1) afforded the product 3i (<1 mg, trace) and the product 14 (28.2 mg, 37%) as a slightly yellow oils.

Compound 14: $\mathbf{R}_{\rm F}$ (silica gel, *n*-heptane/CH₂Cl₂ = 2:1): 0.11 (UV, KMnO₄ solution). ¹H NMR (400 MHz, $CDCl_3$: $\delta = 4.58$ (d, J = 11.8 Hz, 2 H), 4.67 (d, J = 11.8 Hz, 2 H), 5.14 (dt, J = 1.2, 4.7 Hz, 1 H), 5.39 (ddd, J = 1.2, 4.7 Hz, 1 OBn = 0.9, 1.3, 10.6 Hz, 1 H), 5.51 (ddd, J = 0.9, 1.3, 17.4 Hz, 1 H), 5.95 (ddd, J = 4.7, 10.6, 17.4 Hz, 1 H), 7.26-BnO 7.38 (m, 10 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 67.1, 100.3, 119.0, 127.6, 127.8, 128.4, 134.9, 138.0.$ 14

These data are identical to those reported previously.9

1-[1-(Benzyloxy)allyl]-1H-pyrrole-2-carbaldehyde (3j). 1H-Pyrrole-2-carbaldehyde (34.2 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Column chromatography (n-heptane/EtOAc $20:1 \rightarrow 4:1$) afforded the product **3j** as slightly yellow oil (52.1 mg, 72%).

 $\mathbf{R}_{\mathbf{F}}$ (silica gel, *n*-heptane/EtOAc = 1:1): 0.74 (UV, KMnO₄-solution). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.47$ (d, J = 11.5 Hz, 1 H), 4.53 (d, J = 11.5 Hz, 1 H), 5.28 (ddd, J = 0.8, 1.3, 10.5 Hz, 1 H), 5.33 (ddd1.3, 17.1 Hz, 1 H), 6.01 (ddd, J = 4.4, 10.5, 17.1 Hz, 1 H), 6.33 (dd, J = 2.7, 3.9 Hz, 1 H), 6.97–7.01 (m, 2 H), 7.26–7.35 (m, 6 H), 9.58 (d, J = 1.0 Hz, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 70.6, 85.1, 111.0, 118.1, 125.4, 127.8, 127.9, 128.1, 128.4, 135.2, 137.0, 179.8. IR (CHCl₃): v = 700, 747, 803, 1064, 1242, 1468, $1681, 2853, 3032 \text{ cm}^{-1}$. **HRMS** (ESI⁺) calcd. for C₁₅H₁₆NO₂ (M + H)⁺ 242.1181, found 242.1163.

1-[1-(Benzyloxy)allyl]-1H-pyrrole-2-carbonitrile (3k). 1H-Pyrrole-2-carbonitrile (33.2 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Column chromatography (n-heptane/EtOAc $20:1 \rightarrow 4:1$) afforded the product 3k as slightly yellow oil (59.3 mg, 83%).

R_F (silica gel, *n*-heptane/EtOAc = 10:1): 0.42 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 4.45 (d, J = 11.6 Hz, 1 H), 4.51 (d, J = 11.6 Hz, 1 H), 5.39 (ddd, J = 0.8, 1.4, 10.5 Hz, 1 H), 5.41 (ddd, J = 0.8, 1.4, 10.5 Hz, 10.51.5, 17.1 Hz, 1 H), 5.86 (dt, J = 1.5, 4.4 Hz, 1 H), 6.04 (ddd, J = 4.5, 10.5, 17.2 Hz, 1 H), 6.27 (dd, J = 2.9, 3.8 Hz, 1 H), 6.86 (dd, J = 1.6, 3.9 Hz, 1 H), 7.04 (dd, J = 1.6, 2.8 Hz, 1 H), 7.28–7.39 (m, 5 H), ¹³C NMR $(400 \text{ MHz, CDCl}_3)$: $\delta = 70.5, 86.2, 103.1, 110.6, 113.4, 119.3, 120.8, 124.2, 128.0, 128.2, 128.6, 133.9, 124.2, 128.0, 128.2, 128.2, 128.0, 128.2, 1$ 136.1. IR (CHCl₃): v = 699, 740, 809, 1063, 1268, 1452, 2218, 2917, 3031 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₅H₁₅N₂O [M+H]⁺ 239.1184, found 239.1177.

1-[1-(Benzyloxy)allyl]-1H-benzimidazole (31). Benzimidazole (42.5 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 4 h. Column chromatography (n-heptane/EtOAc $10:1 \rightarrow 1:1$) afforded the product **3I** as slightly yellow oil (62.6 mg, 79%).

