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Supplementary Materials 
 
Appendix – renormalization of radiobiological indices by energy loss fluctuations.   
This appendix describes the steps in the mathematical derivation of Eqs. (1) to (4) and the basis 
of the cell survival in the generalized microdosimetric kinetic model (gMKM) introduced in this 
study. More specifically we provide an analytical derivation of the solutions of the RMF model 
and the perturbative corrections around these solutions by taking into account the statistical 
fluctuations in energy deposition for an arbitrary distribution function, hence the renormalization 
of ߙ and ߚ. We consider a limiting case by systematically incorporating the contribution of the 
higher order fluctuations to the Gaussian distribution in energy deposition to correct the 
dependence of ߚ on lineal energy. Such perturbative expansion predicts an exact solution for ߙ 
as a linear function of lineal energy (as known in the microdosimetry literature for decades), 
while ߚ shows quadratic dependence.  
 
As pointed out in the main text, the linear density of the atomistic excitations and ionizations 
undergo a transition to a highly compact distribution as the primary protons slow down. 
Therefore, the deviation from a Poisson distribution appears to be significant at the end of the 
range of proton. Figures 1A and 1B in the main text illustrate the ionization events within the 
cellular dimensions generated by traversing a proton with initial energy of 80 MeV and 1 MeV. 
The MC simulation has performed by using Geant4 DNA. As illustrated in these figures, the 
number of events in low energies (e.g., 1 MeV) is orders of magnitude greater than high 
energies (e.g., 80 MeV). Such difference in compactness of the ionization clearly justifies 
deviation from the Poisson distribution as the proton keeps losing kinetic energy. 
 
Refs. [28,29,57] describes the original approach in mathematical formulation of the cell survival 
in the standard microdosimetric kinetic model (MKM), starting from the repair-misrepair fixation 
model (RMF) [49-50] in a cell nucleus domain. In this approach, Hawkins has shown that the 
time-integrated solution of the linearized RMF mass-action equations, averaged over the 
ensemble of the cell nucleus domains, leads to the linear-quadratic dependence of cell survival 
on the deposited dose, the first two terms in Eq.(1). Moreover this model predicts ߙ to be a 
linear function of LET and ߚ a constant and independent of LET.   
A similar approach with a distinction of including the non-linear (quadratic) term in the solutions 
of the RMF mass-action equations that accounts for the chromosome misrepair binary end-
joining leads to higher order deposited dose and LET terms. These terms in Eqs. (1) to (4) are 
effectively perturbative corrections to the linear expansion of ߙ and ߚ calculated in the MK 
model as presented in Ref. [57].  



 
Cell survival in RMF and MK model: The mass-action equations describing chromosome 
repair-misrepair binary end-joining introduced in Refs. [49-50] and [57] are given by  
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Here ݊ and ܰ represent the number of DSBs and the lethal lesions per cell in a domain, 
equivalent of type II and I lesions in the MK model [57], respectively. ݖሶ is the microscopic dose 
rate, ߤ is the number of DSBs per domain per Gy. ߣ and ߛ are repair and binary misrepair end-
joining coefficients corresponding to DSB restitution rate and binary DSB removal rate (the 
average rate at which binary misrepair removes DSBs by using them in lethal lesions or in 
harmless rearrangement), respectively.  
  
Due to large fluctuations of energy deposition in sub-micrometer volumes, the ionizing radiation 
is characterized by the probability distribution of specific energy, and single event specific and 
lineal energies and their expectation values, the frequency-mean (ݖி,  ிሻ, and dose-averagedݕ
,ݖ)  ሻ, as well as their higher order statistical moments. The cell survival fraction is thereforeݕ
given by    
 

ܨܵ ൌ ݁ିேഥ,										ሺ3ܣሻ 
 
where ഥܰ is the mean lethal lesions, averaged over specific energy distribution, in the ensemble 
of domains in all cell nuclei. 
 
