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S1. Experimental details 

S1.1. Mechanical properties of constitutive material 

The material properties of the FLX9795-DM rubber-like material were obtained by measuring 

the mechanical response of the 3D printed dogbone specimens. The experimental setup is shown 

in Figure S1 (a). For the dogbone specimen, speckles were sprayed on the samples using a spray 

paint for digital image correlation (DIC) measurements. The deformation and local strain contours 

of the samples were tracked by using DIC (Vic-2D, Correlated Solution) to calibrate the nominal 

stress-strain curves and to obtain the Poisson’s ratio of the constitutive material. Figure S1 (b) 

shows the measured stress-strain curves (true and engineering strain) under uniaxial tension. 

According to ASTM 412, the basic properties of FLX9795-DM are characterized by a Young’s 

modulus of 5.5E   MPa, Poisson’s ratio 0.37  ,  and density 1157   kg/m3. Here the 

Young’s modulus is obtained from the measured stress-strain curve of dogbone specimen. 

Poisson’s ratio of dogbone specimen is calculated by following the method in S 1.2. The density 

is obtained by averaging the densities of five dogbone specimens. 
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S1.2. Calculation of Poisson’s ratio 

To quantify the deformation taking place in the lattice materials during the experiments an 

image processing software (ImageJ 1.49 q) was used to determine the intersection points in the 

specimen. The deformation near the four edges of the specimen was strongly affected by boundary 

conditions. Therefore, we focused on the central 30% of the specimens to avoid Saint Venant 

effects from the edges, as shown in Figure S2 (b). The intersection points at the corners of the 

chosen area were determined as  , ,,i j i jX Y  in the undeformed and  , ,,i j i jx y  in the deformed state, 

respectively. The row and the column indices vary between 1 4i   and 1 4j  . For each unit 

cell, the horizontal and vertical distances were calculated from the coordinates  , ,,i j i jx y , i.e., 

, , 1 ,i j i j i jx x x    and 
, 1, ,i j i j i jy y y   . Prior to the application of the tensile loading, we 

assessed the deformations in the undeformed state, i.e., 
, , 1 ,i j i j i jX X X    and 

, 1, ,i j i j i jY Y Y   . 

A schematic diagram of the central region of the lattice structure under consideration with the 

definitions of 
,i jx ,

,i jy , 
,i jX  and 

,i jY
 
is shown in Figure S2 (b). The local homogenized 

values of the engineering strain for each unit cell were determined as: 

, , , , 1xx i j i j i jx X      and 
, , , , 1yy i j i j i jy Y     .                                                                         (S1) 

The local values of the engineering strain were then used to calculate local values of the Poisson’s 

ratio as: 

, ,
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


   .                                                                                                                             (S2)                                                                                                                                        

In our case, the loading is nonlinear, the incremental Poisson’s ratio, 
, ,in i jv , should be calculated 

as: 
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.                                                                                                                                                 (S3) 

Finally, the ensemble average Poisson’s ratio of the nine central unit cells under consideration was 

computed as
, ,yx in i jv v . 

 

S2. Numerical simulations 

The numerical simulations related to the mechanical response of the lattice metamaterials are 

conducted using commercial FE package ABAQUS/Standard (Simulia, Providence, RI). We have 

used models with 5 × 5 unit cells in all the simulations (Figure S3 (a) and (b)). All models are 

generated by beam elements (ABAQUS hybrid element type B22H) and meshed after a 

convergence test. In addition, geometric nonlinearity is considered to represent the large 

deformation of the structure.  

