SUPPLEMENTARY INFORMATION

Zhuang et al.

TGFβ1 Promotes Gemcitabine Resistance Regulating the LncRNA-LET/NF90/miR-145 Signaling Axis in Bladder Cancer

CONTENTS

SUPPLEMENTARY METHODS2
FIGURE S14
FIGURE S26
FIGURE S3
FIGURE S48
FIGURE S59
FIGURE S6
TABLE S111
TABLE S213
TABLE S315

SUPPLEMENTARY METHODS

Cell viability assay. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed to assess cell survival. 1,500 cells per well were seeded to the 96-well plate in triplicate. GEM at various concentrations (2.5~20 μ M) were added 24 h later. Three days post treatment, cells were washed with PBS and MTT (5 mg/ml) was added and incubated for 3 h at 37°C. Plates were shaken at room temperature for 15 min and absorbance at 490 nm was recorded with a microplate reader (BioTek Instruments, Winooski, VT). As for the collection of viable cells after GEM treatment, UBC cells were treated with either vehicle (control) or GEM for 3 days and allowed to recover in fresh media for another 3 days.

Flow cytometry. After UBC cells were trypsinized and prepared as single-cell population, CD44 (BD Biosciences, San Jose, CA, USA, 1:25) was incubated with cells in .PBS/0.5% BSA for 15 min at 4°C, followed by the analysis on a BD FACScan flow cytometer.

Plasmid construction and cell transfection. LncRNA-LET promoter and DNA with SMAD binding element deletion (ΔSBE) were generated from human genomic DNA by PCR and cloned into pGL3-basic vector (Promega) at BgIII and HindIII sites. For IncRNA-LET overexpression, we cloned IncRNA-LET full length into vector pcDNA3.1 and lentiviral expression vector pCDH, respectively. For IncRNA-LET knockdown, shRNA targeting IncRNA-LET was inserted into the lentiviral expression vector pLKO.1 at AgeI and EcoRI sites. Recombinant lentiviruses were produced by transient transfection of 293FT packaging cells. DNA encoding NF90 was cloned into p3XFlag-CMV10 plasmid at BgIII and KpnI sites. Pri-miR-145-WT and pri-miR-145-MUT were cloned into pcDNA3.1. HMGA2-3'UTR, HMGA2-3'UTR mutant, KLF4-3'UTR and KLF4-3'UTR mutant were constructed in psiCHECK2 at XhoI and NotI sites. For cell transfection, 20 μM siRNA or scramble control (Genepharma, Shanghai, China), 1 μg plasmids or empty vector, 50 μM mimic

2

miR-145 or mimic control (RIBOBIO, Guangzhou, China) were transfected into cells using Lipofectamine 3000. Analysis were performed 48 h post transfection. All sequences of siRNAs and mimic miRNAs were presented in Table S1.

Luciferase assay. Luciferase assays were performed using a luciferase assay kit (Promega). For microRNA, T24 cells in a 24-well plate were transfected with wild-type or mutant KLF4 or HMGA2 3'UTR plasmids with mimic miRNA negative control and mimic miR-145, respectively.

Figure S1. Increased CSC markers in 5637 xenografts treated with GEM *in vivo* and the downregulation of IncRNA-LET is required for 5637 UBC stemness. (A) *In vivo* GEM chemotherapy simulates clinical regimen with multiple treatment cycles (dashed boxes) and gap periods. Tumor sizes of 5637 xenografts were measured for GEM treatment and vehicle control group (n = 6 per group). (B) Sphere formation assay of primary cells derived from 5637 xenografts of control group (Veh) and GEM (n=3 per group). (C) Representative H&E and IHC data showing the expression levels of CSC

markers (CK5 and CK14) in 5637 xenografts of control and GEM groups (n = 6 per group). **(D)** Western blotting of CSC markers in 5637 xenografts of control and GEM groups. **(E)** The levels of IncRNA-LET in a panel of UBC cell lines and 3 pairs of adjacent normal bladder (N) and UBC (T) samples. **(F)** Knockdown efficiency of IncRNA-LET in 5637 cells. **(G, H)** ALDH^{high} population **(G)** and CSC markers **(H)** were determined by flow cytometer and Western blotting in 5637 cells with and without IncRNA-LET depletion (n=3 per group). Data are shown as mean ± SD and represent three independent experiments with similar results. ** *P* < 0.01; *** *P* < 0.001 (Student's unpaired two-tailed *t*-test).

