A model for relative biological effectiveness of therapeutic proton beams based
on a global fit of cell survival data

Ramin Abolfath", Christopher R. Peeler', Mark Newpower', Lawrence Bronk?, David
Grosshans?, and Radhe Mohan

Departments of Radiation Physics' and Radiation Oncology?, The University of Texas MD
Anderson Cancer Center, Houston, TX 77030 USA

Corresponding Authors:
* ramin1.abolfath@amail.com / ramin.abolfath@yale.edu
# rmohan@mdanderson.org

Supplementary Materials

Appendix — renormalization of radiobiological indices by energy loss fluctuations.

This appendix describes the steps in the mathematical derivation of Egs. (1) to (4) and the basis
of the cell survival in the generalized microdosimetric kinetic model (gMKM) introduced in this
study. More specifically we provide an analytical derivation of the solutions of the RMF model
and the perturbative corrections around these solutions by taking into account the statistical
fluctuations in energy deposition for an arbitrary distribution function, hence the renormalization
of a and 8. We consider a limiting case by systematically incorporating the contribution of the
higher order fluctuations to the Gaussian distribution in energy deposition to correct the
dependence of § on lineal energy. Such perturbative expansion predicts an exact solution for a
as a linear function of lineal energy (as known in the microdosimetry literature for decades),
while § shows quadratic dependence.

As pointed out in the main text, the linear density of the atomistic excitations and ionizations
undergo a transition to a highly compact distribution as the primary protons slow down.
Therefore, the deviation from a Poisson distribution appears to be significant at the end of the
range of proton. Figures 1A and 1B in the main text illustrate the ionization events within the
cellular dimensions generated by traversing a proton with initial energy of 80 MeV and 1 MeV.
The MC simulation has performed by using Geant4 DNA. As illustrated in these figures, the
number of events in low energies (e.g., 1 MeV) is orders of magnitude greater than high
energies (e.g., 80 MeV). Such difference in compactness of the ionization clearly justifies
deviation from the Poisson distribution as the proton keeps losing kinetic energy.

Refs. [28,29,57] describes the original approach in mathematical formulation of the cell survival
in the standard microdosimetric kinetic model (MKM), starting from the repair-misrepair fixation
model (RMF) [49-50] in a cell nucleus domain. In this approach, Hawkins has shown that the
time-integrated solution of the linearized RMF mass-action equations, averaged over the
ensemble of the cell nucleus domains, leads to the linear-quadratic dependence of cell survival
on the deposited dose, the first two terms in Eq.(1). Moreover this model predicts « to be a
linear function of LET and 8 a constant and independent of LET.

A similar approach with a distinction of including the non-linear (quadratic) term in the solutions
of the RMF mass-action equations that accounts for the chromosome misrepair binary end-
joining leads to higher order deposited dose and LET terms. These terms in Egs. (1) to (4) are
effectively perturbative corrections to the linear expansion of « and g calculated in the MK
model as presented in Ref. [57].



Cell survival in RMF and MK model: The mass-action equations describing chromosome
repair-misrepair binary end-joining introduced in Refs. [49-50] and [57] are given by
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Here n and N represent the number of DSBs and the lethal lesions per cell in a domain,
equivalent of type Il and I lesions in the MK model [57], respectively. z is the microscopic dose
rate, u is the number of DSBs per domain per Gy. 1 and y are repair and binary misrepair end-
joining coefficients corresponding to DSB restitution rate and binary DSB removal rate (the
average rate at which binary misrepair removes DSBs by using them in lethal lesions or in
harmless rearrangement), respectively.

Due to large fluctuations of energy deposition in sub-micrometer volumes, the ionizing radiation
is characterized by the probability distribution of specific energy, and single event specific and
lineal energies and their expectation values, the frequency-mean (zy, yr), and dose-averaged
(zp,yp), as well as their higher order statistical moments. The cell survival fraction is therefore
given by

SF=e™N, (43)

where N is the mean lethal lesions, averaged over specific energy distribution, in the ensemble
of domains in all cell nuclei.

