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I. Bias-Variance Decomposition 

In the simulation study the composition of the prediction errors (model errors) was studied as 

follows: 

𝑴𝑬𝒅𝒄𝒗 =
∑ 𝑴𝑬𝑘
𝑛𝑜𝑢𝑡𝑒𝑟
𝑘=1

𝑛𝑜𝑢𝑡𝑒𝑟
=
∑ ⃦
𝑛𝑜𝑢𝑡𝑒𝑟
𝑘=1        Xtest,k (𝒃̂𝑘,𝛼̂ − 𝐸[𝒃̂𝑘,𝛼̂] + 𝐸[𝒃̂𝑘,𝛼̂] − 𝒃)  ⃦

2

𝑛𝑜𝑢𝑡𝑒𝑟𝑛𝑡𝑒𝑠𝑡
 

𝒗𝒂𝒓(𝑴𝑬𝒅𝒄𝒗) =
∑ 𝒗𝒂𝒓(𝑴𝑬𝑘)
𝑛𝑜𝑢𝑡𝑒𝑟
𝑘=1

𝑛𝑜𝑢𝑡𝑒𝑟
=
∑ ⃦
𝑛𝑜𝑢𝑡𝑒𝑟
𝑘=1        Xtest,k(𝒃̂𝑘,𝛼̂ − 𝐸[𝒃̂𝑘,𝛼̂])  ⃦

2

𝑛𝑜𝑢𝑡𝑒𝑟𝑛𝑡𝑒𝑠𝑡
 

𝒃𝒊𝒂𝒔(𝑴𝑬𝒅𝒄𝒗) =
∑ 𝒃𝒊𝒂𝒔(𝑴𝑬𝑘
𝑛𝑜𝑢𝑡𝑒𝑟
𝑘=1 )

𝑛𝑜𝑢𝑡𝑒𝑟
=
∑ ⃦
𝑛𝑜𝑢𝑡𝑒𝑟
𝑘=1        Xtest,k(𝐸[𝒃̂𝒌,𝜶̂] − 𝒃)  ⃦

2

𝑛𝑜𝑢𝑡𝑒𝑟𝑛𝑡𝑒𝑠𝑡
 

The theory is explained in the following. 

 

MLR 

Assuming the following relationship holds: 

 𝒚 = Xb  + e = Xmbm + Xobo + e ,                    e~N(0, 𝜎2) 

where X𝑚 are the selected model variables,  X𝑜 are omitted but true variables, b𝑚 and bo are 

the corresponding regression coefficients. Generally, the regression vector estimate can be 

expressed for MLR under the usual assumptions [1] as follows: 

𝒃̂MLR = (X
T
X)-1XTy = (XT

X)-1XT(Xb  + e )                                                                                

          = b  + (XT
X)-1XTe                                                                                                          (1) 
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Substituting 𝒃 = 𝐸[𝒃̂]  in (1)  and rearranging equation (1) yields the following equation: 

𝒃̂MLR − 𝐸[𝒃̂MLR] = (X
T
X)-1XTe                                                                                                   (2)  

According to equation (2) different regression vector estimates scatter randomly around their 

expectation value. Thus, equation (2) describes random influences. Analogously, the MLR 

estimate is exposed to randomness for a given variable subset as follows:                                  

𝒃̂m,MLR − 𝐸[𝒃̂m,MLR] = (Xm
T

Xm)
-1Xm

T e                                                                                     (3) 

The following definitions are introduced for simplicity: 

 Xm
+ = (Xm

T
Xm)

-1Xm
T  

Hm = Xm(Xm
T

Xm)
-1Xm

T
 

Under the Gauss-Markov assumptions MLR is known to yield unbiased estimates of the 

regression vector estimates [2]. These assumptions are not necessarily satisfied under model 

uncertainty due to the omission of relevant variables [3]. The estimates of the selected 

variables are likely to be biased if true variables are erroneously excluded. Thus, the selected 

variables are systematically over- or underestimated. This bias is also known under the term 

omitted variable bias. [3]. The omitted variable bias depends on the correlation of the omitted 

and included variables and can be derived in case of MLR as follows [4]: 