Here, in our simulation, we use two types of boundary conditions. To simulate the 

experimental conditions in the numerical analysis, a uniaxial displacement loading is applied on 

the top surface, while the bottom is fixed along both the x and y directions (Figure S3 (a)). Under 

this boundary condition, the simulated results agree very well with the experimental results, as 

seen in Figure 2. To simulate the ideal conditions with avoiding Saint Venant effects from the 

edges, a uniaxial displacement loading is applied on the top surface, while the bottom surface is 

fixed along the y direction and the left surface is fixed along the x direction (Figure S3 (b)). Note 

that the periodic boundary conditions derived above are validated by comparison with analytical 

expressions and they agree very well, as shown in Figure 4. Therefore, for parametric analysis, the 

periodic boundary conditions are applied. Material model is critical to achieve better agreement 

between numerical simulation, experiment, and analytical model. Here we use a linear elastic 

model with a Young’s modulus of  5.5E   MPa, Poisson’s ratio 0.37  .  
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The postprocessing of the Poisson’s ratio was focused on the unit cell in the central region to 

avoid finite size and boundary conditions effects (Figure S3 (c)). The Poisson’s ratio can be 

calculated from the incremental ratio of the nominal strain in the horizontal edge and vertical edge 

of the rectangular unit cell. Specifically, we first calculated the average displacement component 

of the four edges, from which the strain along horizontal and vertical directions can be calculated 

as: 

2

R L

x

u u
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
  and 

2

T B
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v v

l



 .                                                                                                   (S4) 

In equation (S4) u  and v  indicate the average horizontal and vertical displacement 

components respectively; R, L, T, and B denote the right, left, top, and bottom edges of the unit 

cell, respectively (Figure S3 (c)). Finally, the incremental Poisson’s ratio is calculated as: 

x
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
.                                                                                                                                (S5) 

S3. Analytical model 

To describe the curved beam on a 2-D reference configuration, the undeformed length element 

dS after deformation becomes the deformed length element ds . The coordinate of the end point 

( , )X Y  in the un-deformed state deforms to ( , )x y  shown as Figure S5 (b). At the un-deformed 

state, the tangent slope angle at ( , )X Y  is denoted by  . At the deformed state, the tangent slope 

at ( , )x y  is denoted by  . The deformation at ( , )X Y  is denoted by ( , )u v  where u  is the 

horizontal displacement, and v is the vertical displacement. Hence 

 x X u  , y Y v  .                                                                                                                         (S6)                         

The rotation angle   can be found by  

    .                                                                                                                                         (S7) 
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Since the strain at the centroid axis is defined by ( ) /ds dS dS   , or 

(1 )ds dS  .                                                                                                                                   (S8) 

As in the case of in-extensional curved beam, 0  . For any length element dS , there is a 

corresponding radius of curvature R , such that 

dS Rd .                                                                                                                                       (S9) 

Here the radius of curvature R does not have to be a constant.  

For the deformed length element ds , the corresponding radius of curvature is denoted by r , i.e. 

ds rd .                                                                                                                                          (S10) 

For a linear elastic material with the Young’s modulus SE , integration of the above equation then 

gives the axial force N , shear force Q  and bending moment M  (per unit thickness, Fig 2 (d)) in 

the beam as 

sN E A  and (1 )s

d
M E I

ds


  .                                                                              (S11a, b) 

The equilibrium equations are  

0
dM

Q
ds

  , 0
dQ d

N
ds ds


  , and 0

dN d
Q

ds ds


  .                                                 (S12a, b, c) 

For the loading condition shown in Figure S3 (a-b), the axial and shear forces are  

0 0cos sinN N Q    and 0 0sin cosQ N Q   ,                                                                (S13) 

which satisfy Eqs. (S12b) and (S12c). Its substitution into Eq. (S12a), together with Eq. (S11), 

gives 

2

0 0 0 0

2

cos sin sin cos
(1 )( )

s s

N Q N Qd

d S E A E I

     
  .                                                                        (S14) 
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In our case, the shape of the sinusoidal beams can be mathematically described as

sin( / ) sin( )Z A X L A BX  , where A  is the wave amplitude and /B L . The length of 

sinusoidal beam is given by 

/2 /2
2 2

0 0
1 ( ') 1 ( cos( ))

L L

S Z dX AB BX dX     ,                                                                    (S15) 

which gives that  

21 ( cos( ))dS AB BX dX  .                                                                                                      (S16) 