Linear solutions and LQ cell survival: First we consider the linear approximation in RMF 
model, Eq. ሺ3ܣሻ, in which ߛ ൌ 0, corresponding to Eq.(7) in Ref. [57]. In this limit, the analytical 
solution of Eqs. ሺ1ܣሻ and ሺ2ܣሻ can be easily found using the Green's function method 
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Here ݊ is the solution of Eq. (A1) in the linear approximation. It is straightforward to justify that 
the homogeneous solution of Eq. (A1) is identical to zero, thus we do not consider it in Eq. (A4). 
It is also a straightforward calculation to show  ܩሺݐ െ ᇱሻݐ ൌ ఒ൫௧ି௧ି݁ߤ

ᇲ൯ߠሺݐ െ ݐሺߠ ᇱሻ, whereݐ െ  ᇱሻݐ
is the Heavyside function, i.e., ߠ ൌ 1 if ݐ   ᇱ and 0 otherwise. The steps in calculating retardedݐ
Green’s function, ܩ, include converting the integral equation, Eq. (A4), to a differential equation 
for ܩ by substituting (A4) in (A1) and imposing the initial condition ത݊ ൌ 0 for ݐ ൏ 0 where ݖሶ ൌ 0. 

Similarly we define	ܵܨ ൌ ݁ିேഥబ where ഥܰ ൌ  ᇱݐ݀
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ଶതതത൧. Here the bar over ܰ denotes 
energy deposition averaging on the ensemble of cell nuclei domains, specific to a lineal-energy 
distribution.  
For an acute radiation dose, ݖሶሺݐሻ ൌ ሻݐሻ, the solution of Eq.(A4), ݊ሺݐሺߜݖ ൌ ି݁ݖߤఒ௧ߠሺݐሻ, leads to 
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domains we obtain a linear-quadratic model in cell-survival 
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accounts for the spatial averaging of the energy deposition fluctuations, where	ݖ ൌ
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energy deposition, a counterpart distribution function of the lineal-energy ݂ሺݕሻ. Furthermore ̅ݖ ൌ
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 ൌ ;ݖሺܨ ி whereݖ்݊ ்݊ሻ is distribution function accounting for all events and ்݊ is 

mean number of events and/or tracks. Applying a relation between ݖ and ݕ (see e.g., Eq.(II.28) 
in Ref. [57] or Eq. (8) in Ref. [55]), ݖ ൌ ݈ሺݕ/݉ሻ, where ݉ ൌ  and ݈ are the average mass	ܸߩ
and the chord length of a MKM domain, with ߩ and ܸ, the mass density and the average volume 

of the domains, we obtain ߙ ൌ
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 . Considering the RMF and MKM constants inݕ

 as phenomenological parameters we end up with two relations frequently used in the ߚ and ߙ
literature for fitting RBE data, (see for example Refs. [55,57])  
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Here ߙ, ߚ௫, and ݎௗ (the radius of a spherical domain) are the phenomenological fitting 
parameters.  
 
Non-linear expansion of RMF solutions, going beyond LQ cell survival: We now turn to 
perform a perturbative expansion to calculate the non-linear solution of the RMF model, Eqs. 
(A1) and (A2). To go beyond the RMF linear solutions presented above, we assume ߛ to be a 
small parameter, hence we expand ݊ about ݊ perturbatively and linearize the resulting mass-
action kinetic equation to obtain the dynamics of the small fluctuations describing deviations 
from linear DSB solutions. We define ݊ଵ ൌ ݊ െ ݊ and recall Eq. (A1) to obtain a linear mass-
action equation for ݊ଵ  
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Here ݊ is the exact solution of the RMF model. As we defined, ݊ is the linear solution of the 
RMF model, hence ݊ଵ describes the difference between exact and linear solutions. It is more 
convenient to transform Eq. (A5) into a more compact form 
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where ߟ ൌ ߣ  ߦ  and݊ߛ2 ൌ ݊ߛ

