Transcriptional control of motility enables directional movement of Escherichia coli in a signal

<u>gradient</u>

Jayamary Divya Ravichandar†‡, Adam G. Bower†‡[#], A. Agung Julius€ and Cynthia H. Collins†‡§*

† Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th

Street, Troy, New York 12180, United States of America

‡ Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy New York 12180, United States of America

[#] Regeneron Pharmaceuticals, Rensselaer, New York 12144, United States of America

₴ Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute,
110 8th Street, Troy, New York-12180, United States of America

§ Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York-12180, United States of America

* Phone: 518-276-4178 Fax: 518-276-4233. E-mail: ccollins@rpi.edu.

Supplementary information:

Supplementary figure S1: The inoculation distance of CoMot and CoMot+ cells from the 3OC6HSL source affects their migration response: To establish a 3OC6HSL gradient, 5.3µg of 3OC6HSL was added on a membrane and it was allowed to diffuse into the media for 8h prior to inoculation of CoMot and CoMot+ cells. Cells were inoculated at increasing distances from the source to quantify the effect of inoculation distance on migration response. The assay was set up in triplicate for each strain and representative images of plates after 24 h of incubation at 30°C are shown.

Supplementary figure S2: Time course simulation of CoMot and CoMot+ cells in a signal gradient shows directional movement towards the signal source: Signal gradients were simulated by using an initial signal concentration of 170 μ moles/m² on a membrane that was membrane was placed 1.25 cm from the edge of the plate. $3.5*10^7$ CoMot or CoMot+ cells/m² was used as the inoculum at the centre of the plate. The log (total cell concentration) indicated in the images were obtained following simulation times of 0, 18, 24 and 36 h. To simulate the migration response of CoMot and CoMot+ cells K_2 values of 100 and 1 nmoles/cm² were used, respectively.

Supplementary figure S3: Effect of the rate of switching from motile to static (y), diffusivity of the signal (D_a), sensitivity of cells to the signal (K_2 and K_4) and effective diffusivity of cells (D_m) on the system: In the simulations, signal gradients were simulated by using an initial signal concentration of 85 µmoles/m² on a membrane that was membrane was placed 1.25 cm from the edge of the plate. 3.5*10⁷ static cells/m² was used as the inoculum at the centre of the plate (migration distance = 0 cm). Results after a simulation time of 24 h are shown. (a) y was varied from $0.01 - 100h^{-1}$ and all other parameters were held constant at values defined in the base parameter set. For each value of y, the ratio of motile to static cells (m/s) across the diameter of the plate (migration distance = -4 to 4 cm) was plotted. The ratio was only calculated at points with a total cell concentration $\geq 10^8$ cells/m². (b) Simulations were run by varying D_a from 0.01 - 10cm²/h while holding all other parameters constant. For each value of D_a , the signal concentration across the diameter of the plate (migration distance = -4 to 4 cm) was plotted. (c) The response of cells was simulated using K_2 values in the 0.01 – 100 nmoles/cm² range. For each K_2 , the response of cells to gradients established using signal concentrations in the 0 – 1700 nmoles/m² range was simulated and the forward migration distance was measured as distances from the inoculation point (migration distance = 0) towards the signal source at which a total cell concentration $\geq 10^8$ cells/m² was observed. (d) Similarly, K_4 was varied from 0.00025 to 25000 nmoles/cm². The response of cells to gradients established using signal concentrations in the 0 - 1700 nmoles/m² range was simulated and the forward migration distance was determined. (e) For each simulated K_{4} , the forward and reverse migration distances in response to 85 µmoles/m² of the signal are plotted. Forward and reverse migration distances were measured as distances from the inoculation point (migration distance = 0) towards and away from the signal source at which a total cell concentration $\geq 10^8$ cells/m² was observed. (f) Simulations were run varying γ from 0 – 100h⁻¹. Forward and reverse migration distances were measured for each simulated y. (g) Simulations were run by varying D_m from 0.01-10cm²/h. Forward and reverse migration distances were measured for each simulated D_m .