Figure S2. Increase of cancer stemness markers in cells treated with chemotherapeutic agents *in vitro*. (A) Survival of T24 and 5637 cells treated with GEM at the indicated concentrations (n=5 per group). (B) Schematic illustration of GEM treatment to enrich CSCs *in vitro*. (C,D) The changes of ALDH^{high} (C) and CD44⁺ (D) population of T24 and 5637 cells after 3.8 and 6.4 μ M GEM treatment, respectively (n=3 per group). (E) The protein levels of CSC markers in T24 and 5637 cells treated with vehicle or GEM. Data are shown as mean ± SD and represent at least two independent experiments with similar results. ** *P* < 0.01 (Student's unpaired two-tailed *t*-test).

Figure S3. Activation of canonical TGF β 1 signaling promotes UBC stemness. (A) Expression of the key components in TGF β 1/SMAD pathway in T24 xenografts treated with vehicle or GEM (n=5 per group). (B) Western blotting showing the levels of p-SMAD2 and SMAD2 in T24 cells treated with or without TGF β 1 and/or TGF β RI inhibitor, SB-431542. (C) Knockdown efficiency of Smad4 in T24 cells by Western blotting. Sphere numbers (D) and ALDH^{high} population (F) were determined in T24 cells treated with or without TGF β 1 and/or TGF β RI inhibitor, SB-431542 (n=3 per group). (E) Sphere numbers in T24 cells transfected with control (siNC) or 2 different RNAi of SMAD4 (siSMAD4#1, siSMAD4#2), followed by vehicle or TGF β 1 treatment (n=3 per group). Data are shown as mean ± SD and represent at least two independent experiments with similar results. * P < 0.05, ** P < 0.01, *** P < 0.001 (Student's unpaired two-tailed *t*-test).

Figure S4. The stabilized NF90 by the reduced IncRNA-LET is required for cancer cell stemness. (A) Western blotting showing NF90 protein level in 5637 cells depleted of IncRNA-LET. (B) Protein level of NF90 in J82 cells over-expressed IncRNA-LET, followed by 20 μ M MG-132 treatment determined by Western blotting. ALDH^{high} population (C) and expression of CSC markers (D) were determined by flow cytometer and Western blotting in control (siNC), IncRNA-LET knockdown (siLET#2), and simultaneous knockdown IncRNA-LET and NF90 (siLET#2 + siNF90) of 5637 cells (n=3 per group). (E) Protein level of NF90 was determined by Western blotting in vehicle -treated and GEM resistant 5637 cells. (F) The ALDH^{high} population was determined by flow cytometer in control (siNC) and NF90 knockdown (siNF90) 5637 cells treated with or without GEM. Data are shown as mean ± SD and represent at least two independent experiments with similar results. ** *P* < 0.01, *** *P* < 0.001 (Student's unpaired two-tailed *t*-test).

Figure S5. NF90/miR-145 inhibits UBC cell stemness through HMGA2 and KLF4. (A) Protein levels of NF90, HIF1α and VEGF were determined in T24 cells transfected with control (siNC) or IncRNA-LET knockdown (siLET-#1 and siLET-#2) by Western blotting. (B) The gRT-PCR showing the levels of miR-145 and miR-143 in control (siNC) and NF90 knockdown (siNF90 #1 and #2) T24 and 5637 cells. (C) The qRT-PCR showing the levels of miR-143 and miR-145 in control (Vector) and IncRNA-LET stable overexpression (pCDH-LET) T24 cells. (D) ALDH^{high} population was determined by flow cytometry in control (NC), mimic miR-145, and vehicle or GEM treated T24 and 5637 cells. (E) Protein levels of stemness markers were analyzed in control (NC), mimic miR-145, and vehicle or GEM treated T24 cells by Western blotting. (F) HMGA2 and KLF4 were predicted as miR-145 targets. Sequences of wild type (KLF4-3'UTR-WT, HMGA2-3'UTR-WT) and mutated 3'UTR Renilla luciferase reporters (KLF4-3'UTR-Mut, HMGA2-3'UTR-Mut) were listed. (G) Relative luciferase activity was measured in control (NC) and mimic miR-145 transfected T24 cells, which were simultaneously transfected with KLF4-3'UTR-WT or KLF4-3'UTR-Mut, HMGA2-3'UTR-WT or HMGA2-3'UTR-Mut. (H,I) expression of CSC markers (H) and ALDH^{high} population (I) were determined by Western blotting and flow cytometer in control (NC) and miR-145 overexpressed (miR-145) T24 cells, transfected with vector or KLF4/HMGA2 expression plasmids (n=3 per group). Data are shown as mean ± SD and represent at least two independent experiments with similar results. * P < 0.05, ** *P* < 0.01, *** *P* < 0.001 (Student's unpaired two-tailed *t*-test).

