Adult-Onset Vitelliform Macular Dystrophy caused by BEST1 p.lle38Ser Mutation is a Mild Form of Best Vitelliform Macular Dystrophy

Ikhyun Jun^{1,2,3}, Joon Suk Lee³, Ji Hwan Lee¹, Christopher Seungkyu Lee¹, Seung-il Choi², Heon Yung Gee³, Min Goo Lee³, Eung Kweon Kim^{1,2,4,*}

¹The Institute of Vision Research, Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea

²Corneal Dystrophy Research Institute, Yonsei University College of Medicine, Seoul, Korea

³Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea

⁴Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea

Nucleotide	Amino acid	Frequencies in the	Frequencies in the
change ^a	change	dbSNP database [⊳]	ExAC database ^c
010C C	p.Gln304Glu	rs390659	94370/121392
0.9100>0		(MAF:G=0.2434/1219)	(36804 hom)
	p.Arg310Lys	rs425876	110687/121410
C.929G>A		(MAF:C=0.0587/294)	(50607 hom)
0 1012A> C	p.Asp338Gly	rs434102	94027/120706
C.1013A>G		(MAF:T=0.2426/1215)	(36719 hom)
0.1552C> C	p.His518Asp	rs3734311	56217/120658
0.15520>0		(MAF:G=0.4651/2329)	(13556 hom)
0 0077C \ A	n Aan702Aan	rs76604824	1433/38120
0.2377G>A	p.Asp795Ash	(MAF:T=0.0463/232)	(39 hom)
c.2021C>T	p.Thr674lle	rs571391	78869/121034
		(MAF:G=0.3508/1757)	(25908 hom)
	Nucleotide change ^a c.910C>G c.929G>A c.1013A>G c.1552C>G c.2377G>A c.2021C>T	Nucleotide change ^a Amino acid changec.910C>Gp.Gln304Gluc.929G>Ap.Arg310Lysc.1013A>Gp.Asp338Glyc.1552C>Gp.His518Aspc.2377G>Ap.Asp793Asnc.2021C>Tp.Thr674lle	Nucleotide change ^a Amino acid change Frequencies in the dbSNP database ^b c.910C>G p.Gln304Glu rs390659 (MAF:G=0.2434/1219) rs425876 (MAF:C=0.0587/294) c.929G>A p.Arg310Lys rs425876 (MAF:C=0.0587/294) c.1013A>G p.Asp338Gly rs434102 (MAF:T=0.2426/1215) c.1552C>G p.His518Asp rs3734311 (MAF:G=0.4651/2329) c.2377G>A p.Asp793Asn rs76604824 (MAF:T=0.0463/232) c.2021C>T p.Thr674Ile rs571391 (MAF:G=0.3508/1757)

Supplementary Table S1. Detected nonsynonymous variants of *PRPH2*, *IMPG1*, and *IMPG2*. in the subject.

^acDNA mutations are numbered according to human cDNA reference sequence NM_000322 (*PRPH2*), NM_001563 (*IMPG1*), and NM_016247 (*IMPG2*); +1 corresponds to the A of ATG transl ation initiation codon. ^bdbSNP database (http://www.ncbi.nlm.nih.gov/SNP). ^cExAC browser (http:// exac.broadinstitute.org/).