𝐸[𝒃̂m,MLR] = Xm
+𝐸[𝒚] = Xm

+(Xmbm + Xobo) = bm + Xm
+

Xobo 

𝒃𝒊𝒂𝒔(𝒃̂m,MLR) = 𝐸[𝒃̂m,MLR] − bm =  Xm
+

Xobo                                                                           (4) 

Thus, the regression vector estimate for a given variable subset can be calculated as follows: 

𝒃̂m,MLR = 𝐸[𝒃̂m,MLR] + Xm
+

e = bm + Xm
+

Xobo + Xm
+

e                                                                      (5) 

The model error (ME) describes the squared difference between predicted and true response 

as follows: 

‖Xtest,m𝒃̂m,MLR − Xtestb‖
2

𝑛𝑡𝑒𝑠𝑡
=
(Xtest,m𝒃̂m,MLR − Xtestb)

T
(Xtest,m𝒃̂m,MLR − Xtestb)

𝑛𝑡𝑒𝑠𝑡
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                                     =
‖Xtest,m(bm + Xm

+Xobo + Xm
+e ) − (Xtest,mbm + Xtest,obo)‖

2

𝑛𝑡𝑒𝑠𝑡
 

                                                =
‖Xtest,mXm

+ Xobo − Xtest,obo + Xtest,mXm
+ e‖

2

𝑛𝑡𝑒𝑠𝑡
                                  (6) 

Equation (6) describes the model error and refers to the reducible part of the estimated 

prediction error. This model error can be diminished by model choice. The irreducible error 

[1] is caused by the noise term and is not reducible by model selection. The model error is 

interesting from a theoretical point of view since it highly depends on model choice. The error 

term of equation (6) can be decomposed as follows: 

‖Xtest,m𝒃̂m,MLR − Xtestb‖
2

𝑛𝑡𝑒𝑠𝑡
=
‖Xtest,mXm

+Xobo − Xtest,obo‖
2

𝑛𝑡𝑒𝑠𝑡
 +  
‖Xtest,mXm

+e ‖
2

𝑛𝑡𝑒𝑠𝑡
   

                                                   + 
2(Xtest,mXm

+
Xobo − Xtest,obo)

T
(Xtest,mXm

+
e )

𝑛𝑡𝑒𝑠𝑡
                            (7) 

The first quadratic term on the right side of equation (7) refers to the influence of bias. The bias 

derives partly from the omitted variable bias. Apart from the omitted variable bias, poor model 

specification is another source of bias since relevant variables are not considered in the 

prediction of new data. (The poor model specification is described by the term:  Xtest,obo ). The 

second term on the right side of equation 7 refers to random influences on the prediction of new 

data. The cross-term in equation (7) was rather small in the simulation study and was neglected 

for simplicity. This term even vanishes if the training and test data matrices are equal (Xtest,m = 

Xm, Xtest,o = Xo). This can be shown as follows: 

2(XmXm
+Xobo −  Xtest,obo)

T(XmXm
+e )

𝑛𝑡𝑒𝑠𝑡
=

2(HmXobo − Xobo)
THme 

𝑛𝑡𝑒𝑠𝑡
 

=
2(bo

TXo
THm

 THme − bo
TXo

THme )

𝑛𝑡𝑒𝑠𝑡
 

It follows since Hm is symmetric and idempotent:      
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2(bo
TXo

THm
 THme − bo

TXo
THme )

𝑛𝑡𝑒𝑠𝑡
=

2(bo
TXo

THme − bo
TXo

THme )

𝑛𝑡𝑒𝑠𝑡
= 0 

In the simulation study bias and variance estimates were derived according to the 

aforementioned bias-variance decomposition as follows: 