ଶ. The solution of Eq. (A6) can be calculated exactly   
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where ߮ሺݐሻ ൌ ݐߣ  ߛ2  ᇱሻݐሺ݊′ݐ݀
௧
ିஶ . Linearizing Eq. (A7) in terms of ߛ, assuming ߛ is a small 

parameter, leads to  
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Substituting the linear solution calculated above, ݊ሺݐሻ ൌ ି݁ݖߤఒ௧ߠሺݐሻ, in Eq. (A8) yields  
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hence  
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From Eq.(A10) and ݊ the cell-survival can be calculated, െ lnሺSFሻ ൌ ᇱݐ݀
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The last two terms in Eq. (A11) are the contribution of the terms omitted in Eq. (A8) due to 
linearizing ݊ in the limit where ߛ is negligible. To transform (A11) to a form similar to the linear-
quadratic model we must calculate the statistical fluctuations in microscopic dose deposition 
throughout the averaging over cell nucleus domains, assuming equivalence between the 
ensemble averaging over the domains and the spatial averaging of the energy deposition 
fluctuations over the cell nuclei. In general, these fluctuations can be recursively reduced to 
lower power fluctuations, namely 
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and in general  
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Here ݖ are coefficients in the expansion with the physical dimension identical to the dimension 
of specific energy, Gy, and can be calculated by integrating over single event energy deposition 

distribution, ଵ݂ሺݖሻ. For example ݖଶଵ ൌ ଷଵݖ ,ݖ
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Applying Eqs. (A12a) to (A12c) in Eq. (A11) and keeping up to the quadratic term in 
macroscopic dose, ܦ ൌ  we find ,̅ݖ
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Hence  
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In the limit where ߛ ൌ 0, Eqs. (A14) and (A15) reduce to ߙ ൌ
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linear MKM approximation [50]. By expanding ݖ around ݖ in Eqs. (A14) and (A15), e.g., 
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ஶ
 , and using ݖ ൌ

 to be a power ߚ and ߙ one may find ,[59,60] ܮ and	ݕ /݉, and a linear relationship betweenݕ݈
series in lineal energy and LET as given by Eq.(3) and (4). The constants in Eqs. (A14) and 
(A15) can be determined phenomenologically by fitting ߙ and ߚ to the experimental data as 
illustrated in the text, i.e., ߙ ൌ ∑ ܾ,ଵܮିଵ


ୀଵ , and ߚ ൌ ∑ ܾାଵ,ଶܮିଵ

ିଵ
ୀଵ . As seen in these 

equations, the contribution from the energy loss fluctuations renormalizes the LQ biological 
parameters ߙ and ߚ to infinite orders in ݖ and ݕ. 
  
Gaussian fluctuations 
It is interesting to calculate ݖ, ߙ and ߚ for a widely used Gaussian distributed function as in the 
limit ̅ݖ ≫ 0, the Poisson distribution can be approximated to a Gaussian (central limit theorem) 
with variance ߪଶ ൌ ீ̅ݖீݖ  
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Here we change the notations ⟶ ܨீ ̅ݖ , ⟶ ீ̅ݖ ிݖ , ⟶ ݖ and	ிீݖ ⟶  to ܩ  with the subscriptீݖ
denote the averaging over the Gaussian distribution function. It is straightforward calculation to 
find the Gaussian version of equations (A12a – A12c) 
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						… 
where all statistical fluctuations and higher order moments are reduced to two variables ீݖ ൌ
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– A12f) and (A12a – A12c) shows that ீݖ,ଶଵ ൌ ,ݖ ଷଶ,ீݖ ൌ ,ݖ3 ଷଵ,ீݖ ൌ 0, ସଷ,ீݖ ൌ ,ݖ6 ସଶ,ீݖ ൌ
,ݖ3√ ସଵ,ீݖ ൌ 0,… Note that the fluctuations such as 	ீݖ,ଷଵ, ீݖ,ଷଶ,  ସଵ are negligible because of,ீݖ
specific symmetry of ܩሺݖሻ. 
 