Linear solutions and LQ cell survival: First we consider the linear approximation in RMF
model, Eq. (43), in which y = 0, corresponding to Eq.(7) in Ref. [57]. In this limit, the analytical
solution of Egs. (41) and (42) can be easily found using the Green's function method

no(t) = f e Gt — . (a4

Here n, is the solution of Eq. (A1) in the linear approximation. It is straightforward to justify that
the homogeneous solution of Eq. (A1) is identical to zero, thus we do not consider it in Eq. (A4).
It is also a straightforward calculation to show G, (t —t') = ue‘l(t‘t')e(t —t"), where 0(t — t')
is the Heavyside function, i.e., 6 = 1 if t > t’ and 0 otherwise. The steps in calculating retarded
Green'’s function, G,, include converting the integral equation, Eq. (A4), to a differential equation
for G by substituting (A4) in (A1) and imposing the initial condition 7, = 0 for t < 0 where z = 0.
Similarly we define SF, = e~¥o where Ny = [ dt’ [4,7, + y,nZ]. Here the bar over N, denotes
energy deposition averaging on the ensemble of cell nuclei domains, specific to a lineal-energy
distribution.

For an acute radiation dose, z(t) = z5(t), the solution of Eq.(A4), ny(t) = uze *6(t), leads to
N, = ’;—Luz‘ + 72’_;“22_2_ By averaging over the lineal-energy distribution and all cell nuclei and their
domains we obtain a linear-quadratic model in cell-survival

—In(SF) = az + Bz2, (45)



where a = = M + M zpand g = VL 2. Here we use the identity z2 = Z(Z + z;)) [58] that
accounts for the spatlal averaging of the energy deposition fluctuations, where z, =

ifom z%f,(2)dz, zp = [, zf,(z) dz and f,(2) is the single event distribution function of specific
energy deposition, a counterpart distribution function of the lineal-energy f(y). Furthermore z =
f0°° zF (z;np)dz = nyzp where F(z; ny) is distribution function accounting for all events and n; is

mean number of events and/or tracks. Applying a relation between z and y (see e.g., Eq.(11.28)
in Ref. [567] or Eq. (8) in Ref. [55]), zp = I(yp/m), where m = pV and [ are the average mass
and the chord length of a MKM domain, with p and V, the mass density and the average volume

of the domains, we obtain a = %Lu ’Z'/Llyz S YD Considering the RMF and MKM constants in

a and B as phenomenological parameters we end up with two relations frequently used in the
literature for fitting RBE data, (see for example Refs. [55,57])

1
a—“o"‘ﬁ zyDr B = Bx. (46)

Here ay, B, and r; (the radius of a spherical domain) are the phenomenological fitting
parameters.

Non-linear expansion of RMF solutions, going beyond LQ cell survival: We now turn to
perform a perturbative expansion to calculate the non-linear solution of the RMF model, Egs.
(A1) and (A2). To go beyond the RMF linear solutions presented above, we assume y to be a
small parameter, hence we expand n about n, perturbatively and linearize the resulting mass-
action kinetic equation to obtain the dynamics of the small fluctuations describing deviations
from linear DSB solutions. We define n;, = n — ny and recall Eq. (A1) to obtain a linear mass-
action equation for ny

dn

Here n is the exact solution of the RMF model. As we defined, n, is the linear solution of the
RMF model, hence n; describes the difference between exact and linear solutions. It is more
convenient to transform Eq. (A5) into a more compact form

ZLHnOm© =0, (46)

where n = 1+ 2yny and & = yn3. The solution of Eq. (A6) can be calculated exactly
t !
m@® = O [ de'srer),  @an

where ¢(t) = At + 2y f_too dt'ny(t"). Linearizing Eq. (A7) in terms of y, assuming y is a small
parameter, leads to

2

ny(t) = ye Mf dt'n2(t)e® +0 <)12> (A8)



Substituting the linear solution calculated above, ny(t) = uze *t4(t), in Eq. (A8) yields
n,(t) = —,u 272(1— e~ M)e A, (A9)
hence
n=nyg+n, =ng— % [ng — pzlng + 0(nd). (A10)

From Eq.(A10) and n, the cell-survival can be calculated, — In(SF) = f_::o dt' [A, 7+ y,n?],
hence