Supplementary figure S4: CoMot-S and CoMot-S+ cells show 3OC6HSL-dependent decrease in migration on plates with different uniform 3OC6HSL concentrations: (a) CoMot-S and CoMot-S+ cells were inoculated on plates with 3OC6HSL concentrations ranging from 0 - 10µM. Migration radius was measured as the distance between the inoculation point and the visible edge of migration of cells on the plate after 24 h of incubation at 30°C. Error bars represent one standard deviation from the mean migration radius of three biological replicates. (b) Migration radius measured after 36 h of incubation at 30°C (c) Representative plate images from the assay after incubation for 24 h and (d) 36 h.

Supplementary figure S5: Quantitative assessment of 3OC6HSL produced by sender strains: (a) 3OC6HSHL-dependent luminescence response of *E. coli* reporter cells transformed with plasmids containing P_{esaR} -lux and $P_{\sigma70}$ -esaR170V/D91G (b) Luminesce of this reporter in response to a 100fold dilution of supernatants collected from sender-cell cultures (c) 3OC6HSHL-dependent luminescence response of *E. coli* reporter cells transformed with plasmids containing P_{esaR} -lux and $P_{\sigma70}$ -esaR (d) Luminesce of this reporter in response to a 100-fold dilution of supernatants collected from sender-cell cultures Error bars represent one standard deviation from the mean luminescence of three biological replicates. Paired t-tests were used to evaluate significance (p<0.02). Asterisk indicates luminesce that were significantly higher than the luminesce observed in response to 3OC6HSL in the supernatants from no-Esal control cells.

Supplementary figure S6: 3OC6HSL-insensitive strains lacking EsaR do not display directional movement in 3OC6HSL gradients generated by sender strains: (a) Control cells with no plasmid for Esal expression, or sender cells where Esal expression is controlled by a weak or strong RBS were used. Control, weak-sender and strong-sender cells were added on a Whatmann membrane and the plates were incubated for 8 h at 30° C. $\Delta motA$ transformed with plasmids expressing no *motA*, P_{esaR}-*motA* or P_{esaS}-*motA* were then inoculated at the centre of the plate and incubated at 30° C for 36 h. Representative plate images are shown. (b) Plot of forward (solid bars) and reverse (open bars) migration distances for each sender/control combination. Error bars represent one standard deviation from the mean forward migration distance of three biological replicates.

Supplementary table S1: Values used in the base parameter set

Parameter	Value	Choice of the value used
Growth rate (λ)	0.5 h ⁻¹	From literature ^{1,2}
Rate of switching from static to motile (k_1)	10 h ⁻¹	The key components captured by the parameter k_1 are the rates of synthesis of MotA and MotA-dependent restoration of motility in cells.
		We estimated a MotA synthesis rate of $30 - 90$ h ⁻¹ based on the typical
		rates for gene transcription ³ and protein translation ⁴ in <i>E. coli</i> . Since
		four MotA proteins are required per stator of the <i>E. coli</i> flagellar motor ⁵
		and motility in restored in a stepwise manner with the addition of each
		stator ⁶ , a base value of 10 h ⁻¹ was used for k_1 .
Rate of switching from	5 h ⁻¹	Based on typical protein decay rates in <i>E. coli</i> ⁷
motile to static (γ)		
Sensitivity of cells to A	100 nmoles/cm ²	Simulations were run varying K_2 to identify values that captured
when switching from	(CoMot)	experimentally observed sensitivity of CoMot+ cells to the signal. A
static to motile (K_2)	1 nmoles/cm ²	value of 1 nmoles/ cm ² approximately captured the response of
	(CoMot+)	CoMot+ cells. Shong et al. have demonstrated a 100-fold difference in
		the half maximal 3OC6HSL-sensitivity of <i>E. coli</i> luminescent reporter
		strains using the wild-type or EsaR-D91G repressor ⁸ . Based on this,
		we simulated the difference in response of CoMot and CoMot+ to 30C6HSL using K2 values of 100 and 1 nmoles/cm ² .
Sensitivity of cells to A	2.5 nmoles/cm ²	A K_4 in the same range of that utilized for K_2 was used in initial
when switching from		simulations. Since parametric studies revealed that K_4 only had a small
static to motile (K_4)		effect on system behavior, it was not varied in simulation for CoMot &
		CoMot+.
Effective diffusivity of	0.1 cm ² /h	D _m was measured experimentally by inoculating CoMot+ cells on a
cells (D _m)		plate with 1 μ M 3OC6HSL and measuring the migration diameter over
		a time course of 24 h. D_m was estimated as 0.1 cm ² /h from this assay
		(average migration area/time). The experimentally-estimated D_m
		accounts for drag and mechanical forces on cells from the agar in the
Diffusivity of the all state	0.00 am 2/h	
Diffusivity of the signal	0.06 cm²/h	From literature *
molecule (<i>D</i> _a)		