Similar to a general energy loss fluctuations, the contributions of the Gaussian fluctuations in 
energy deposition introduce correction factors to ߙ and ߚ. Because the contribution to ீ̅ݖ  from 
ீݖ
ଷതതത and beyond are identical to zero, there is no correction beyond the linear term in ீݖ and 

hence in ீݕ. This is evident from Eq. ሺ12݁ܣሻ as the lowest order correction to specific energy 
and deposition dose is quadratic. Hence the Gaussian model predicts ߙ to be only linear 
dependence on lineal energy and LET  
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Similarly for ߚ the corrections beyond ݖହതതത fluctuations vanish exactly as the lowest order 
correction to the dose in Eq. ሺ12݃ܣሻ is cubic. Hence we find a closed form for ߚ 

ீߚ ൌ
1
2
൬
ߣ
ߣ
ߛ
ߣ

ߛ
ߣ
൰ ଶߤ 

ߛ
ߣ
ߛ
ߣ
ீݖଷߤ  ൭െ

ߛ
ߣ6

ଶߛ

ଶߣ
 ܱ ቆ

ଶߛ

ଶߣସߤ
ቇ൱ ீݖସߤ3

ଶ .													ሺ17ܣሻ 

As seen in these equations, the contribution from the fluctuations in Gaussian model of energy 
deposition correct the LQ biological parameters ீߙ and ீߚ to scale linearly and quadratically in 
 . We note that the radiobiological models that start from the equations equivalent ofݕ  andݖ
ሺ16ܣሻ and ሺ17ܣሻ are implicitly assuming a Gaussian-type symmetry in the energy-loss 
processes. This includes models with linear dependence on LET in ߙ and constant ߚ (e.g., by 
neglecting higher order ߤ terms in ߙ and ߚ beyond quadratic terms). Such models neglect the 
importance of asymmetries hidden in more realistic distribution functions such as the Landau 
[45] and/or Vavilov [46] distribution functions, responsible for observed nonlinearities in 
biological responses.  
 
 
Neyman's distribution of type A and DSB distribution 
 
We devote this section to illustrate the effect of deviation from Poisson distribution on statistical 
fluctuations of specific energy, DSB distribution, and biological indices ߙ and ߚ. Specifically we 
start with construction of the Neyman’s distribution function from first principles for DSB 
induction processes and calculate the higher order moments in specific energy needed for 
incorporation of the repair and misrepair mechanisms to fit globally the cell survival data.  
 
We consider the normalized distribution function to describe stochastic energy deposition in 
DNA material [58,59] as given below 

;ݖሺܨ ሻߥ̅ ൌ ఔሺ̅ߥሻ
ஶ

ఔୀ

ఔ݂ሺݖሻ,																			ሺ18ܣሻ 

where ఔሺ̅ߥሻ ൌ ሺ̅ߥఔ/ߥ!ሻexp	ሺെ̅ߥሻ describes the Poisson distributed events in an ensemble of 
single tracks. Here ̅ߥ denotes the average number of energy deposition events and ఔ݂ሺݖሻ is the 
distribution of specific energy imparted from passage of a single track within ݖ and ݖ   ݖ݀
resulted from exactly ߥ energy deposition events. The stochastic process as such is sketched in 
Fig. (1A). 
 
We denote ߝఔ the deposited energy resulted from exactly ߥ events in mass ݉ of DNA material 

corresponding to specific energy ݖ ൌ
ଵ


∑ ߝ
ఔ
ୀଵ ൌ ఔഥߝߥ /݉ where ߝఔഥ ൌ

ଵ

ఔ
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݇ DSBs resulted from energy deposition requires balance in energy transfer to DNA. More 

specifically ߝߥఔഥ ൌ ߥ ∑ ߳ ൌ ݇߳̅

ୀଵ  where ߳̅ ൌ

ଵ


∑ ߳

ୀଵ  is the typical energy results in breaking 

chemical bonds for induction of a single DSB and ݇ ൌ Δߥ ൌ 0,1,2, … counts number of DSBs. Δ is 
the number of induced DSBs in an event. Hence the energy balance in an exactly ߥ events 
processes requires ݖ ൌ ߳̅ߥΔ/݉. Further simplification can be performed by averaging over DSB 
population per event subsequently by averaging over events that yields ധ݇ ൌ Δതതതതߥ ൌ  Δഥ. Here Δഥ isߥ̅
average number of DSBs per event, independent of ߥ. The double bars over ݇ denotes two 
independent averagings; hence the order of averaging is not an issue. Also note that ݊ ൌ ധ݇ and 
ߤ ൌ ݉/߳̅ in Eq.(A1) hence ݖሶ ൌ ሺΔഥ/ߤሻ̅ߥሶ.  
 