Conductance	G _{chord} (nS, mear	n ± SEM)
Mock	0.45 ± 0	0.10
WT	25.25 ±	2.08
p.lle38Ser	5.20 ± 0).86
p.Ala195Val	1.78 ± ().53
p.Trp93Cvs	0.78 ± 0	0.19
WT + p lle38Ser	10.65 +	1.80
WT + p Ala195Val	19.46 +	1.99
WT + p Trp03Cvs	2 97 + () 46
Newman-Keuls Multiple Comparison Test	P < 0.052	Summary
Mock vs WT	Voc	***
Mock vs WT + n Ala195Val	Yes	***
Mock vs WT + p.lle38Ser	Yes	**
Mock vs p lle38Ser	No	ns
Mock vs WT + p.Trp93Cvs	No	ns
Mock vs p.Ala195Val	No	ns
Mock vs p.Trp93Cvs	No	ns
p.Trp93Cys vs WT	Yes	***
p.Trp93Cys vs WT + p.Ala195Val	Yes	***
p.Trp93Cys vs WT+ p.Ile38Ser	Yes	**
p.Trp93Cys vs p.Ile38Ser	No	ns
p.Trp93Cys vs WT+ p.Trp93Cys	No	ns
p.Trp93Cys vs p.Ala195Val	No	ns
p.Ala195Val vs WT	Yes	***
p.Ala195Val vs WT+ p.Ala195Val	Yes	***
p.Ala195Val vs WT+ p.lle38Ser	Yes	**
p.Ala195Val vs p.Ile38Ser	No	ns
p.Ala195Val vs WT+ p.Trp93Cys	No	ns
WT+ p.Trp93Cys vs WT	Yes	***
WT+ p.Trp93Cys vs WT+ p.Ala195Val	Yes	***
WT+ p.Trp93Cys vs WT+ p.Ile38Ser	Yes	**
WT+ p.Trp93Cys vs p.lle38Ser	No	ns
p.lle38Ser vs WT	Yes	***
p.Ile38Ser vs WT+ p.Ala195Val	Yes	***
p.IIe38Ser vs WT+ p.IIe38Ser	Yes	**
WI+p.lle38Ser vs WT	Yes	***
W I + p.lle38Ser vs WT+ p.Ala195Val	Yes	***
WT+ p.Ala195Val vs WT	Yes	**

Supplementary Table S2. Conductance values of variants, and summary of analysis of variance (ANOVA) followed by Newman-Keuls multiple comparison test of Figure 5E.

Abbreviations are as follows: SEM, standard error; ns, not significant; WT, wild type; *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Gene	Exon no.	Sequence (5'3')
PRPH2	Exon 1A F	AGGGCTTCCATCTGGCATACTTG
	Exon 1A R	CTATCCCCTGCTCAAGCTGTGATTC
	Exon 1B F	AAGTTGTGCACCCGATGGAGA
	Exon 1B R	CAGCCTAGGACTGTTCCTGAAGATTG
	Exon 2 F	CCCACAGCTCCACTGAAGGC
	Exon 2 R	CCAAGTGTGCGAGTGAATGACTATTCT
	Exon 3 F	TCAGGGAGAGTCTCTGTAAGATGGT
	Exon 3 R	CAGGTGTGTTGAGCACTGAGGAC
IMPG1	Exon 1 F	TGTTGAATTTCGGTGGATAAATGGA
	Exon 1 R	TCCAGAAACAGACACTGCTACATGTTC
	Exon 2 F	GCTAAAGACAACCTATGGATGAATGA
	Exon 2 R	GCTTGATCGGCTCATTATACTATTCTC
	Exon 3 F	GCCTAATCAGATACCTCCAAGCA
	Exon 3 R	TGTGTCGACATAAGCCATGAAATAA
	Exon 4 F	CACAGCTCTTAGTGGCTGACAT
	Exon 4 R	TGCAAAATAATATGGTACAGTCAGGTTGA
	Exon 5 E	
	Exon 5 R	GGTCAATCTAGTTTTAAAGTATGCTTTTCCT
	Exon 6 F	CCCTCAGTACCTAGGAAGAAGTGAGAA
	Exon 6 R	
	Exon 7 F	TGGAACTGTTCGCCGTAAGGG
	Exon 7 R	GCTTCCAAAGGTGGCCCAAA
	Exon 8 E	
	Exon 8 P	
	Exon Q E	
	Exon Q P	
	Exon 10 E	
	EXON 10 P	TTCTCTCCCACCCATCACCAA
	EXON 10 R	
	EXUIT IT F	
	EXUIT IT R	
	EXON 12 K	
	EXON 13A R	
	EXON 13B F	
	EXON 13B R	
	Exon 14 F	AATGATGTGCTCCATAGCTTCCAAA
	Exon 14 R	GGGACTAATCACTGCAAATCAACCA
	EXON 15 F	
	EXON 15 R	
	Exon 16 F	
	Exon 16 R	
	Exon 1/ F	AAATTTCAGGGAAGGTGGAAGCA
	Exon 17 R	AGAAGAIGICAIAAAIGGCAAGCA
IMPG2	Exon 1 F	TCCATTTCTTACAGCAATCACATCA
	Exon 1 R	TTCTTAGTGGACTGCTTGTTAAAGG
	Exon 2 F	AGTAGAAAGGTAGTTTTGGCTCAGT
	Exon 2 R	CCTATGATTTGGGCACTGGCTTCT
	Exon 3 F	TTTTGCTTCCTTTAGGCCTTAGC
	Exon 3 R	GAGACACTCCAGCTCATGAAGAGAT
	Exon 4 F	CTTATCCACAGGCCTGGTCATT
	Exon 4 R	TTTGATTCTAAATCCATGGCAGGTT
	Exon 5 F	AAAATGTACTTGTTTGTGAGCCTGTCT
	Exon 5 R	GCAATATTGTGCTAGAGGACTAAGG
	Exon 6 F	TGTAGTCCAGCAATGGGAGATAA
	Exon 6 R	CTCTCTGGTAGAGGAGTTACTTCTTT