R_F (silica gel, *n*-heptane/EtOAc = 1:1); 0.27 (UV, KMnO4-solution), ¹**H** NMR (400 MHz, CDCl₃); $\delta = 4.36$ (d, J = 11.9 Hz, 1 H), 4.55 (d, J = 11.9 Hz, 1 H), 5.42 (d, J = 10.7 Hz, 1 H), 5.47 (d, J = 17.3 Hz, 1 H), 5.95-5.99 (m, 1 H), 6.15 (ddd, J = 4.1, 10.5, 17.0 Hz, 1 H), 7.24–7.27 (m, 2 H), 7.28–7.40 (m, 5 H), 7.48–7.53 (m, 1 H), 7.80–7.87 (m, 1 H), 8.00 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 69.9, 83.9, 111.5, 119.3, 120.5,$ 122.7, 123.3, 128.0, 128.3, 128.6, 133.6, 136.1, 141.9, 144.3. IR (CHCl₃): v = 699, 723, 809, 1061, 1223, 2884, 3032 cm⁻¹. **HRMS** (ESI⁺) calcd. for $C_{17}H_{17}N_2O$ (M + H)⁺ 265.1341, found 265.1328.

Ethyl 1-[1-(benzyloxy)allyl]-1H-indole-2-carboxylate (3m). Ethyl indole-2-carboxylate (68.1 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 18 h. Column chromatography (n-heptane/EtOAc 20:1 \rightarrow 1:1) afforded the product **3m** as slightly yellow oil (64.4 mg, 64%).

⁹Cui D.-M.; Zheng Z.-L.; Zhang C. J. Org. Chem. 2009, 74, 1426.

R_F (silica gel, *n*-heptane/EtOAc = 10:1): 0.39 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 1.37 (t, *J* = 7.1 Hz, 3 H), 4.33 (dq, *J* = 1.6, 7.1 Hz, 2 H), 4.39 (d, *J* = 11.7 Hz, 1 H), 4.42 (d, *J* = 11.7 Hz, 1 H), 5.26 (dd, *J* = 1.4, 10.6 Hz, 1 H), 5.34 (dd, *J* = 1.4, 17.3 Hz, 1 H), 6.21 (ddd, *J* = 4.1, 10.6, 17.2 Hz, 1 H), 7.15 (ddd, *J* = 0.9, 7.0, 8.0 Hz, 1 H), 7.19–7.30 (m, 7 H), 7.36 (d, *J* = 0.8 Hz, 1 H), 7.66 (dt, *J* = 0.8, 8.0 Hz, 1 H), 7.84 (ddd, *J* = 0.7, 1.6, 8.3 Hz, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 14.4, 60.8, 70.0, 85.0, 112.3, 115.1, 117.9, 121.2, 122.5, 125.0, 126.9, 127.8, 128.0, 128.1, 128.3, 134.9, 137.3, 138.0, 162.2. IR (CHCl₃): ν = 698, 750, 813, 1065, 1198, 1703, 2869, 3031 cm⁻¹. HRMS (ESI⁺) calcd. for C₂₁H₂₂NO₃ (M + H)⁺ 336.1600, found 336.1617.

1-[1-(Benzyloxy)allyl]-1*H*-1,2,4-triazole (3n). 1,2,4-Triazole (24.9 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 4 h. Column chromatography (*n*-heptane/EtOAc $20:1 \rightarrow 4:1$) afforded the product 3n as slightly yellow oil (71.4 mg, 90%).

R_F (silica gel, *n*-heptane/EtOAc = 2:1): 0.44 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 4.60 (d, *J* = 11.9 Hz, 1 H), 4.68 (d, *J* = 11.9 Hz, 1 H), 5.59 (dd, *J* = 1.3, 10.3 Hz, 1 H), 5.60 (dd, *J* = 1.3, 17.2 Hz, 1 H), 5.88 (dt, *J* = 1.3, 4.9 Hz, 1 H), 6.02 (ddd, *J* = 4.9, 10.4, 17.1 Hz, 1 H), 7.24–7.28 (m, 2 H), 7.28–7.40 (m, 5 H), 7.80 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 72.0, 86.8, 107.6, 110.7, 111.3, 122.1, 123.8, 128.1, 128.9, 130.0, 131.6, 134.6, 139.7. **IR** (CHCl₃): ν = 678, 699, 740, 808, 1073, 1273, 1500, 2874, 3032 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₂H₁₄N₃O (M + H)⁺ 216.1137, found 216.1129.

2-[1-(Benzyloxy)allyl]-2H-1,2,3-triazole (30a) and **1-[1-(benzyloxy)allyl]-1H-1,2,3-triazole (30b)**. 1H-1,2,3-Triazole (24.9 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Ratio N-2/N-1 = 85:15 was determined by ¹H NMR spectroscopy. Column chromatography (*n*-heptane/EtOAc $10:1 \rightarrow 2:1$) afforded the product **30a** (50 mg, 76%) and the product **30b** (8 mg, 12%) as a slightly yellow oil.