Figure S6. Inhibition of TGF β 1 signaling pathway suppressed GEM-induced UBC stemness. (A) The ALDH^{high} population was determined by flow cytometer in control (siNC) and SMAD4 knockdown (siSMAD4 #1 and #2) T24 cells treated with or without GEM. (B) Western blotting showing the levels of CSC markers and NF90 in control (siNC) and SMAD4 knockdown (siSMAD4 #1 and #2) T24 cells, followed by the treatment with or without GEM. (C-D) mRNA levels of IncRNA-LET (C) and miR-145 (D) were measured by qRT-PCR in control (siNC) and SMAD4 knockdown (siSMAD4 #1 and #2) T24 cells treated with or without GEM. Data are shown as mean ± SD and represent at least two independent experiments with similar results. * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001 (Student's unpaired two-tailed *t*-test).

Supplementary Table S1. List of oligonucleotide sequences

	Direction	Sequences (5'-3')			
mRNA primers					
	Forward	CCTGCTACATATTAGGACTC			
	Reverse	TGAGGAAGGTGGTATTGG			
	Forward	CCCACATGAAGCGACTTCCC			
NLF4	Reverse	CAGGTCCAGGAGATCGTTGAA			
НМСАЗ	Forward	ACCCAGGGGAAGACCCAAA			
HIMGAZ	Reverse	CCTCTTGGCCGTTTTTCTCCA			
CD44	Forward	CTGCCGCTTTGCAGGTGTA			
CD44	Reverse	CATTGTGGGCAAGGTGCTATT			
	Forward	CTGTGTTCCAGGAGCCGAAT			
ALDHIAI	Reverse	TGCCTTGTCAACATCCTCCTTA			
NANOG	Forward	CTGCAGAGAGAGTGTCGCA			
NANOG	Reverse	ACCAGGTCTTCACCTGTTTGT			
0074	Forward	CAAAGCAGAAACCCTCGTGC			
0014	Reverse	CTCGGACCACATCCTTCTCG			
ß actin	Forward	CATGTACGTTGCTATCCAGGC			
p-acim	Reverse	CTCCTTAATGTCACGCACGA			
miRNA primers					
miR-145-5p	RT	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGGGAT TC			
	qPCR	ACACTCCAGCTGGGGTCCAGTTTTCCCAGG			
miR-143-3p	RT	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGAGCTA CA			
	qPCR	ACACTCCAGCTGGGTGAGATGAAGCACTGT			
RNU6	RT	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACGCT TC			
	qPCR	ACACTCCAGCTGGGACGCAAATTCGTGAAG			
PCR primers for subclo	ning				
	Forward	GAAGATCTGTAAGAGCATCCCTACAAAATAG			
pGL3-LE1-promoter	Reverse	CCCAAGCTTTGAGGGAGCACCAGATGTC			
	Overlap				
pGL3-LET-promoter-∆S	Forward	TGGTGTAGCCCCTGTACTGTTCTCAGAAAA			
BE	Overlap Reverse	TTTTCTGAGAACAGTACAGGGGCTACACCA			
pcDNA3.1+-LET	Forward	GGGGTACCCTCACAGACAAAGGAGAGTCTG			
	Reverse	TGCTCTAGATGGGTGTTTTCATGTAGGAAATG			
	Forward	CGCGAATTCATCGATAGATCTAATGCGTCCAATGCGAATTTT			
p3XFlag-CMV10-NF90	Reverse	CCTCTAGAGTCGACTGGTACCCTAGGAAGACCCAAAATCAT			
pcDNA3.1-pri-miR-145- wt	Forward	d GGGGTACCCCCTGGAAAGCCACTAGTAC			