Supplementary Table S3. Primer Designed for Amplification of *PRPH2*, *IMPG1*, and *IMPG2*.

Exon 7 F	TAACCACTCCAGGAACCAAGTAG
Exon 7 R	GCCTGTGTCTTAAAGTCTACCCAAT
Exon 8 F	CCTACGTAACTTGTCAGCAGCAA
Exon 8 R	TTTTCTTTCATTTTCTGACCTGGGTAT
Exon 9 F	GGCAGAATTGAGTAGTTGCAACAGAGA
Exon 9 R	GCCAACAACTGGAGTCCTCTGC
Exon 10 F	TATCAGGTTGGCTCCTGTCTCAT
Exon 10 R	AGTGATGGAATCCATGCTCTTTGAG
Exon 11 F	GTAATGGTCTAGGGATGATGCAAGA
Exon 11 R	CGCTTCATAGGAATCTTGAACAGA
Exon 12 F	TCATAGCCATAGTCTCTTCCTCTCT
Exon 12 R	ATTATTAATACACCGCCTCCTTGTC
Exon 13A F	AAGCCACGGCTTGGACAGTG
Exon 13A R	TGAGTGACTGTCCCATATTGCAAACA
Exon 13B F	AGGGTTAGAGACGCAGATTCAG
Exon 13B R	GTTCATTCACTCAACCTGTGCCAAA
Exon 13C F	TCATCCTCTAGCAGGGTGGAGATT
Exon 13C R	AGCACTCAAAATATGAACATGATGACA
Exon 13D F	TTTCTTACCAACCCTAGGCCATGA
Exon 13D R	GAGAAATTGTCCAGAGACATATTGGCA
Exon 14 F	ATGTTTGGACGATGTTTTGAAAAGG
Exon 14 R	TAGGAAAAGTGAGGCAGGGTCTTAC
Exon 15 F	AAATTATAGGTGCAGGCCCCTTTTC
Exon 15 R	GGTTTTATGATTTGGCTCTGAGTTG
Exon 16 F	GCATCTTATTCTTAGTGCTACTTCTGT
Exon 16 R	AGCTTCACGTGGTCAGCATTTAT
Exon 17 F	ACACTCATACACACCCCCACCC
Exon 17 R	GCCATGGGTGTGAGGAAATCATAA
Exon 18 F	TGTGCTCACTCAGGTGTGACATTA
Exon 18 R	CTCCTAGTCTATGATATGCACAGAGT
Exon 19 F	ATTCCCTTACTAAGCCAGACTTCTCCA
Exon 19 R	GCACAGAACAGAACAACTTTCCTTCA

Supplementary Figure S1.

Supplementary Figure S1. Immunocytochemistry of hBEST1 wild type and p.IIe38Ser mutant. Hela cells were transfected with plasmids expressing wild type and p.IIe38Ser hBestrophin-1. hBEST1 (Green) was co-stained with the plasma membrane marker protein Na+-K+ pump (Red) and nucleus marker DAPI (Blue). Surface expression of wild type and mutant hBEST1 was confirmed by immunocytochemistry.

Supplementary Figure S2.

Supplementary Figure S2. Figure showing uncropped western blots from Fig. 3.

Supplementary Figure S3.

Supplementary Figure S3. Transfection efficiency of HEK293T cells which we used in the electrophysiological experiments. HEK293T cells were transfected with plasmids expressing green fluorescence protein (GFP), and wild type hBestrophin-1. hBEST1 (Red) was stained with nucleus marker DAPI (Blue). Average transfection rate over 90% was confirmed by immunocytochemistry.