Compound 3oa: $\mathbf{R}_{\mathbf{F}}$ (silica gel, *n*-heptane/EtOAc = 1:1): 0.69 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 4.47$ (d, J = 12.1 Hz, 1 H), 4.53 (d, J = 12.1 Hz, 1 H), 5.44 (dt, J = 1.1, 10.5 Hz, 1 H), 5.56 (dt, J = 1.1, 17.2 Hz, 1 H), 6.16 (dt, J = 1.2, 5.4 Hz, 1 H), 6.27 (ddd, J = 5.3, 10.5, 17.1 Hz, 1 H), 7.26–7.38 (m, 5 H), 7.71 (s, 2 H). ¹³**C** NMR (400 MHz, CDCl₃): $\delta = 70.4$, 90.7, 119.6, 127.0, 128.4, 132.7, 135.0, 136.5. **IR** (CHCl₃): v = 699, 738, 820, 1064, 1314, 2874, 3032 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₂H₁₄N₃O (M + H)⁺ 216.1137, found 216.1133.

Compound 3ob: \mathbf{R}_{f} (silica gel, *n*-heptane/EtOAc = 1:1): 0.46 (UV, KMnO₄-solution). ¹H NMR (400 MHz, CDCl₃): $\delta = 4.50$ (s, 2 H), 5.45 (ddd, J = 0.9, 1.6, 10.6 Hz, 1 H), 5.57 (ddd, J = 0.9, 1.6, 17.2 Hz, 1 H), 6.06 (ddd, J = 4.2, 10.6, 17.2 Hz, 1 H), 6.35 (dt, J = 1.6, 4.2 Hz, 1 H), 7.27–7.39 (m, 5 H), 7.72 (d, J = 1.1 Hz, 1 H), 7.78 (dd, J = 0.6, 1.2 Hz, 1 H). ¹³C NMR (400 MHz, CDCl₃): $\delta = 69.6$, 86.1, 118.9, 120.1, 127.0, 127.2, 127.6, 131.7, 133.6, 135.0. IR (CHCl₃): v = 672, 816, 1064, 1086, 1250, 2902, 3030 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₂H₁₄N₃O (M + H)⁺ 216.1137, found 216.1130.

2-[1-(Benzyloxy)allyl]-2H-benzotriazole (3pa) and **1-[1-(benzyloxy)-allyl]-2H-benzotriazole (3pb)**. Benztriazole (42.9 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Ratio N-1/N-2 = 87:13 was determined by ¹H NMR spectroscopy. Column chromatography (*n*-heptane/EtOAc 20:1 \rightarrow 10:1) afforded the product **3pa** (5 mg, 6%) and the product **3pb** (68 mg, 85%) as a slightly yellow oil.

Compound 3pa: $\mathbf{R}_{\mathbf{F}}$ (silica gel, *n*-heptane/EtOAc = 10:1): 0.35 (UV, KMnO₄-solution). ¹**H NMR** (400 MHz, CDCl₃): $\delta = 4.53$ (d, J = 12.0 Hz, 1 H), 4.06 (d, J = 12.0 Hz, 1 H), 5.47–5.51 (m, 1 H), 5.61–5.68 (m, 1 H), 6.38 (ddd, J = 5.4, 10.5, 17.4 Hz, 1 H), 6.40–6.44 (m, 1 H), 7.26–7.37 (m, 5 H), 7.40–7.45 (m, 2 H), 7.90–7.95 (m, 2 H). ¹³**C NMR** (400 MHz, CDCl₃): $\delta = 70.9$, 92.7, 118.6, 120.1, 126.9, 128.1, 128.4, 132.7, 136.1. **IR** (CHCl₃): $\nu = 698$, 747, 816, 849, 1082, 1251, 2918, 3030 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₆H₁₆N₃O (M + H)⁺ 266.1293, found 266.1282.