Supplementary table S2: Plasmids used in this study

Plasmid	Description	Reference
pDFB36	Plasmid with motA downstream of a lactose inducible promoter	Blair <i>et al.</i> 6
pCS26	Low-copy plasmid backbone	Dr. M.Surette
pCS-P _{esaR} -gfp	Plasmid with gfp downstream of PesaR	Shong et al.10
pCS- P _{σ70} -gfp	Plasmid with gfp downstream of a σ^{70} -dependent promoter	Dr. M.Surette
pCS-P _{esaR} -motA-gfp	motA-expression plasmid with motA and gfp downstream of PesaR	This study
pCS-P _{esaS} -motA-gfp	motA-expression plasmid with motA and gfp downstream of PesaS	This study
pAC- P _{σ70} -esaR	esaR-expression plasmid with esaR downstream of a σ^{70} -dependent	Shong et al.
	promoter	11
pAC- P₀₁₀-esaRD91G	esa <i>R</i> -expression plasmid with esa <i>R</i> -D91G downstream of a σ^{70} -dependent	Shong <i>et al.</i>
	promoter	11
pACYC184	Medium-copy plasmid backbone	NEB
pAC-P _{lac} -	esal-expression plasmid with esal with a strong RBS downstream of a P _{lac}	This study
(RBS _{strong})esal	promoter	
pAC-P _{lac} -(RBS _{weak})esal	esal-expression plasmid with esal with a weak RBS downstream of a P _{lac}	This study
	promoter	
pAC-P _{lac} -esaR-esal	Plasmid with esaR and esal downstream of a Plac promoter	Shong et al.12
pAC-P _{lac} -esaR	Plasmid with esaR downstream of a Plac promoter	Shong <i>et al.</i>
pAC- P _{σ70} -esaR-esal	Plasmid with esaR and esal downstream of a σ^{70} -dependent promoter	Shong et al.10
pCS-P _{esaR} -lux	Plasmid with <i>lux</i> (luminescence gene) downstream of P _{esaR}	Shong <i>et al.</i>
рАС- Р _{σ70} -esaR- I70V/D91G	Plasmid with esaR-I70V/D91G downstream of a σ^{70} -dependent promoter	Shong <i>et al.</i>

Supplementary table S3: Primers used in this study

Primer	Nucleotide sequence
5'-SMotA-Kpnl	ccgcggaagggaacttccgtttataaggttagaatgcttatcttattaggttacctggt
3'-MotA- <i>BamH</i> I	ctagtcggatccttatcatgcttcctcggttgtcgtctg
5'-P _{esaR} -Xhol	ctgcaactcgaggcagattgagtaaccgtgaatgtttg
3'-PesaR-Kpnl-SMotA	taaacggaagaacccttccgcggggtaccgctgcttcttttacttaacgtggac
5'-Notl-SGFP	ctgcaagcggccgcggcgattaatcaacataaaattaaggaggtaaggaatgcgtaaaggaggaggaacttttca
3'- <i>BgI</i> II	ctgatcagatctcggatttgtcctactcaggagagc
ZEO5	ccagctggcaattccga
3'-Kpnl-PesaS	tggctcggtaccaaacaactgaagccattgtaacctct
5'-Kpnl-esal	ttgacaggtaccatgctggagctgttcgacgttagc
3'-BamHI-esal	ttcagtggatccttattacaccggcagggtcagcg
5'-pAC-promseq	gattacgcgcagaccaaaacgatc
3'-P _{lac} -BamH	tacagtggatcctgtttcctgtgtgaaattgttatccg