AA 2 314 6112 22
+0(z°) (A11)
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The last two terms in Eq. (A11) are the contribution of the terms omitted in Eq. (A8) due to
linearizing n in the limit where y is negligible. To transform (A11) to a form similar to the linear-
quadratic model we must calculate the statistical fluctuations in microscopic dose deposition
throughout the averaging over cell nucleus domains, assuming equivalence between the
ensemble averaging over the domains and the spatial averaging of the energy deposition
fluctuations over the cell nuclei. In general, these fluctuations can be recursively reduced to
lower power fluctuations, namely
z2 =72+ 2,7, (A12a)
z3=7%+23,7>+25, 2, (A12b)
7zt = 7%+ 2,37° + 25,72 + 23,2, (A120)

and in general
i

Sl = i=J zj
Z —ZZU Z

j=1
Here z;; are coefficients in the expansion with the physical dimension identical to the dimension
of specific energy, Gy, and can be calculated by integrating over single event energy deposition

distribution, £, (2). For example z,1 = zp, 73 = — [ 2 fi(2)dz, 23, = 32p, 71 = — [ 2*fi(D)dz,
F F

2 — 2,2 2 —
Ziy = 3zp + 425, Z43 = 62Zp, ...

Applying Egs. (A12a) to (A12c) in Eq. (A11) and keeping up to the quadratic term in
macroscopic dose, D = z, we find
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Hence
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In the limit where y = 0, Egs. (A14) and (A15) reduce to a = /1,u+ Lu?zy and g = £ u?, the

linear MKM approximation [50]. By expanding z;; around z, in Egs. (A14) and (A15) e g.
Iy 2@z = [ (zp + 82" fi(2)dz = Tieo o 26 Jy (2 = 20)" * fi(2)dz =

n!

k=0 k!(n—Fk)!
ly;;/m, and a linear relationship between y, and L [59,60], one may find « and § to be a power
series in lineal energy and LET as given by Eq.(3) and (4). The constants in Egs. (A14) and
(A15) can be determined phenomenologically by fitting a and g to the experimental data as
illustrated in the text, i.e., @ = XR_; b 1L¥71, and B = Y21 by12L¥ 1. As seen in these
equations, the contribution from the energy loss fluctuations renormalizes the LQ biological
parameters a and § to infinite orders in z, and yp,.

zE fu_k(zp) where 8z = z — z;, and f,(zp) = fo (z — zp)*f1(2)dz, and using z;; =

Gaussian fluctuations
It is interesting to calculate z;;, « and g for a widely used Gaussian distributed function as in the
limit Z > 0, the Poisson distribution can be approximated to a Gaussian (central limit theorem)
with variance o2 = z;p 7,

(z - Z_G)2>

1
F(z; — Fq(z; = — -
(Z nT) G(Z nT) O_m eXp< 20-2

Here we change the notations — F;, 7 — z;, zr — z;r and zp, — z;p with the subscript G to
denote the averaging over the Gaussian distribution function. It is straightforward calculation to
find the Gaussian version of equations (A12a — A12c)
iz _)ﬁ% = Z_é + ZGDZ_G , (A].Zd)
o z3 =73 +3z5p22,  (Al2e)
z* — 2z} = 7} + 6z5p7p +328p2E,  (A12f)
75 — 23 = 72 + 10zgpZ8 + 1522522,  (A12g)

26 — 28 = 78 + 152;p 73 + 4522, 2% + 152373,  (A12h)

where all statistical fluctuations and higher order moments are reduced to two variables z;, =

Zifooo 2%f41(2)dz and Zg = nyzge Where zge = [ zf;41(2) dz. A comparison between Egs. (A12d
GF

- A1 2f) and (A128 - A1 2C) ShOWS that ZG,Zl = ZD’ZG,?)Z = BZD, ZG,31 = 0, ZG,43 = 6ZD, ZG,42 =

\/§ZD,ZG’41 = 0, ... Note that the fluctuations such as z; 31, z; 32, Zg 41 are negligible because of
specific symmetry of G(z2).

Similar to a general energy loss fluctuations, the contributions of the Gaussian fluctuations in
energy deposition introduce correction factors to a and . Because the contribution to Z; from
z3 and beyond are identical to zero, there is no correction beyond the linear term in z;, and
hence in y;p. This is evident from Eq. (A12e) as the lowest order correction to specific energy
and deposition dose is quadratic. Hence the Gaussian model predicts « to be only linear
dependence on lineal energy and LET

A 1 (AL Y VL

— oLy 2
aG = —u+ n /1+ A).LL Zgp- (Al6)



Similarly for g the corrections beyond z5 fluctuations vanish exactly as the lowest order
correction to the dose in Eq. (A12g) is cubic. Hence we find a closed form for
1/1 2 2