Compound 3pb: $\mathbf{R}_{\mathbf{F}}$ (silica gel, *n*-heptane/EtOAc = 10:1): 0.23 (UV, KMnO₄-solution). ¹**H NMR** (400 MHz, CDCl₃): $\delta = 4.43$ (d, J = 11.9 Hz, 1 H), 4.47 (d, J = 11.9 Hz, 1 H), 5.48 (ddd, J = 0.9, 1.8, 10.6 Hz, 1 H), 5.60 (ddd, J = 0.9, 1.7, 17.2 Hz, 1 H), 6.20 (ddd, J = 3.9, 10.6, 17.2 Hz, 1 H), 6.67 (dt, J = 1.8, 3.7 Hz, 1 H), 7.24–7.35 (m, 5 H), 7.39 (ddd, J = 1.1, 7.0, 8.1 Hz, 1 H), 7.46 (ddd, J = 1.1, 7.0, 8.2 Hz, 1 H), 7.71 (dt, J = 1.0, 8.3 Hz, 1 H), 8.09 (dt, J = 1.0, 8.2 Hz, 1 H). ¹³**C NMR** (400 MHz, CDCl₃): $\delta = 70.4$, 87.7, 111.7, 119.8,120.0, 124.3, 127.5, 128.1, 128.2, 128.5, 132.5, 136.1. **IR** (CHCl₃): v = 699, 747, 815, 927, 1077, 1237, 1450, 2916, 3030 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₆H₁₆N₃O (M + H)⁺ 266.1293, found 266.1285.

7-[1-(Benzyloxy)allyl]-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (3q). Theophylline (64.9 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Ratio N-7/N-9 > 95:5 was determined by ¹H NMR spectroscopy. Column chromatography (*n*-heptane/EtOAc $10:1 \rightarrow 1:1$) afforded the product 3q as a white powder. (81.3 mg, 83%).

R_F (silica gel, *n*-heptane/EtOAc = 1:1): 0.38 (UV, KMnO₄-solution). M_p: 84–88 °C. ¹**H** NMR (400 MHz, CDCl₃): δ = 3.43 (s, 3 H), 3.60 (s, 3 H), 4.62 (d, *J* = 11.5 Hz, 1 H), 4.71 (d, *J* = 11.6 Hz, 1 H), 5.43 (ddd, *J* = 0.9, 1.3, 10.7 Hz, 1 H), 5.55 (ddd, *J* = 4.1, 10.4, 17.3 Hz, 1 H), 6.07 (ddd, *J* = 4.8, 10.5, 17.1 Hz, 1 H), 6.70 (dt, *J* = 1.4, 4.7 Hz, 1 H), 7.25–7.35 (m, 5 H), 7.82 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 28.1, 29.8, 71.6, 85.2, 106.7, 119.7, 127.8, 128.2, 128.5, 133.6, 136.4, 139.4, 148.6, 151.5, 155.2. IR (CHCl₃): v = 699, 747, 1064, 1540, 1659, 1702, 2918, 3112 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₇H₁₉N₄O₃ (M + H)⁺ 327.1457, found 327.1450.

7-[1-(Benzyloxy)allyl]-8-bromo-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione (3*r*). 2-Bromotheophylline (93.2 mg, 0.36 mmol) was treated with benzyloxyallene according to the general procedure and heated for 6 h. Ratio N-7/N-9 > 99:1 was determined by ¹H NMR spectroscopy. Column chromatography (*n*-heptane/EtOAc 10:1 \rightarrow 1:1) afforded the product 3*r* as yellow solid (96.0 mg, 79%).

R_F (silica gel, *n*-heptane/EtOAc = 1:1): 0.23 (UV, KMnO4-solution). M_p: 92–94 °C. ¹**H** NMR (400 MHz, CDCl₃): δ = 3.41 (s, 3 H), 3.54 (s, 3 H), 4.56 (d, *J* = 11.9 Hz, 1 H), 4.67 (d, *J* = 11.9 Hz, 1 H), 5.38–5.50 (m, 2 H), 6.36 (ddd, *J* = 5.2, 10.2, 16.1 Hz, 1 H), 6.85 (s, 1 H), 7.27–7.30 (m, 6 H). ¹³**C** NMR (400 MHz, CDCl₃): δ = 28.2, 29.8, 71.8, 87.5, 108.8, 120.2, 127.9, 128.1, 128.3, 132.9, 136.1, 148.2, 151.0, 154.0. IR (CHCl₃): ν = 513, 700, 747, 977, 1087, 1361, 1532, 1658, 1702, 2923 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₇H₁₈BrN₄O₃ (M + H)⁺ 405.0562, found 405.0553.

Screenings of reaction conditions for enantioselective hydroamination reactions

Table 1. Screening of the Catalysts^a

BnO´	H + N H 1a 2a Pd ₂ dba ₃ (2.5 m Ligand* (5.0.mc 1 4	ol %)) %) ► BnC	N N 3a
entry	ligands	yield (%) ^b	ee (%) ^c
1	(R)-(+)-MeO-BIPHEP	n.r.	_
2	(R)-SEGPHOS	56	_
3	(R)-BINAP	72	11
4	(S,S)-iPr-DuPhos	32	33
5	(<i>R</i> , <i>R</i>)-DACH-phenyl Trost ligand	74	77
6	(R,R)-DACH-naphthyl Trost ligand	61	83
7	Josiphos SL-J001-1	82	_
8	Josiphos SL-J002-2	85	_
9	Josiphos SL-J015-2	42	_
10	Taniaphos SL-T001-2	14	_

^aConditions: 2.5 mol % Pd₂dba₃, 5 mol % of ligand, 0.3 mmol of **1a** and 0.36 mmol of **2a**, 3.0 mL THF, 60 °C for 18 h. ^bIsolated yield. ^cEnantiomeric excess was determined by HPLC.