𝒃𝒊𝒂𝒔(𝑴𝑬) =
‖Xtest,m𝐸[𝒃̂m,MLR] − Xtestb‖

2

𝑛𝑡𝑒𝑠𝑡
=
‖Xtest,mXm

+Xobo −  Xtest,obo‖
2

𝑛𝑡𝑒𝑠𝑡
 

=
‖Xtest,mXm

+Xobo‖
2

𝑛𝑡𝑒𝑠𝑡
 + 
‖Xtest,obo‖

2

𝑛𝑡𝑒𝑠𝑡
  −  

2(Xtest,mXm
+Xobo)

TXtest,obo
𝑛𝑡𝑒𝑠𝑡

 

𝒃𝒊𝒂𝒔(𝑴𝑬)𝒐𝒎 =
‖Xtest,mXm

+Xobo‖
2

𝑛𝑡𝑒𝑠𝑡
 

𝒃𝒊𝒂𝒔(𝑴𝑬)𝒎𝒐𝒅𝒆𝒍 =
‖Xtest,obo‖

2

𝑛𝑡𝑒𝑠𝑡
 

𝒗𝒂𝒓(𝑴𝑬) =
‖Xtest,m𝒃̂m,MLR − 𝐸[𝒃̂m,MLR]‖

2

𝑛𝑡𝑒𝑠𝑡
=
‖Xtest,mXm

+e ‖
2

𝑛𝑡𝑒𝑠𝑡
 

 

The term 𝒃𝒊𝒂𝒔(𝑴𝑬) includes all sources of bias. The term 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒐𝒎 refers to the bias which 

is caused by the omitted variables, 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒎𝒐𝒅𝒆𝒍 measures the bias due to poor model 

specification. The term 𝒗𝒂𝒓(𝑴𝑬) refers to the variance term of the external prediction errors. 

The bias-variance decomposition was applied for each data split into training and test data in the 

outer loop of double cross-validation. In case of the simulation study the expectation values for  

regression vector estimates were calucated for the specific variable subsets  and for training data 

sets. This was repeated for 200 simulated data sets. Thus, the approximate variance and bias 

terms were calculated for specific variable subsets and particular training and test data splits in 

the simulation study.  
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PCR 

A widely applied matrix decomposition is the singular value decomposition (SVD) [1]. The 

predictor matrix X (n rows and p columns) can be decomposed according to singular value 

decomposition as follows: 

X = U(𝑛×𝑟)S(𝑟×𝑟)V(𝑟×𝑝)
 T  

where r is the maximum (mathematical) rank of the predictor matrix. The matrices U and V 

contain the left and right singular vectors. The diagonal matrix S contains the singular values 

in decreasing order. The regression vector estimate for PCR can be described as follows [1]: 

𝒃̂PCR = VqSq
-1

Uq
T
y                                                                                                                                    (8) 

where q (q < r) are the selected number of principal components. The omission of principal 

components which are associated with negligibly small singular values often reduces the 

variance considerably. If the predictor matrix is ill-conditioned and is almost singular the 

omission of principal components often reduces the variance to a very large extent [1]. But 

there is also a drawback because the omission of principal components causes some bias [1, 5]. 

Nevertheless, it is often reasonable to accept a small or moderate increase in bias for the benefit 

of variance reduction. The difficulty is to find a reasonable bias-variance tradeoff [1]. The 

following definitions are introduced for simplicity: 

Xq
+ = VqSq

-1
Uq

T 

Xj
+ = VjSj

-1
Uj

T
 

where j are the omitted principal components. The expectation value of the PCR estimate can 

be described as follows:  

𝐸[𝒃̂PCR] = Xq
+𝐸[𝒚] = Xq

+
X𝒃 = VqSq

-1
Uq

T
X𝒃 

Analogously, the expectation value of the PCR estimate can be calculated for a given variable 

subset (m) as follows:  

𝐸[𝒃̂m,PCR] = Xm,q
+ 𝐸[y]  = Xm,q

+
X𝒃  
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The following equation describes the bias of the PCR estimate for the full model [5]: 

𝒃𝒊𝒂𝒔𝒇𝒖𝒍𝒍 = 𝐸[𝒃̂PCR] − 𝒃 = Xq
+
X𝒃 − 𝒃 = −Xj

+
X𝒃                                                                         (9) 