	Reverse	TGCTCTAGACTGGCTGCATTCCAAATCG		
pcDNA3.1-pri-miR-145-	Overlap Forward	GGATTCCTGGAAATACTGCCCTTGAGGTCATGG		
Mut	Overlap Reverse	CCATGACCTCAAGGGCAGTATTTCCAGGAATCC		
psiCheck2-KLF4-3'UTR	Forward	CTCGAGCACACTGTCTTCCCGATGAGG		
-wt	Reverse	GCGGCCGCATGCAAAATACAAACTCCACAAAA		
	Overlap			
psiCheck2-KLF4-3'UTR	Forward			
-Mut	Overlap Reverse	CGTTTATCCACGCCCTTGGCATTTTGTAAGT		
	Forward	AATTCTAGGCGATCGCTCGAGTGATAAGCAAGAGTGGGCGG		
psiCheck2-HMGA2 -3'UTR-wt	Reverse	ATTTTATTGCGGCCAGCGGCCGCACCTCCTGGCCCAGTTGA A		
psiCheck2-HMGA2	Overlap Forward	CACTTCATTTTACGAGCATCTAC		
-3'UTR-Mut	Overlap			
	Reverse			
	Forward	CTAGCTAGCTGGGTGTTTTCATGTAGGAAATG		
	Reverse	ATTTGCGGCCGCCTCACAGACAAAGGAGAGTCTG		
shRNA primers				
	Forward	CCGGGAGCTGAAATCTTAGGTTATTCTCGAGAATAACCTAAG ATTTCAGCTCTTTTTG		
shLET	Reverse	AATTCAAAAAGAGCTGAAATCTTAGGTTATTCTCGAGAATAAC CTAAGATTTCAGCTC		
siRNA sequences				
	Sense	GGAGUAAAGGGAAAGAGTT		
siLET#1	Anti-sense	CUCUUUCCCUUUACUCCTT		
	Sense	GUGCAUGUGGUAGGUUAGATT		
siLET#2	Anti-sense	UCUAACCUACCACAUGCACTT		
	Sense	UAAAGAAGCUGAAGGAGAATT		
siSMAD4#1	Anti-sense	UUCUCCUUCAGCUUCUUUATT		
	Sense	GCACAAGGUUGGUUGCUAATT		
siSMAD4#2	Anti-sense	UUAGCAACCAACCUUGUGCTT		
oiNE00 #1	Sense	GCUCAAAGCUGUGUCCGACUGGATT		
511NF90 #1	Anti-sense	UCCAGUCGGACACAGCUUUGAGCTT		
	Sense	AAGCCACUGAUGCUAUUGGGCTT		

Supplementary Table S2. Fold change of IncRNAs in T24 and 5637 xenografts treated with gemcitabine.

T24			
IncRNA	Folds		
HOTAIRM1	968.085		
lincRNA-P21	25.8637		
PCGEM1	15.3191		
H19	15.1928		
HIF1A-AS1	4.19863		
HULC	3.49282		
ZEB2NAT	3.38106		
BANCR	3.03472		
GADD7	3.02559		
AK126698	2.60184		
ncRNA	2.29128		
HOTAIR	2.23088		
HOTTIP	2.17063		
NEAT1	2.06226		
PTENP1-AS	1.98990		
GACTA1	1.95995		
PCAT1	1.83319		
PLncRNA-1	1.81818		
IncRNA-VLDLR	1.76112		
LSINCT5	1.75851		
SRA1	1.71965		
PTENP1	1.62827		
IncRNA-ATB	1.58384		
CRNDE	1.57309		
RERT	1.45241		
Xist	1.44360		
DICER	1.43210		
FAS-AS1	1.39815		
ASAP1-IT1	1.39147		
ANRIL	1.33230		
Kcnq1OT1	1.31342		
AFAP1-AS1	1.25962		
SPRY4-IT1	1.24536		
IncRNA-MVIH	1.22728		
MALAT1	1.19549		
PCAT6	1.18903		