Chiral ligands widely used in palladium asymmetric catalysis:

Chiral palladium ligands successfully applied by different groups in the synthesis of chiral O,O- and N,O-acetals:¹⁰

¹⁰ (a) Trost, B. M.; Jäkel, C.; Plietker, B. *J. Am. Chem. Soc.* **2003**, *125*, 4438; (b) Kim H.; Rhee Y. H. *J. Am. Chem. Soc.* **2012**, *134*, 4011; (c) Jiang L.; Jia T.; Wang M.; Liao J.; Cao P. Org. Lett. **2015**, *17*, 1070 and references therein.

Table 2. Screening of the Reaction Conditions^a:

entry	solvent	T (°C)	time (h)	yield (%) ^b	ee (%) ^c
1	MeCN	60	18	55	87
2	1,4-Dioxane	60	18	63	82
3	DCE	60	18	59	92
4	DCE	23	18	21	87
5	DCE	40	18	44	82
6	DCE	60	30	70	78
7 ^d	DCE	60	18	74	82

^aConditions: 2.5 mol % Pd₂dba₃, 5 mol % of (R,R)-DACH-naphthyl Trost Ligand, 0.3 mmol of **1a** and 0.36 mmol of **2a**, 3.0 mL of solvent. ^bIsolated yield. ^cEnantiomeric excess was determined by HPLC. ^d150 mol % DBU.

General procedures for enantioselective palladium-catalyzed hydroamination reactions

Scheme 4. (A) Scope of Alkoxyallenes. (B) Determination of the Absolute Configuration on Example of (S)-3q

General procedure: The reaction was performed in a 5.0 mL Schlenk tube under argon. $Pd_2(dba)_3$ (6.9 mg, 0.0075 mmol, 0.025 equiv.) and (*R*,*R*)-DACH-naphthyl Trost Ligand (6.2 mg, 0.015 mmol, 0.05 equiv.) were dissolved in dry DCE (3.0 mL). The re-

sulting catalyst solution was stirred for 30 minutes. Imidazole (24.5 mg, 0.36 mmol, 1.2 equiv.) and alkoxyallene (0.3 mmol, 1.0 equiv.) were added and the flask was sealed. The reaction mixture was stirred at 60 °C for 18 h. After cooling down to room temperature, the solvent was removed *in vacuo* and the crude residue was purified by column chromatography as indicated.

(S)-1-(1-Methoxyallyl)-1*H*-imidazole ((S)-3s). Imidazole was treated with allene 1b (21.0 mg, 0.3 mmol) according to the general procedure. Column chromatography (*n*-heptane/EtOAc 40:1 \rightarrow 20:1) afforded the product 3s as slightly yellow oil (22.4 mg, 54%, 83% ee).

R_F (silica gel, *n*-heptane/EtOAc = 20:1): 0.58 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 3.28 (s, 3 H), 4.34 (d, *J* = 11.9 Hz, 1 H), 4.53 (d, *J* = 11.9 Hz, 1 H), 5.39 (ddd, *J* = 0.9, 1.5, 10.6 Hz, 1 H), 5.40 (ddd, *J* = 0.9, 1.5, 17.2 Hz, 1 H), 5.52 (dt, *J* = 1.3, 4.2 Hz, 1 H), 6.01 (ddd, *J* = 4.4, 10.5, 17.2 Hz, 1 H), 7.03 (s, 1 H), 7.12 (s, 1 H), 7.66 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 55.7, 87.3, 116.8, 119.0, 129.7, 133.9, 136.2. **IR** (CHCl₃): v = 1067, 1218, 1411, 1491, 2939, 3112 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₇H₁₁N₂O (M + H)⁺ 139.0871, found 139.0862. **HPLC**: ee: 83%, Chiralpak OD-H (250 × 4.6 mm), flow: 1.0 mL/min, *n*-heptane/ethanol 98/2, retention times: (*R*)-**3s**: 24.201 min, (*S*)-**3s**: 26.823 min. [α]_D²²= +0.9 (c 0.3, CHCl₃).