The following equation (𝟖𝒂) relates to the bias of the PCR estimate for a given variable subset: 

 

𝒃𝒊𝒂𝒔𝒔𝒖𝒃𝒔𝒆𝒕 = 𝐸[𝒃̂m,PCR] − 𝒃m = Xm,q
+

X𝒃 − 𝒃m                                        

                     =  𝐸[𝒃̂m,PCR] − 𝒃m = Xm,q
+ (Xobo +  Xm𝒃m) − 𝒃m 

                     =   𝐸[𝒃̂m,PCR] − 𝒃m =  Xm,q
+

Xobo + Xm,q
+

Xm𝒃m − 𝒃m                                     (9a)          

According to equation (9a), the bias due to rank approximation can be described for a specific 

variable subset as follows: 

𝒃𝒊𝒂𝒔𝒓𝒂𝒏𝒌 =  Xm,q
+

Xm𝒃m − 𝒃m  =  − Xm,j
+

Xm𝒃m                                               

In case of PCR the omitted variable bias can be described as follows: 

  

𝒃𝒊𝒂𝒔𝒐𝒎 = Xm,q
+

Xobo                                                  

𝒃𝒊𝒂𝒔𝒐𝒎 = Xm
+

X𝑜bo⏟    
𝑏𝑖𝑎𝑠𝑜𝑚 𝑜𝑓 

𝒃̂m,MLR

−  Xm, j
+

Xobo                                                                                           (10) 

Equation (10) shows that MLR yields larger omitted variable bias than PCR since the omitted 

variable bias also depends on the number of selected principal components. Certainly, the 

PCR estimate is also exposed to random influences as follows [5]: 

𝒃̂PCR − 𝐸[𝒃̂PCR] = Xq
+e                                                                                                                      (11) 

The PCR estimate is exposed to random influences to a smaller extent as compared to the MLR 

estimate: 

𝒃̂PCR − 𝐸[𝒃̂PCR] = X
+e − Xj

+e            

The PCR estimate is exposed to random influences for a given variable subset as follows: 

𝒃̂m,PCR − 𝐸[𝒃̂m,PCR] = Xm,q
+ e  =  Xm

+ e − Xm,j
+ e          

Thus, the PCR estimate can be derived according to the aforementioned equations as follows: 

𝒃̂m,PCR = 𝐸[𝒃̂m,PCR] + Xm,q
+ e              
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𝒃̂m,PCR = 𝒃m + Xm,q
+

Xobo⏟      
𝑜𝑚𝑖𝑡𝑡𝑒𝑑
𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
𝑏𝑖𝑎𝑠

 +  Xm,q
+

Xm𝒃m − 𝒃m⏟          
𝑏𝑖𝑎𝑠 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑎𝑛𝑘
𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛

  +  Xm,q
+ e ⏟  

𝑟𝑎𝑛𝑑𝑜𝑚
𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡

                                                     (12) 

Thus, the model error for external test data can be derived as follows: 

‖Xtest,m𝒃̂m,PCR − Xtestb‖
2

𝑛𝑡𝑒𝑠𝑡
 

=
‖Xtest,m(𝒃m + Xm,q

+ Xobo + Xm,q
+ Xm𝒃m − 𝒃m + Xm,q

+ e ) − (Xtest,m𝒃m + Xtest,obo)‖
2

𝑛𝑡𝑒𝑠𝑡
 

=
‖Xtest,m(Xm,q

+ Xobo + Xm,q
+ Xm𝒃m − 𝒃m) − Xtest,obo + Xtest,mXm,q

+ e‖
2

𝑛𝑡𝑒𝑠𝑡
                                   (13) 

According to the aforementioned equations the approximate bias and variance terms can be 

calculated as follows: 