5637			
IncRNA	Folds		
IncRNA-VLDLR	24.6862		
ASAP1-IT1	5.24484		
Loc285194	4.29563		
CTBP1-AS	3.13102		
HOTAIRM1	2.98165		
GAS3	2.89049		
ZEB2NAT	2.63146		
PCAT114	1.84122		
GAS5	1.66768		
HOTAIR	1.55595		
PTENP1-AS	1.52120		
IncRNA-DQ786227	1.47010		
HIF1A-AS1	1.45590		
SchLAP1	1.28188		
SCAL1	1.26987		
CCAT1	1.26285		
HOTTIP	1.23853		
NEAT1	1.16509		
SPRY4-IT1	1.08999		
FAS-AS1	0.99941		
MIR155HG	0.97079		
AK126698	0.96750		
MIR7-3HG	0.96260		
RP11-462C24.1	0.95516		
SCA8	0.93470		
ERIC	0.91406		
PANDAR	0.91255		
MALAT1	0.90032		
IncRNA-APTR	0.87858		
PTENP1	0.84269		
UCA1	0.83083		
NRON	0.82808		
DICER	0.82507		
SOX2OT	0.80058		
ncRNA	0.79977		
PCAT6	0.79069		

NRON	1.14729		
PCAT114	1.05698		
MIR155HG	1.01104		
IncRNA-APTR	1.00267		
PANDAR	0.99371		
CTBP1-AS	0.97694		
PRNCR1	0.95200		
RP11-462C24.1	0.94493		
MIR31HG	0.92699		
SOX2OT	0.87793		
IncRNA-Dreh	0.85341		
JPX	0.83278		
SCAL1	0.83007		
IncRNA-DQ786227	0.81171		
CCAT1	0.78678		
GAS3	0.76875		
MIR7-3HG	0.75764		
linc-UBC1	0.71866		
SCA8	0.71453		
TUG1	0.69632		
MEG3	0.67537		
PVT1	0.65532		
IncRNA-JADE	0.56974		
RMRP	0.53230		
ERIC	0.53031		
GAS5	0.45898		
IncRNA-LET	0.44831		
UCA1	0.30248		
Loc285194	0.26241		
DANCR	0.00097		
SchLAP1	#DIV/0!		
IGF2-AS	#DIV/0!		
CCAT2	#DIV/0!		
GAS6-AS1	#DIV/0!		
lincRNA-RoR	#DIV/0!		
ADAMTS9-AS2	#DIV/0!		

ADAMTS9-AS2	0.77532
IncRNA-MVIH	0.75666
PVT1	0.74824
HULC	0.74507
MEG3	0.72881
Xist	0.72109
BANCR	0.67967
AFAP1-AS1	0.66690
H19	0.65967
DANCR	0.64432
IncRNA-ATB	0.61326
TUG1	0.59243
CRNDE	0.56775
linc-UBC1	0.55794
PCAT1	0.54220
JPX	0.53319
GADD7	0.52179
PRNCR1	0.51929
PCGEM1	0.50860
RERT	0.49072
CCAT2	0.49004
Kcnq1OT1	0.46226
PLncRNA-1	0.42211
IncRNA-LET	0.42126
ANRIL	0.41980
MIR31HG	0.33195
RMRP	0.31347
SRA1	0.26843
GAS6-AS1	0.26729
IncRNA-JADE	0.26435
lincRNA-RoR	0.14575
GACTA1	0.09590
lincRNA-P21	0.07118
IncRNA-Dreh	#DIV/0!
IGF2-AS	#DIV/0!
LSINCT5	#DIV/0!

Supplementary Table S3: Correlation between IncRNA-LET expression

	Patients (n = 60)		IncRNA-LET expression		
Characteristic	Number	%	Low	High	Р
			(n = 30)	(n = 30)	value
Age					0.267
<60	19	31.7	7	12	
≥60	41	68.3	23	18	
Gender					0.146
Male	51	85.0	23	28	
Female	9	15.0	7	2	
Tumor number					0.399
Single	18	30.0	11	7	
Multiple	42	70.0	19	23	
Tumor stage					0.039
<	16	26.7	4	12	
≥	44	73.3	26	18	
Tumor grade					0.424
Low	7	11.7	2	5	
High	53	88.3	28	25	
Microvasclular invasion					0.003
Absent	38	63.3	13	25	
Present	22	36.7	17	5	
Lymph-node metastasis					0.012
Absent	50	83.3	21	29	
Present	10	16.7	9	1	
Recurrence					0.005
Absent	46	76.7	18	28	
Present	14	23.3	12	2	

and clinicopathological characteristics of 60 UBCs

Note: Bold values indicate P < 0.05. Fisher's exact test was used to analyze dichotomous variables. The median expression level was used as the cutoff point. Low expression of IncRNA-LET in 30 patients was classified as values below the 50th percentile. High IncRNA-LET expression in 30 patients was classified as values at or above the 50th percentile.