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Supplementary Results 

Spike sorting results 

We asked whether there was a specific tendency for channels classified as major leaders (MLs) to record 

more than one unit with respect to followers. Therefore, we applied to a sub-set of experiments (6 out of 

20) a conventional spike sorting algorithm (cf. Supplementary Methods). The global percentage of channels 

recording more than one putative neuron is 16.61% (3 neurons 0.96%, 2 neurons 15.65%), of which 11.54% 

were classified as MLs and the rest as followers. This is very close to the global percentage of MLs (11.64%, 

cf. following paragraph), meaning that there is no specific tendency for channels classified as MLs to record 

more than one unit. Moreover, if we only consider the 5 most active channels of each experiment (i.e. 30 

channels in total for 6 experiments), only 20% (6 out of 30) record more than a single neuron, of which only 

1 is also classified as ML (3.33% over the total). Therefore, we can conclude that no significant statistical 

difference between the firing activity of ML and follower channels should be due to a tendency for ML to 

record more than one neuron with respect to followers. 

Properties of MLs: spontaneous activity 

In our dataset we tested whether the set of MLs in a given culture remains stable across hours of 

spontaneous activity. Even if the leadership score (LS) (cf. Methods) of individual channels may fluctuate 

(Supplementary Figure 1a), in all cultures there is a set of channels which are consistently recruited at the 

beginning of bursts with higher probability with respect to all others (i.e. showing higher LS). These 

channels correspond to the MLs. The pool of MLs remains approximately constant during medium-term 

recordings (e.g. up to 24h). 



 

Supplementary Figure 1. Properties of MLs. a, Burst leadership score (LS) of all electrodes during consecutive 5-h time 

windows (representative experiment). The 4%-threshold is marked by the dotted line and the identified MLs indicated 

by the electrode labels. b, Firing rate (spikes/s) of all recording electrodes during consecutive 5-h time windows for 

the same representative experiment as in a (time bin: 10 minutes): we highlighted in red the MLs. The thick black 

curve represents the average firing rate over all electrodes. c, Burst leadership score (LS) vs. normalized firing rate for 

the recorded electrodes of the entire dataset. Inset, box plot of statistical distributions of normalized firing rate for 

both followers (black) and MLs (red), Mann-Whitney U-test  𝒑 > |𝑼| = 𝟔. 𝟒𝟏 ∙ 𝟏𝟎−𝟒𝟎. d, LS VS ratio of spikes within 

bursts. Inset, corresponding boxplots for MLs and followers, Mann-Whitney U-test 𝒑 > |𝑼| = 𝟕. 𝟗𝟓 ∙ 𝟏𝟎−𝟏𝟑. e, LS VS 



normalized firing rate within bursts. Inset, corresponding boxplots for MLs and followers, Mann-Whitney U-test 

𝒑 > |𝑼| = 𝟎. 𝟑𝟖. f, LS VS normalized burst duration. Inset, corresponding boxplots for MLs and followers, Mann-

Whitney U-test 𝒑 > |𝑼| = 𝟑. 𝟐𝟎 ∙ 𝟏𝟎−𝟐𝟏. g, Probability density of logarithm of spontaneous firing rate (obtained by 

considering all electrodes of all recordings). In grey, we reported the best log-normal fit, whose equation is 
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We then analyzed the firing properties of the identified MLs. In Supplementary Figure 1b we reported the 

firing rate profile of each recording channel of a selected culture during 15-h recording (same culture of 

Supplementary Figure 1a). We depicted in red the MLs and in grey the followers. The thick black curve 

represents the network average firing rate. All MLs lie above the network average during the whole 

recording, but there are also many channels with higher firing rates which are not classified as global MLs. 

Therefore, we can conclude that MLs, as we defined them, are not only apparent leaders of the bursting 

activity, but are also highly active. 

We also measured other statistics of firing and bursting activity of MLs, namely normalized firing rate, ratio 

of spikes within bursts, normalized firing rate within bursts, and normalized burst duration (cf. 

Supplementary Figure 1). We found that MLs feature higher global firing rates, and their activity is almost 

fully included within bursts, showing longer burst durations, but not higher rates within bursts (cf. 