𝒃𝒊𝒂𝒔(𝑴𝑬) =
‖Xtest,m𝐸[𝒃̂m,PCR] − Xtestb‖

𝟐

𝑛𝑡𝑒𝑠𝑡
 

 𝒃𝒊𝒂𝒔(𝑴𝑬) =
‖Xtest,m(Xm,q

+ Xobo + Xm,q
+ Xm𝒃m − 𝒃m) − Xtest,obo‖

𝟐

𝑛𝑡𝑒𝑠𝑡
 

𝒗𝒂𝒓(𝑴𝑬) =
‖Xtest,m𝒃̂m,PCR − Xtest,m𝐸[𝒃̂m,PCR]‖

𝟐

𝑛𝑡𝑒𝑠𝑡
= 
‖Xtest,mXm,q

+ e‖
𝟐

𝑛𝑡𝑒𝑠𝑡
 

The different sources of bias can be estimated as follows: 

𝒃𝒊𝒂𝒔(𝑴𝑬)𝒓𝒂𝒏𝒌 = 
‖Xtest,m(Xm,q

+ Xm𝒃m − 𝒃m)‖
2

𝑛𝑡𝑒𝑠𝑡
 

𝒃𝒊𝒂𝒔(𝑴𝑬)𝒐𝒎 = 
‖Xtest,m(Xm,q

+ Xobo)‖
2

𝑛𝑡𝑒𝑠𝑡
 

𝒃𝒊𝒂𝒔(𝑴𝑬)𝒎𝒐𝒅𝒆𝒍 = 
‖Xtest,obo‖

2

𝑛𝑡𝑒𝑠𝑡
 

 

The term 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒓𝒂𝒏𝒌  refers to the bias due to rank approximation. The term 
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𝒃𝒊𝒂𝒔(𝑴𝑬)𝒐𝒎 refers to the influence of the omitted variables on the prediction error estimates. 

The term 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒎𝒐𝒅𝒆𝒍 relates to the bias due to poor model specification.  
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II. Supplementary Figures: Simulation model 2 and real data sets 

 

 

 

Figure S1 – Bias due to omitted variables (simulation model2) 

Figure S1 shows the bias term which was caused by the omission of true variables 

(𝒂𝒗𝒆. 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒐𝒎) for simulation model 2. The results are shown for TS-MLR and TS-PCR 

in combination with different test data set sizes and cross-validation designs. 
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Figure S2– Bias due to poor model specification (simulation model 2) 

Figure S2 shows the bias term due to poor model specification (𝒂𝒗𝒆. 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒎𝒐𝒅𝒆𝒍) for 

simulation model 2. The results are shown for TS-MLR and TS-PCR in combination with 

different cross-validation designs in the inner loop and for different test data set sizes in the 

outer loop. The bias due to poor model specification was an important source of bias. This 

bias term was particularly large in case of TS-MLR: CV-80% due to underfitting. Expectedly, 

the bias due poor model specification tended to increase for lower training data set sizes and 

larger validation data set sizes in the inner loop due to the selection of smaller models. 
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Figure S3- Bias due to rank approximation (TS-PCR, simulation model 2) 

Figure S3 shows the influence of the bias term due to rank approximation 

(𝒂𝒗𝒆. 𝒃𝒊𝒂𝒔(𝑴𝑬)𝒓𝒂𝒏𝒌) for simulation model 2. The results refer to varying test data set sizes 

and are shown for TS-PCR in combination with different cross-validation designs. The bias 

due to rank approximation was large in case of LOO-CV owing to the selection of low 

numbers of latent variables. 
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Figure S4 Average percentage of truly selected variables 

Figure S4 shows the percentages of true variables which were selected in the inner loop of 

double cross-validation for simulation model 2 (average over 200 simulations). The results are 

shown for different test data set sizes in the outer loop of double cross-validation and different 

variable selection algorithms in the inner loop (TS-MLR and TS-PCR in combination with 

different cross-validation designs and Lasso).  
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Figure S5 – Average number of selected variables 

Figure S5 shows the number of selected variables in the inner loop of double cross-validation 

for simulation model 2 (average over 200 simulations). The results are shown for different test 

data set sizes in the outer loop of double cross-validation and different variable selection 

algorithms in the inner loop (TS-MLR and TS-PCR in combination with different cross-

validation designs and Lasso). Recall that the true model consists of 6 variables. 
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Figure S6 –Average number of redundant variables (simulation model 2) 