(S)-1-(1-Phenoxyallyl)-1*H*-imidazole ((S)-3t). Imidazole was treated with allene 1c (39.7 mg, 0.3 mmol) according to the general procedure. Column chromatography (*n*-heptane/EtOAc 40:1 \rightarrow 20:1) afforded the product 6s as slightly yellow oil (43.2 mg, 72%, 90% ee).

R_F (silica gel, *n*-heptane/EtOAc = 10:1): 0.28 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): $\delta = 5.52$ (ddd, J = 0.6, 1.4, 10.5 Hz, 1 H), 5.57 (ddd, J = 0.6, 1.5, 17.1 Hz, 1 H), 6.18 (ddd, J = 4.3, 10.5, 17.1 Hz, 1 H), 6.30 (dt, J = 1.5, 4.3 Hz, 1 H), 6.84–6.89 (m, 2 H), 7.03–7.11 (m, 3 H), 7.23– 7.31 (m, 2 H), 7.61 (s, 1 H). ¹³**C** NMR (400 MHz, CDCl₃): $\delta = 85.2$, 116.9, 117.7, 119.9, 123.6, 129.8, 129.9, 133.3, 136.0, 155.9. **IR** (CHCl₃): v = 692, 755, 796, 1071, 1210, 1489, 1589, 2916, 3109 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₂H₁₃N₂O (M + H)⁺ 201.1028, found 201.1018. **HPLC**: ee: 90%, Chiralpak OD-H (250 × 4.6 mm), flow: 1.0 mL/min, *n*-heptane/ethanol 97/3, retention times: (*R*)-**3t**: 20.989 min, (*S*)-**3t**: 27.478 min. [α]_D²²= +0.7 (c 0.25, CHCl₃).

(S)-1-[1-(Naphthalen-1-yloxy)allyl]-1*H*-imidazole ((S)-3u). Imidazole was treated with allene 1f (54.7 mg, 0.3 mmol) according to the general procedure. Column chromatography (*n*-heptane/EtOAc 20:1 \rightarrow 4:1) afforded the product 3u as slightly yellow oil (50.3 mg, 67%, 94% ee).

R_F (silica gel, *n*-heptane/EtOAc = 1:2): 0.36 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 5.60 (dd, J = 0.9, 10.5 Hz, 1 H), 5.71 (dd, J = 1.0, 17.1 Hz, 1 H), 6.30 (ddd, J = 4.3, 10.5, 17.1 Hz, 1 H), 6.45 (dt, J = 1.4, 4.3 Hz, 1 H), 6.74 (d, J = 7.5 Hz, 1 H), 7.12 (d, J = 13.6 Hz, 2 H), 7.30 (t, J = 8.0 Hz, 1 H), 7.46–7.53 (m, 2 H), 7.55 (d, J = 8.3 Hz, 1 H), 7.64 (s, 1 H), 7.78–7.85 (m, 1 H), 8.09–8.15 (m, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 85.3, 110.5, 120.1, 121.5, 123.4, 125.5, 126.0, 126.3, 126.7, 127.8, 130.0, 133.2, 134.7, 151.7. IR (CHCl₃): v = 662, 773, 794, 1069, 1262, 1393, 1579, 2919, 3054 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₆H₁₅N₂O (M + H)⁺ 251.1184, found 251.1172. HPLC: ee: 94%, Chiralpak OD-H (250 × 4.6 mm), flow: 1.0 mL/min, *n*-heptane/ethanol 97/3, retention times: (*R*)-**3u**: 23.367 min, (*S*)-**3u**: 28.622 min. [α]p²²= +1.3 (c 0.3, CHCl₃).

(S)-1-[1-(Benzyloxy)allyl]-1*H*-imidazole ((*S*)-3a). Imidazole was treated with allene 1a (43.9 mg, 0.3 mmol) according to the general procedure. The solvent was removed in vacuo and the crude residue was filtrated over diatomaceous-earth pad with *n*-heptane to afford the product 3a as slightly yellow oil (57 mg, 89%, 92% ee).

All analytical data are identical to those reported previously. **HPLC**: ee: 92%, Chiralpak OD-H (250 × 4.6 mm), flow: 1.0 mL/min, *n*-heptane/ethanol 97/3, retention times: (*R*)-**3a**: 19.953 min, (*S*)-**3a**: 22.876 min. $[\alpha]_{D^{22}} = +0.5$ (c 0.2, CHCl₃).

(S)-1-{1-[(4-Bromobenzyl)oxy]allyl}-1*H*-imidazole ((S)-3v). Imidazole was treated with allene 1d (67.5 mg, 0.3 mmol) according to the general procedure. Column chromatography (*n*-heptane/EtOAc 20:1 \rightarrow 10:1) afforded the product 3v as slightly yellow oil (78 mg, 89%, 93% ee).