The distribution of DSBs in a class of events, specified by given ߥ, can be uniquely determined 
by the corresponding energy deposition distribution. The DSB partition function, ܳሺΔഥ;  ሻ, theߥ̅



probability distribution in finding exactly ݇ DSBs, can be calculated from Eq.(A18) where ఔ݂ሺݖሻ ൌ
∑ ݖሺߜሻݖሺ െ ሻஶߤ/Δഥߥ
ୀ . The insertion of ߜ-function, the DSB density of states, enforces a 

constraint on the energy transfer balance resembling Fermi golden rule formulation of transition 
rates and the perturbation theory in quantum physics. Substituting ఔ݂ሺݖሻ in Eq.(A18) and 
integrating over ݖ yields  

1 ൌ න ;ݖሺܨ ሻߥ̅
ஶ


ݖ݀ ൌ ఔሺ̅ߥሻ

ஶ

ఔୀ

න ሺݖሻߜሺݖ െ ሻߤ/Δഥߥ

ஶ

ୀ

ஶ


ݖ݀

ൌ ఔሺ̅ߥሻሺߥΔഥሻ ൌ ܳሺΔഥ; ሻߥ̅
ஶ

ୀ

ஶ

ఔୀ

ஶ

ୀ

,																	ሺ19ܣሻ 

Thus  

ܳሺΔഥ; ሻߥ̅ ൌ ఔሺ̅ߥሻሺߥΔഥሻ
ஶ

ఔୀ

.																	ሺ20ܣሻ 

Further approximation can be performed by considering Poisson distribution for DSB events, 
i.e., ሺߥΔഥሻ ൌ ሺߥΔഥሻ/݇! exp	ሺെߥΔഥሻ that reduces ܳሺΔഥ;  ሻ in Eq.(A20) to Neyman’s distribution ofߥ̅
Type A (see for example Refs. [47,48]). Accordingly, the probability in finding a DNA with zero 
DSB is given by ܳ ൌ exp	ሺെ̅ߥሺ1 െ exp	ሺെΔഥሻሻሻ ൎ exp	ሺെ̅ߥΔഥሻ. In this equation, ̅ߥΔഥ is the average 
number of events times the average number of DSBs per event.  
 
From Eq. (A20), it is now straightforward to calculate the statistical moments of DSBs and the 
corrections to biological indices ߙ and ߚ by inclusion of DSB fluctuations, as discussed in the 
main text. Here we systematically show that the DSB partition function given by ܳሺΔഥ;  .ሻ in Eqߥ̅
(A20) provides all statistical moments we need for this analysis. For clarification of notations we 
first check the self-consistency of equations by calculating the first moment 

ധ݇ ൌ ݇ܳሺΔഥ; ሻߥ̅ ൌ Δഥߥ̅
ஶ

ୀ

. 

Furthermore  

݇ሺ݇ െ 1ሻധധധധധധധധധധധ ൌ ݇ሺ݇ െ 1ሻܳሺΔഥ; ሻߥ̅ ൌ ሺ̅ߥΔഥሻଶ  ሺ̅ߥΔഥሻΔഥ
ஶ

ୀ

ൌ ധ݇ଶ  ധ݇Δഥ, 

݇ሺ݇ െ 1ሻሺ݇ െ 2ሻധധധധധധധധധധധധധധധധധധധധധ ൌ ݇ሺ݇ െ 1ሻሺ݇ െ 2ሻܳሺΔഥ; ሻߥ̅
ஶ

ୀ

ൌ ധ݇ଷ  3ധ݇ଶΔഥ  ധ݇Δഥଶ, 

and in general  
 

݇ሺ݇ െ 1ሻሺ݇ െ 2ሻ… ሺ݇ െ ሻധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധݎ ൌܿ௦ ധ݇ି௦ାଵΔഥ௦