And for the sinusoidal curve, the radius of curvature R  is given by 

arctan( ') arctan( cos( )) ( )Z AB BX f X    .                                                                              (S17) 

From Eq. (11), the derivation /d dS  could be denoted as 

2

1
( )

1 ( cos( ))

d d dX d d
n X

dS dX dS dX dXAB BX

   
  


                                                               (S18) 

Similarly, the derivation 
2 2/d dS could be denoted as 

2 2
2

2 2
( ) '( ) ( )

d d d
n X n X n X

dS dX dX

  
  ,                                                                                             (S19) 

Substitute Eq. (S17) to Eq. (S7) and derivation gives the expression of d dX and 
22d dX  as 

'( )
d d d d

f X
dX dX dX dX

   
    ,                                                                                                        (S20a) 

2 2

2 2
''( )

d d
f X

dX dX

 
  .                                                                                                                     (S20b) 

Substitute Eq. (17a, b) into Eq. (16), it becomes  

2 2
2 2

2 2
( ) '( ) ( ) ( '( ) ( ) '( ) ( ) ''( ))

d d d
n X n X n X n X n X f X n X f X

dS dX dX

  
     .                            (S21) 

Then substitute Eq. (18) to Eq. (11) and simply gives 
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2

2
( ) ( ) ( ) ( )

d d
h X g X m X H

dX dX

 
   ,                                                                                         (S22a) 

where ( )h X , ( )g X , ( )m X  and ( )H  are defined as  

2 1( ) (1 ( cos( )) )h X AB BX   ,                                                                                                         (S22b) 

2 3 2( ) sin( )cos( )( ( ))g X A B BX BX h X ,                                                                                             (S22c) 

3 2 2 2 3( ) cos( )( 1 2 ( ) cos(2 )) ( ))m X AB BX A B AB BX h X     ,                                                 (S22d) 

0 0 0 0cos sin sin cos
( ) (1 )( )

s s

N Q N Q
H

E A E I

   


 
  .                                                              (S22e) 

For the deform mode as shown in Figure S3 (a), the vanishing bending moment at the left end can 

be written as 0d d   , which gives the first boundary condition as 

0 0X

d

dX


                                                                                                                                     (S23) 

And at the right end, the tangent slope angle keeps unchanged (because of the symmetric geometry), 

which can be evaluated as 

/2 0X L                                                                                                                                       (S24)  

And at the right end, the deformed coordinates are endx x  and endz z  (because of the anti-

symmetric geometry), which can be evaluated by integrating cosdx ds  and sindz ds  from 

the left end to the right end, i.e., 

 
/2

1/20 0

0

cos sin
cos (1 ) ( )

l

end

S

N Q
x h X dX

E A

 
 

  ,                                                                   (S25a) 

/2
1/20 0

0

cos sin
sin (1 ) ( )

l

end

S

N Q
z h X dX

E A

 
 

  .                                                                   (S25b) 



8 

 

By solving Eqs. (S23) and (S24), both the deformed angles and coordinates at the two ends, i.e., 

end , endx  and endz , can be. We numerically solve this problem in Matlab by using Runge-Kutta 

method and several search methods. In other words, the following constitutive relation can be 

obtained: 

1 0 0( , )endx f N Q  and 2 0 0( , )endz f N Q .                                                                                 (S26) 

 

Figure S1. (a) 3D printed dogbone specimen under uniaxial tension. (b) Measured stress-strain 

relation of the dogbone specimen. 

 

Figure S2. (a) Experimental setup of the lattice specimen under uniaxial tension. (b) Calculation 

of Poisson’s ratio. 
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Figure S3. (a) FE model with boundary conditions for comparison with the experimental test. (b) 

FE model with periodic boundary conditions. 

 

Figure S4. 3-D isometric view of the simulated deformed structure at different levels of 

macroscopic strains. 
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Figure S5. (a) A curved beam subject to axial forces, shear forces and a moment at the right end; 

(b) deformation of a unit length element; (c) sign conventions of forces and moment. 

 