R_F (silica gel, *n*-heptane/EtOAc = 10:1): 0.17 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 4.31 (d, *J* = 12.0 Hz, 1 H), 4.43 (d, *J* = 12.0 Hz, 1 H), 5.40 (ddd, *J* = 0.9, 1.5, 10.5 Hz, 1 H), 5.41 (ddd, *J* = 0.9, 1.5, 17.2 Hz, 1 H), 5.65 (dt, *J* = 1.5, 4.3 Hz, 1 H), 6.04 (ddd, *J* = 4.3, 10.5, 17.2 Hz, 1 H), 7.05 (s, 1 H), 7.11–7.18 (m, 2 H), 7.45–7.51 (m, 2 H), 7.64 (s, 1 H). ¹³**C** NMR (400 MHz, CDCl₃): δ = 68.9, 84.6, 119.2, 122.1, 129.4, 130.1, 131.7, 133.9, 135.3, 136.3. **IR** (CHCl₃): v = 479, 663, 805, 1011, 1068, 1216, 1488, 2873, 3109 cm⁻¹. **HRMS** (ESI⁺) calcd. for C₁₃H₁₃BrN₂ONa (M + Na)⁺ 315.0103, found 315.0111. **HPLC**: ee: 93%, Chiralpak OD-H (250 × 4.6 mm), flow: 1.0 mL/min, *n*-heptane/ethanol 97/3, retention times: (*R*)-**3v**: 22.208 min, (*S*)-**3v**: 27.493 min. $[\alpha]_D^{22}$ = +0.8 (c 0.3, CHCl₃).

(S)-1-{1-[(3,5-Dimethoxybenzyl)oxy]allyl}-1*H*-imidazole ((S)-3w). Imidazole was treated with allene 1e (61.9 mg, 0.3 mmol) according to the general procedure. Column chromatography (*n*-heptane/EtOAc $10:1 \rightarrow 1:1$) afforded the product 3w as slightly yellow oil (74.0 mg, 90%, 94% ee).

R_F (silica gel, *n*-heptane/EtOAc = 1:1): 0.43 (UV, KMnO₄-solution). ¹**H** NMR (400 MHz, CDCl₃): δ = 3.78 (s, 6 H), 4.27 (d, J = 12.2 Hz, 1 H), 4.48 (d, J = 12.2 Hz, 1 H), 5.39 (ddd, J = 0.8, 1.4, 10.5 Hz, 1 H), 5.42 (ddd, J = 0.8, 1.5, 17.2 Hz, 1 H), 5.67 (dt, J = 1.3, 4.3 Hz, 1 H), 6.04 (ddd, J = 4.3, 10.5, 17.2 Hz, 1 H), 6.41 (t, J = 2.1 Hz, 1 H), 6.43 (d, J = 2.0 Hz, 2 H), 7.06 (s, 1 H), 7.14 (s, 1 H), 7.64 (s, 1 H). ¹³C NMR (400 MHz, CDCl₃): δ = 55.3, 69.6, 84.3, 100.1, 105.6, 116.9, 119.0, 130.0, 134.1, 136.3, 138.5, 161.0. IR (CHCl₃): v = 664, 833, 1060, 1064, 1153, 1205, 1462, 1597, 2931, 3110 cm⁻¹. HRMS (ESI⁺) calcd. for C₁₅H₁₉N₂O₃ (M + H)⁺ 275.1396, found 275.1384. HPLC: ee: 94%, Chiralpak OD-H (250 × 4.6 mm), flow: 1.0 mL/min, *n*-heptane/ethanol 97/3, retention times: (*R*)-**3w**: 30.201 min, (*S*)-**3w**: 35.069 min. [α]p²²= +1.0 (c 0.3, CHCl₃).

(S)-7-[1-(Benzyloxy)allyl]-1,3-dimethyl-1*H*-purine-2,6(3*H*,7*H*)-dione ((S)-3q). Theophylline (64.9 mg, 0.36 mmol) was treated with allene 1a (43.9 mg, 0.3 mmol) according to the general procedure. Column chromatography (*n*-heptane/EtOAc $10:1 \rightarrow 1:1$) afforded the product 3q as a white powder (72.0 mg, 74%, 92% ee).

O N N BnO''' (S)-3q All analytical data are identical to those reported previously. **HPLC**: ee: 92%, Phenomenex Lux 3u Cellulose-1, flow: 0.5 mL/min, *n*-heptane/2-propanol 70/30, retention times: (*R*)-**3q**: 15.832 min, (*S*)-**3q**: 16.518 min. $[\alpha]_D^{22} = +0.4$ (c 0.2, CHCl₃).