Supplementary table S4: Sequence of promoters used in this study

Promoter	Nucleotide sequence
\mathbf{P}_{esaR}	gcagattgagtaaccgtgaatgtttgtacaaatgtttcaaagatgttactatgagtgtcccggccagcatcactttatattttgtgacgtctggccggacg
	ttttccctagtgttggctgttttagcgacctggccgtacaggtcaggtttttttt
	ttactcttaagtatcatcttgcctgtactatagtgcaggttaagtccacgttaagtaaaagaagcagc
PesaS	catttgaaggattttttttgctcacaacagtgtaagcgtaatccggactacccagcggagataactttctctgtatgta
	ttgattttcaaggaaaaaagaaaacattcaggctccatgctgcttcttttacttaacgtggacttaacctgcactatagtacaggcaagatgatacttaa
	gagtaacttacaatgaatcattcagaggttacaatggcttcagttgttt
Ρ _{σ70}	aataattetttacatttatgetteeggetegtattetaegtgeaatt

Plac andccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaalaccgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgggaattgtgggggataacaatttcacoperonacaggaaaca

Supplementary table S5: Sequence of ribosome binding sites (RBS) used in this study

RBS	Nucleotide sequence
RBS upstream of motA	ccgcggaagggaacttccgtttataaggttaga
RBS upstream of gfp	ggcgattaatcaacataaaattaaggaggtaagga
RBS upstream of esaR and esaR-	taaagaggagaaa
D91G	
Weak RBS upstream of esal	cgcgagggccgcagtaacttttaagaggaaatgga
Strong RBS upstream of esal	taaagaggagaaa

References:

- Balagaddé, F. K. *et al.* A synthetic Escherichia coli predator-prey ecosystem. *Mol. Syst. Biol.* 4, 187; 10.1038/msb (2008).
- 2. Lendenmann, U., Snozzi, M. & Egli, T. Growth kinetics of Escherichia coli with galactose and several other sugars in carbon-limited chemostat culture. *Can. J. Microbiol.* **46**, 72–80 (2000).
- Vogel, U. & Jensen, K. F. The RNA chain elongation rate in Escherichia coli depends on the growth rate. *J. Bacteriol.* **176**, 2807–2813 (1994).
- 4. Young, R. & Bremer, H. Polypeptide-chain-elongation rate in Escherichia coli as a function of growth rate. *Biochem. J.* **160**, 185–194 (1976).
- 5. Garza, A. G., Harris-Haller, L. W., Stoebner, R. A. & Manson, M. D. Motility protein interactions in the bacterial flagellar motor. *Proc. Natl. Acad. Sci. U. S. A.* **92**, 1970–1974 (1995).
- Blair, D. F. & Berg, H. C. Restoration of torque in defective flagellar motors. *Science* 242, 1678–1681 (1988).
- 7. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. *Nature* **434**, 1130–1134 (2005).
- 8. Shong, J., Huang, Y.-M., Bystroff, C. & Collins, C. H. Directed evolution of the quorum-sensing regulator EsaR for increased signal sensitivity. *ACS Chem. Biol.* **8**, 789–795 (2013).
- 9. Hense, B. a, Müller, J., Kuttler, C. & Hartmann, A. Spatial heterogeneity of autoinducer regulation systems. *Sensors (Basel).* **12,** 4156–4171 (2012).

- 10. Shong, J. Quorum-sensing repressor-based tools for cell-cell communication in synthetic biology. *PhD thesis*, *Rensselaer Polytechnic Institute, Department of Chemical and Biological Engineering*. (2013).
- Shong, J., Huang, Y.-M., Bystroff, C. & Collins, C. H. Directed Evolution of the Quorum-Sensing Regulator EsaR for Increased Signal Sensitivity. ACS Chem. Biol. 8, 789–795 (2013).
- 12. Shong, J. & Collins, C. H. Engineering the esaR promoter for tunable quorum sensingdependent gene expression. *ACS Synth. Biol.* **2**, 568–575 (2013).