Supplementary Figure 1c-f). Those results indicate that MLs are highly active and bursting neurons, and do 

not show tonic or persistent random spiking activity. 

Additionally, inspired by the fact that also in vivo a few neurons actually feature higher firing rates than the 

majority of all others 1-3, leading to a pseudo-lognormal distributions of logarithm of firing rate 4, we 

derived the same probability density function of logarithm of spontaneous firing rate from our data 

(considering the whole dataset) and we obtained a very similar relationship. As already shown by the 

model hypothesized by Roxin and colleagues 4, there is an excess of neurons firing at low rates and a lack of 

neurons firing at high rates compared with the best lognormal fit (cf. Supplementary Figure 1g). 

 

 



Evaluation of early/late response component separation 

 

Supplementary Figure 2. Evaluation of early/late response component separation. a, Histogram of separation values 

(cf. Methods) between early and late response components (bin: 0.5 normalized units). b, Scatter plot of separation 

values vs. early/late response separating time thresholds (Pearson correlation coefficient 0.30, 2-tailed significance 

test, p-value < 0.05). 

In Supplementary Figure 2a we reported the histogram of separation values (cf. Methods) between early 

and late PSTH response components, which are broadly distributed between 0.35 and 1 (67 stimulating 

electrodes, 0.68 ± 0.02), and in Supplementary Figure 2b a scatter plot of separation values vs. early/late 

response separating time thresholds, indicating a low positive correlation (cf. figure legend), meaning that 

early and late responses tend to be more easily separable when they are farther in time. 

Early evoked response of MLs 

 

Supplementary Figure 3. Early evoked response of MLs. Box-plots of normalized area (a) and normalized first-spike 

latency (b), by considering only the early response. In each panel, on the left: comparison of either ML (grey) or 

follower (black) responses (area: Mann-Whitney U-test 𝑝 > |𝑈| = 0; latency: Mann-Whitney U-test 𝑝 > |𝑈| = 0.43); 

on the right: comparison of responses to either ML (light grey) or follower (black) stimulations (area: Mann-Whitney 

U-test 𝑝 > |𝑈| = 0.13; latency: Mann-Whitney U-test 𝑝 > |𝑈| =  3.7 ∙ 10−33). 



As also detailed in the main text, MLs show stronger responses to stimulation than followers in the early 

phase. This also confirms the fact that MLs tend to be highly active, both in spontaneous and evoked 

activity periods. Moreover, when stimulation is delivered from MLs, responses show shorter latencies (both 

early and late, cf. Results section in the main manuscript), indicating that the network is more promptly 

entrained by ML than by follower stimulation (cf. Supplementary Figure 3). 

Spontaneous patterns constrain evoked patterns: multidimensional scaling results 

We also used an alternative method to visualize and quantify the similarity between spontaneous and 

evoked patterns, which does not rely on previous clustering results. Similarly to what had been done in 5 we 

applied multidimensional scaling (MDS) 6 to the full matrix of all patterns’ distances, in order to get a 

reduced 2D representation of NB patterns, given their multidimensional pairwise distances (cf. 

Supplementary Methods). In fact, MDS is a nonlinear method used to represent high-dimensional datasets 

in a low-dimensional (typically 2D) space such that pairwise distances are preserved as well as possible (i.e. 

points which are close in the original high-dimensional space will also be placed close by in the 2D 

projection) 5. 

 

Supplementary Figure 4. MDS analysis. a, Reduced 2D representation of spontaneously generated and evoked 

bursting patterns (each one represented by either a blue or a red circle, respectively) according to MDS analysis for 

two selected experiments. Convex hulls are defined as polygons in a 2D space including all considered points. b, Box-

plot representation of the ratio of evoked patterns included in the hull defined by endogenous ones (black) and of the 

ratio of the intersection area (between the two hulls) over the evoked hull area (grey). 



In Supplementary Figure 4a we reported the results of MDS for two representative experiments. 

Spontaneous patterns are depicted in blue, while evoked patterns in red. For most experiments, there is a 

remarkable overlap of the realms including blue and red points. Moreover, we observed a striking 

qualitative correspondence between the results of our pattern clustering method (cf. Methods) and the 

results of the MDS analysis, e.g. in the number of separate spontaneous clusters of patterns, although we 

did not quantify this parameter from MDS. 