Bo=3 (TL% + ’%) W+ ’%%;ﬁzw + (—%2—2 +0 <#>> 3utz2,.  (AL7)
As seen in these equations, the contribution from the fluctuations in Gaussian model of energy
deposition correct the LQ biological parameters a, and S to scale linearly and quadratically in
zp and y,. We note that the radiobiological models that start from the equations equivalent of
(A16) and (A17) are implicitly assuming a Gaussian-type symmetry in the energy-loss
processes. This includes models with linear dependence on LET in @ and constant g (e.g., by
neglecting higher order u terms in @ and 8 beyond quadratic terms). Such models neglect the
importance of asymmetries hidden in more realistic distribution functions such as the Landau
[45] and/or Vavilov [46] distribution functions, responsible for observed nonlinearities in
biological responses.

Neyman's distribution of type A and DSB distribution

We devote this section to illustrate the effect of deviation from Poisson distribution on statistical
fluctuations of specific energy, DSB distribution, and biological indices a and f. Specifically we
start with construction of the Neyman’s distribution function from first principles for DSB
induction processes and calculate the higher order moments in specific energy needed for
incorporation of the repair and misrepair mechanisms to fit globally the cell survival data.

We consider the normalized distribution function to describe stochastic energy deposition in
DNA material [58,59] as given below

Fan) = ) p@) () (418)
v=0

where p, (V) = (VW /v)exp(—V) describes the Poisson distributed events in an ensemble of
single tracks. Here v denotes the average number of energy deposition events and f,, (z) is the
distribution of specific energy imparted from passage of a single track within z and z + dz
resulted from exactly v energy deposition events. The stochastic process as such is sketched in
Fig. (1A).

We denote ¢, the deposited energy resulted from exactly v events in mass m of DNA material
corresponding to specific energy z = %Z‘l/:l & = vE,/m where &, = %Z};l &;. The occurrence of
k DSBs resulted from energy deposition requires balance in energy transfer to DNA. More
specifically vg, = inA=1 €; = kéy where €, = %Ziil €; is the typical energy results in breaking
chemical bonds for induction of a single DSB and k = vA = 0,1,2, ... counts number of DSBs. A is

the number of induced DSBs in an event. Hence the energy balance in an exactly v events
processes requires z = éavA/m. Further simplification can be performed_by averaging over DSB

population per event subsequently by averaging over events that yields k = VA = VA. Here A is
average number of DSBs per event, independent of v. The double bars over k denotes two
independent averagings; hence the order of averaging is not an issue. Also note that n = k and
u =m/é&, in Eq.(A1) hence z = (A/p)v.

The distribution of DSBs in a class of events, specified by given v, can be uniquely determined
by the corresponding energy deposition distribution. The DSB partition function, Q (4; ), the



probability distribution in finding exactly k DSBs, can be calculated from Eq.(A18) where f, (z) =
Yoo Pk (2)8(z — vA/u). The insertion of §-function, the DSB density of states, enforces a
constraint on the energy transfer balance resembling Fermi golden rule formulation of transition
rates and the perturbation theory in quantum physics. Substituting f,,(z) in Eq.(A18) and
integrating over z yields

1= jo “F(z9) dz = i Dy (V) jo wipk(z)s(z — vB/u) dz
v=0 k=0

=2 D n @D = ) G, (419)
k=0v=0 k=0
Thus
0@ 9) = Z P PDL(VD). (420)

Further approximation can be performed by considering Poisson distribution for DSB events,
i.e., pr (VA) = (vA)*/k! exp(—vA) that reduces Q, (A; V) in Eq.(A20) to Neyman'’s distribution of
Type A (see for example Refs. [47,48]). Accordingly, the probability in finding a DNA with zero
DSB is given by Q, = exp(—v(1 — exp(—A))) ~ exp(—vA). In this equation, VA is the average
number of events times the average number of DSBs per event.