௦ୀ

.																		ሺ21ܣሻ 

Here ܿ௦ are the coefficients of expansion and ܿ ൌ 1. By further expansion of Eq. (A21) we find a 
power law series dependence of DSB fluctuations on Δ that we need for the expansion of Eqs. 
(A1) and (A2)  

݇ധധധ ൌ ധ݇  ሺܽଵ  ܽଵଵΔഥሻധ݇ିଵ  ሺܽଶ  ܽଵଶΔഥ  ܽଶଶΔഥଶሻധ݇ିଶ  ⋯
 ሺܽ  ܽଵΔഥ  ܽଶΔഥଶ ⋯ ܽΔഥሻധ݇.																		ሺ22ܣሻ 

 



 
Figure 1A. Schematically shown the energy deposition of ߥ ൌ3 events resulted from passage of 
a single track in a cell domain.  
 
Finally we show that Δഥ ൌ  . This identity is the reminiscent of fluctuation-dissipation theoremݖߤ
and can be derived in the following steps 

ଶതതതݖ

̅ݖ
ൌ
 ଶݖ
ஶ
 ;ݖሺܨ ݖሻ݀ߥ̅

 ݖ
ஶ
 ;ݖሺܨ ݖሻ݀ߥ̅

ൌ
∑ ሻߥఔሺ̅
ஶ
ఔୀ  ݖଶ݀ݖ

ஶ


∑ ߜሻݖሺ ൬ݖ െ
Δഥߥ
ߤ ൰

ஶ
ୀ

∑ ሻஶߥఔሺ̅
ఔୀ  ݖ

ஶ
 ݖ݀ ∑ ߜሻݖሺ ൬ݖ െ

Δഥߥ
ߤ ൰

ஶ
ୀ

. 

After integrating over ߜ-function we find 
 

ଶതതതݖ

̅ݖ
ൌ
∑ ∑ ሻଶߤ/ΔഥߥΔഥሻሺߥሺሻߥఔሺ̅

ஶ
ఔୀ

ஶ
ୀ

∑ ∑ Δഥሻஶߥሺሻߥఔሺ̅
ఔୀ

ஶ
ୀ ሺߥΔഥ/ߤሻ

ൌ
Δഥ

ߤ

∑ ሻߥఔሺ̅ଶߥ ∑ Δഥሻߥሺ
ஶ
ୀ

ஶ
ఔୀ

∑ ሻߥఔሺ̅ߥ ∑ Δഥሻஶߥሺ
ୀ

ஶ
ఔୀ

. 

 
Because ∑ Δഥሻߥሺ

ஶ
ୀ ൌ 1 and ∑ ሻߥఔሺ̅ଶߥ

ஶ
ఔୀ ൌ ଶതതതߥ ൌ ߥሺ̅ߥ̅  1ሻ and ∑ ሻߥఔሺ̅ߥ

ஶ
ఔୀ ൌ  we find ߥ̅

ଶതതതݖ

̅ݖ
ൌ
Δഥ

ߤ
ሺ̅ߥ  1ሻ,	 

hence Δഥ ൌ ሾߤ/ሺ̅ߥ  1ሻሿ൫ݖଶതതത/̅ݖ൯. For a class of single events, ݖଶതതത/̅ݖ  reduces to ݖ. More specifically  

ݖ ൌ
ଶതതതݖ

̅ݖ
ቤ
ఔୀଵ

ൌ
 ଶݖ
ஶ
 ;ݖሺܨ ݖሻ݀ߥ̅

 ݖ
ஶ
 ;ݖሺܨ ݖሻ݀ߥ̅

อ
ఔୀଵ

ൌ
∑ ሻߥఔሺ̅
ஶ
ఔୀ  ݖଶ݀ݖ

ஶ


∑ ߜሻݖሺ ൬ݖ െ
Δഥߥ
ߤ ൰ ఔ,ଵߜ

ஶ
ୀ

∑ ሻஶߥఔሺ̅
ఔୀ  ݖ

ஶ
 ݖ݀ ∑ ߜሻݖሺ ൬ݖ െ

Δഥߥ
ߤ ൰ ఔ,ଵߜ

ஶ
ୀ

. 