Taking advantage of MATLAB functions, we first determined the 2D convex hulls including spontaneous and 

evoked patterns (shaded blue and red areas). Then we measured two quantities, i.e. the ratio of evoked 

patterns included in the hull defined by endogenous ones and the ratio of the intersection area (between 

the two hulls) over the evoked hull area. Both measures are reported in Supplementary Figure 4b. Apart 

from a few cases (i.e. 2 out of 13), the global results highlight that spontaneous and evoked patterns’ 

realms substantially overlap, meaning that endogenous emerging patterns constrain possible evoked 

patterns. 

Supplementary Methods 

Spike sorting 

The results presented in the main manuscript were obtained by applying no spike sorting procedure. 

This choice was made according to many other published studies 7-10, also reporting that in such cultured 

networks during bursts the global increase of activity, in the form of fast sequences of overlapping spikes, 

makes the sorting procedure difficult and possibly unreliable.  

However, to further confirm the validity of the obtained results, we analyzed a subset of experiments (6 out 

of 20) by applying a conventional spike sorting algorithm based on wavelet transform and super-

paramagnetic clustering, as proposed by Quian Quiroga and colleagues 11. The MATLAB tool Wave_clus (v 

2.0) was downloaded from 

http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-

sorting and integrated in our software. Briefly, for each detected spike, 32 samples (i.e. 3.2 ms @ 10 KHz) 

http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting
http://www2.le.ac.uk/departments/engineering/research/bioengineering/neuroengineering-lab/spike-sorting


were saved for further analysis. All spikes were aligned to their minimum at data point 10. In order to avoid 

spike misalignments due to low sampling, spike minima were determined from interpolated waveforms of 

64 samples, using cubic splines. Channels were considered for sorting if recording at least 50 spikes during 

the whole experiment. First, unit clusters were determined by analyzing the first 30-minute recordings (and 

considering no more than 20,000 spikes). All other spikes detected during the recording were assigned via 

template matching, i.e. they were assigned to the closest cluster unless they were too far (threshold: 3 

times standard deviation from the cluster center). The obtained results were further refined and confirmed 

by visual inspection of an expert user. Unclustered spikes were not considered. 

Shuffling 

Given the non-parametric statistical test based on surrogate data applied to check significance of patterns’ 

pair similarity (cf. Pattern distance), the probability of getting two patterns similar by chance should not 

exceed the chosen significance level (e.g. 0.05). Hence, every time the ratio of significantly similar patterns’ 

pairs exceeds that threshold, it should be considered significant. To further check whether the ratio of 

significantly similar patterns found in our experiments is statistically significant (i.e. higher than expected by 

chance), we shuffled spontaneous patterns, by randomly permuting electrode activation rank orders 10 

times for each experiment. Then we computed the corresponding global ratio of similar patterns’ pairs 

within shuffled spontaneous activity and between shuffled spontaneous and actual evoked activity 

(average ± s.d. over the 10 shuffled datasets for each experiment). Due to the computational demand, we 

limited the number of considered patterns per experiment to 500, and we computed the normalized 

distance (cf. Pattern distance) based on 50 permutations per pair instead of 200. Since this might influence 

our results, for a subset of experiments (2 out of 13), we kept the number of permutations used to 

estimate the normalized distance equal to 200, and we did not find significantly different results (always 

lower than the significance level of 0.05).  

Normalization of pattern distance 



Normalized distances following the approach described in the main manuscript (and illustrated in 

Supplementary Figure 5a) do not depend on pattern length and, when re-ordered according to the pattern 

leader, nicely cluster along the diagonal. In Supplementary Figure 5b we reported a representative example 

of the effect of normalization on pattern distance values. Upper panels show raw distance matrices, 

whereas lower panels depict normalized distances, re-ordered either according to pattern length (left) or to 

pattern leader (right). It is evident that raw distances strongly depend on pattern length, preventing 

clusters of similar patterns to be detected, whereas normalized distances do not. 