From Eq. (A20), it is now straightforward to calculate the statistical moments of DSBs and the
corrections to biological indices a and g by inclusion of DSB fluctuations, as discussed in the
main text. Here we systematically show that the DSB partition function given by Q. (4; v) in Eq.
(A20) provides all statistical moments we need for this analysis. For clarification of notations we
first check the self-consistency of equations by calculating the first moment

k= Z kQ,(B; V) = VA.
k=0
Furthermore

k=1 = 2 k(k — 10, (B; 7) = (7B)? + (7B)A = k2 + k&,
k=0

G- D& D = p k(k~ 1)k - Q&) = k* + 3k + kR,
k=0
and in general

T

Kk—Dk—-2) . (k—1) = Z co kTSRS, (A21)
s=0
Here c, are the coefficients of expansion and ¢, = 1. By further expansion of Eq. (A21) we find a
power law series dependence of DSB fluctuations on A that we need for the expansion of Egs.
(A1) and (A2)

k" = I?T + (a01 + a11Z)Er_1 + (aoz + alzz + aZZZZ)FT_Z + .-
+ (agr + a1 + agp A% + -+ + a, A"k, (A22)
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Figure 1A. Schematically shown the energy deposition of v =3 events resulted from passage of
a single track in a cell domain.

Finally we show that A = uz;,. This identity is the reminiscent of fluctuation-dissipation theorem
and can be derived in the following steps

— fooo z* F(z;V)dz _ Ly=opy(¥) fooo z2dz ¥ i (2)6 (Z B %)

* ;V B co = © oo VZ .
fy 2@z 5o b, [ 2 d2 550 pie2)6 (2 = 2
After integrating over §-function we find

NIRN

_ Zicco X0 Py (Dp WA VA/1)?  AXT vy (V) Yiceo P (vA)
Zizo Lyzo by (VD) (VA/p) 1 ESo vy (V) ERlo pi(VA) |

N

Because Yo px(vA) = 1 and X3, v2p, (V) = vZ=v({¥+1)and 32 ,vp,([#) = v we find

z2 A
-_— = (17 + 1),
_ _ u .
hence A = [p/(V + 1)](22/Z). For a class of single events, z2/z reduces to z,,. More specifically
(e (00) — oo [o'e) VZ
72 Jo 22 F(z;v)dz Loy Jy 2°dz X pi(2)8 (Z - 7) 6y1

ZD=_

% ;V o = [ o A .
R VS N OINET D RO E 22) 80
Similarly after integrating over §-function we find

_ Zloco=0 2130:0 pv(ﬁ)pk (VZ)(VZ/H)25V,1 _ §Z1O/O:0 Vzpv (17) ZI?=0 Pk (VZ)6V,1 _ Z

= Z}?:o 210;0=0 pv(ﬁ)pk(vz) (VZ/H)5V,1 a u Z:;o:o va(ﬁ) 2]?:0 Pk (VZ) 61/,1 - ,LL.

Combining the results of these equations into Eq.(A22) and using transformation, k — uz in
Eq.(A22) and multiplying that equation by =" and substituting A = uzp, we obtain
zT =77 + (bgy + b112p)Z" "1 + (bgy + b1pzp + bypz3)z" 7% + -

+ (boy + biyzp + byrzh + -+ + by zh)Z. (A32)
Here b, = ag,-u°~" are the expansion coefficients. In numerical fitting procedure to the
experimental cell-survival data we consider these coefficients as phenomenological adjustable
parameters. Recalling z, = I(yp/m) and following the derivation steps presented in previous
section, we arrive at similar expressions for « and g and the power series dependences on
lineal energy.



The results given in Egs. (A19-A22) for Neyman’s distribution is in contrast with the Poisson
distribution that only leads to the first term in the expansion given by Eq. (421) and (A22)

k(k—1)(k—=2)..(k—1)=k" (A23)
Hence
K™ = k" + ag kT + agykTT2 4 -+ agyk, (A24)
with no dependence on A and lineal energy in Eq. (A24). Thus
zT =77 + by 2771 4+ b 2" % + -+ + by, Z. (A25)

Substituting these results into Egs. (A12a-c), it is now straightforward to show that the Poisson
distribution leads to no dependence of @ and  on lineal energy and LET consistent with the
results presented by Sachs et al. [50]. In contrast the Neyman'’s distribution leads to a power
law dependence of a and S on lineal energy and LET as discussed in the main text. The use of
Neyman’s distribution in RMF-MCDS model reported by Carlson et al. in Ref. [35] where z; and
LET are resulted linearly in « where  shows no dependence. One difference between
derivation presented in our current study and the one presented in Ref. [35] is the incorporation
of fluctuations that supersede z,, instead of z; in « and g such that the formulation of our linear
model shows consistency with Hawkins’ MK linear models [28,29,57].