Similarly after integrating over ߜ-function we find 
 

ݖ ൌ
∑ ∑ ఔ,ଵߜሻଶߤ/ΔഥߥΔഥሻሺߥሺሻߥఔሺ̅

ஶ
ఔୀ

ஶ
ୀ

∑ ∑ Δഥሻஶߥሺሻߥఔሺ̅
ఔୀ

ஶ
ୀ ሺߥΔഥ/ߤሻߜఔ,ଵ

ൌ
Δഥ

ߤ

∑ ሻߥఔሺ̅ଶߥ ∑ ఔ,ଵߜΔഥሻߥሺ
ஶ
ୀ

ஶ
ఔୀ

∑ ሻߥఔሺ̅ߥ ∑ Δഥሻஶߥሺ
ୀ

ஶ
ఔୀ ఔ,ଵߜ

ൌ
Δഥ

ߤ
. 

 
Combining the results of these equations into Eq.(A22) and using transformation, ݇ ⟶  in ݖߤ
Eq.(A22) and multiplying that equation by ିߤ and substituting Δഥ ൌ  , we obtainݖߤ

തതതݖ ൌ ̅ݖ  ሺܾଵ  ܾଵଵݖሻ̅ݖିଵ  ሺܾଶ  ܾଵଶݖ  ܾଶଶݖ
ଶሻ̅ݖିଶ  ⋯

 ሺܾ  ܾଵݖ  ܾଶݖ
ଶ  ⋯ ܾݖ

 ሻ̅ݖ.																		ሺ32ܣሻ 
Here ܾ௦ ൌ ܽ௦ߤ௦ି are the expansion coefficients. In numerical fitting procedure to the 
experimental cell-survival data we consider these coefficients as phenomenological adjustable 
parameters. Recalling ݖ ൌ ݈ሺݕ/݉ሻ and following the derivation steps presented in previous 
section, we arrive at similar expressions for ߙ and ߚ and the power series dependences on 
lineal energy. 
 



The results given in Eqs. (A19-A22) for Neyman’s distribution is in contrast with the Poisson 
distribution that only leads to the first term in the expansion given by Eq. ሺ21ܣሻ and (A22)  

݇ሺ݇ െ 1ሻሺ݇ െ 2ሻ… ሺ݇ െ ሻധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധധݎ ൌ ധ݇																		ሺ23ܣሻ 
Hence 

݇ധധധ ൌ ധ݇  ܽଵ ധ݇ିଵ  ܽଶ ധ݇ିଶ  ⋯ ܽ ധ݇,																		ሺ24ܣሻ																 
with no dependence on Δ and lineal energy in Eq. (A24). Thus 

തതതݖ ൌ ̅ݖ  ܾଵ̅ݖିଵ  ܾଶ̅ݖିଶ  ⋯ ܾ̅ݖ.																		ሺ25ܣሻ 
Substituting these results into Eqs. (A12a-c), it is now straightforward to show that the Poisson 
distribution leads to no dependence of ߙ and ߚ on lineal energy and LET consistent with the 
results presented by Sachs et al. [50]. In contrast the Neyman’s distribution leads to a power 
law dependence of ߙ and ߚ on lineal energy and LET as discussed in the main text. The use of 
Neyman’s distribution in RMF-MCDS model reported by Carlson et al. in Ref. [35] where ݖி and 
LET are resulted linearly in ߙ where ߚ shows no dependence. One difference between 
derivation presented in our current study and the one presented in Ref. [35] is the incorporation 
of fluctuations that supersede ݖ, instead of ݖி in ߙ and ߚ such that the formulation of our linear 
model shows consistency with Hawkins’ MK linear models [28,29,57]. 
 
 