 

Supplementary Figure 5. Normalization of pattern distance helps identifying clusters regardless of pattern length. a, 

Scheme illustrating the algorithm for pattern distance computation. Each sequence of electrode first activations 

during a NB is translated into a string of characters, each of which corresponding to a unique electrode number. Then, 

for each pair of strings, the Levenshtein edit distance is computed, as the minimum number of editing operations 

needed to transform one string into the other one. Finally, normalization of the raw string edit distances is made by 

generating surrogate data via shuffling of the original strings, and counting the number of times the distance between 

shuffled strings (shuffled_dist.) is less than the distance between original strings (actual_dist) over the total number of 

shuffles (num_shuffle, e.g. 200). Such normalized distance is equivalent to the p-value of a non-parametric statistical 

test based on surrogate data, which can be thresholded according to the desired significance level (e.g. 0.05). b, Color-

coded representation of raw (top) and normalized (bottom) distance matrices among all pairs of spontaneous NBs 

(representative experiment), either ranked by their pattern length (left) or by their leader (right). Raw distances 

strongly depend on pattern length, whereas normalized distances are mostly independent on the string length. 



Additional information on pattern clustering 

According to 12, the distance matrix is first rearranged by a standard agglomerative dendrogram method, 

based on Euclidean distance (provided by the Statistics Toolbox in Matlab). Second, the algorithm 

iteratively looks for sets of consecutive N patterns in the re-ordered matrix that satisfy two conditions: 

separation, i.e. a pattern belonging to a given set will have the lowest average distance with patterns 

belonging to the same set than to any other set, and isolation, i.e. no pattern will belong to more than one 

set. The parameter N is chosen equal to the square root of the total number of NBs included in the analysis, 

as suggested in the original paper 12. Hence, the k selected sets (i.e. clusters) do not overlap and they 

maximize the inner similarity (i.e. minimize the inner distances among patterns) (cf. Supplementary Figure 

6). Once the number of different clusters is identified, they are used as templates and NBs not included in 

any cluster are associated via template matching to the cluster they are closer to (i.e. a NB is included in a 

cluster if its average distance from the patterns belonging to that cluster is less than the average plus three 

times the standard deviation of that cluster’s inner distances). The clustering procedure is applied 

separately to both spontaneous and evoked activity. In case of evoked patterns, the procedure is applied 

independently to each stimulated channel’s responses, and only one cluster per channel is considered for 

further analysis (the one including the highest number of responses). All unclassified NBs (i.e. that were not 

included in a cluster after template matching) were discarded. The percentages of selected NBs are 67.8 ± 

2.4 % and 63.3 ± 3.4 % for spontaneous and evoked activity, respectively. Then, the normalized edit 

distance (cf. previous paragraph, Pattern distance) can be computed for each pair of selected spontaneous 

and evoked patterns. 



 

Supplementary Figure 6. Scheme illustrating the clustering algorithm. Both spontaneous and evoked NBs distance 

matrices are re-arranged according to a standard hierarchical clustering approach, then an iterative algorithm is 

applied to find clusters of close-by patterns. Patterns that cannot be included into any of the identified clusters 

according to a user-defined threshold are discarded. That procedure is applied separately to NBs evoked by different 

stimulation sources. Once spontaneous and evoked patterns are selected, the cross-similarity matrix collecting all 

distances between spontaneous and evoked NBs is computed. Again, normalized distances can be thresholded to the 

desired level to determine significant similarity between each pair of patterns. 

Multi-dimensional scaling (MDS) 

Non-classical metric multidimensional scaling (MDS) was performed in MATLAB 6. For this analysis we 

considered up to a maximum of 2500 spontaneous patterns and all evoked patterns, as also done for 

previous analyses on pattern similarity. MDS was applied to the full matrix of normalized edit distances 

between all pairs of patterns (spontaneous and evoked). We plotted the results of MDS in two dimensions, 

and we used the convhull function (provided by Matlab, useful to determine the convex hull of a set of 

points in 2-D space) to find the convex polygons delimiting either spontaneous or evoked patterns. We 

then used the inpolygon function (also provided by Matlab) to determine the ratio of evoked patterns 

included in the hull defined by spontaneous patterns (separately for each experiment). We then 

transformed our plot into a binary image (using poly2mask, Image Processing Toolbox, Matlab) where 

pixels included within hulls are non-zero, to compute the intersection area between hulls for each 

experiment. 
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