Determination of the absolute configuration

High quality single crystal of (S)-**3q** was obtained through slow solvent evaporation: a saturated solution of **3q** in toluene was prepared and filtered over an Acrodisc HPLC syringe filter to ensure the absence of crystallites. The resulting filtrate was transferred to a scintillation flask that was sealed and equipped with a hollow needle to allow slow evaporation of the solvent. The acquired single crystal was subjected to single X-ray diffraction and was subsequently analyzed with chiral HPLC to unambiguously link the absolute configuration with the retention time of one of the enantiomers of **3q**.

IB083-1_PROTON_01

IB012-4_PROTON_01

3fa after purification

1D Selective Gradient NOESY freq: 6.825ppm

— 6.82

2.19

$$\begin{array}{c} \begin{array}{c} & & \\$$

IB087-1F2Full_PROTON_01

✓ 4.52
✓ 4.49
✓ 4.46
✓ 4.43

IB283-1F2Full_PROTON_01

Chiral HPLC chromatograms

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	24 177	52050802	3816742	51 744	50 718
Method: 98:2 <i>n</i> -heptane/ethanol	2	26.802	48550515	2574533	48.256	40.282
	Total		100610317	6391275	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	24.201	4812427	40504	9.033	8.368
Method: 98:2 <i>n</i> -heptane/ethanol	2	26.823	48463640	443533	90.967	91.632
	Total		53276067	484037	100.000	100.000

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	20.958	610857	282484	47.789	58.360
Method: 97:3 n-heptane/ethanol	2	27.461	667381	201553	52.211	41.640
	Total		1278238	484037	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	20.989	6123274	397268	5.218	5.009
Method: 97:3 <i>n</i> -heptane/ethanol	2	27.478	111225781	7533818	94.782	94.991
	Total		117349055	7931086	100.000	100.000

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	23.313	7214426	107874	52.048	54.764
Method: 97:3 <i>n</i> -heptane/ethanol	2	28.595	6646667	89106	47.952	45.236
	Total		13861093	196980	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	23.367	1492808	8104	3.788	2.987
Method: 97:3 <i>n</i> -heptane/ethanol	2	28.622	37916075	263217	96.212	97.013
	Total		39408883	271321	100.000	100.000

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	19.971	56134369	4320908	49.985	57.988
Method: 97:3 <i>n</i> -heptane/ethanol	2	22.899	56168059	3130475	50.015	42.012
	Total		112302428	7451383	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	19.953	5941785	347969	4.124	3.999
Method: 97:3 n-heptane/ethanol	2	22.876	138136426	8353426	95.876	96.001
	Total		144078211	8701395	100.000	100.000

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	22.172	34384281	638868	49.605	58.355
Method: 97:3 <i>n</i> -heptane/ethanol	2	27.468	34931559	455927	50.395	41.645
	Total		69315840	1094795	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	22.208	2089828	28307	3.988	3.567
Method: 97:3 n-heptane/ethanol	2	27.493	50313085	765294	96.012	96.433
	Total		52402913	793602	100.000	100.000

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	30.184	25135092	261437	50.233	59.122
Method: 97:3 n-heptane/ethanol	2	35.034	24901920	180762	49.767	40.878
	Total		50037012	442199	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: OD-H	1	30.201	2003561	14718	3.270	3.039
Method: 97:3 <i>n</i> -heptane/ethanol	2	35.069	59267423	469588	96.730	96.961
	Total		61270984	484306	100.000	100.000

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: Cellulose-1	1	15.801	22800666	1945268	49.435	51.048
Method: 70:30 <i>n</i> -heptane/lpA	2	16.487	23321851	1865397	50.565	48.952
	Total		46122517	3810665	100.000	100.000

Detector A Ch1 254nm

Injection Volume : 10 uL	Peak	Ret. Time	Area	Height	Area %	Height %
Column: Cellulose-1	1	15.832	4912705	326088	3.640	3.957
Method: 70:30 n-heptane/lpA	2	16.518	130040912	7914178	96.360	96.043
	Total		134953617	8240266	100.000	100.000

— test-19.jws

Measure Range: 400 - 200 nm

Concentration: 0.15 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

test-14.jws

Measure Range: 400 - 200 nm

Concentration: 0.05 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

Measure Range: 400 - 200 nm

Concentration: 0.05 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

test-26.jws

Photometric Mode: CD, HT

Measure Range: 400 - 200 nm

Concentration: 0.05 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

---- test-16.jws

Measure Range: 400 - 200 nm

Concentration: 0.05 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

— test-11.jws

Measure Range: 400 - 200 nm

Concentration: 0.12 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

Measure Range: 400 - 200 nm

Concentration: 0.07 mg/ml

D.I.T.: 1 sec

Bandwidth: 1.00 nm