Figure S6 shows the number of erroneously selected (redundant) variables for simulation 

model 2 (average over 200 simulations). The results are shown for TS-MLR and TS-PCR and 

Lasso (10-fold CV). TS-PCR and Lasso evidently select more irrelevant variables than TS-

MLR. Yet, in most case they perform better than TS-MLR. Hence, PCR as well as Lasso can 

handle these variables better. PCR can reduce the influence of the irrelevant variables by a 

lower rank approximations of the X-matrix which results in small regression coefficients for 

the irrelevant variables. The same can be observed for Lasso while the regularization 

mechanism is different.  
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Figure S7a-b –Relative variable selection frequencies (simulation model 2) 

Figure S7a-b shows the variable selection frequencies for different test data set sizes for 

LOO-CV. Since the predictor matrices are almost symmetric, only variables 11-21 are shown. 

In the simulation model 2 variables 13 and 15 are relatively weak predictors compared to 

variable 14. Variable 14 was reliably selected even in case of smaller training data set sizes 

since it is a strong predictor. Variables 13 and 15 were less frequently selected than variable 

14 and the selection frequencies depended to a large extent on the test data set size. The 

relatively weak but true predictors 13 and 15 were more frequently selected in case of larger 

training data set sizes. This observation was true both for PCR and MLR but it was more 
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evident in case of MLR. This also illustrates that the variable selection algorithm was capable 

of identifying the relevant variables for a sufficiently large data set. As far as the insignificant 

(erroneously selected) variables were concerned, the selection frequencies varied only slightly 

dependent on different training data sizes. If the training data size was reduced, less relevant 

but slightly more insignificant variables were selected in case of MLR.  

 

 

 

 

Figure S8 -Variability of the oracle error estimates (𝒂𝒗𝒆. 𝒗𝒃(𝑷𝑬𝒐𝒓𝒂𝒄𝒍𝒆)) 

Figure S8 shows the variability of the error estimates derived from the oracle data (𝒂𝒗𝒆. 𝒗𝒃(𝑷𝑬𝒐𝒓𝒂𝒄𝒍𝒆)) 

for different test data set sizes in the outer loop and for different variable selection algorithms in the 

inner loop (Lasso, TS-MR and TS-PCR with different cross-validation designs). In case of 𝑷𝑬𝒐𝒓𝒂𝒄𝒍𝒆 

extremely large data sets were used to assess the prediction errors. Hence, limited and varying test data 

sets were scarcely a source of variability as opposed to the prediction errors derived from the outer loop. 

Consequently, the variability of 𝑷𝑬𝒐𝒓𝒂𝒄𝒍𝒆 was primarily caused by model uncertainty and 

𝒂𝒗𝒆. 𝒗𝒃(𝑷𝑬𝒐𝒓𝒂𝒄𝒍𝒆) increased steadily with smaller training data set sizes owing to higher model 

uncertainty. 
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Figure S9 –Mean squared error for regression vector estimates (simulation model 2) 

Figure S9 shows the mean squared differences between the true and the estimated regression 

coefficients (𝒂𝒗𝒆.𝒎𝒔𝒆(𝒃𝒅𝒄𝒗)) for 𝑛𝑡𝑒𝑠𝑡 = 5. The results are shown for different variable selection 

algorithms in the inner loop (Lasso: 10-fold CV, TS-MLR and TS-PCR in combination with LOO-CV, 

CV-40% and CV-80%). Lasso shows the smallest deviations from the theoretical values. In, particular 

deviations for irrelevant variables are rather small. This explains why Lasso performs best despite the 

fact that it selects a rather large amount of irrelevant variables. 
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Figure S10 – Solubility data: Relative deviations from the ‘oracle’ prediction error for 

TS-PCR  

There is no overall patter in the deviations. In the worst case the ‘oracle’ prediction error is 

underestimated by 7%. The standard deviations, which are shown in the main body of the paper, indicate 

that the deviations can be attributed to random fluctuations. 
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Figure S11a-c -Variable selection (solubility data) 

Figure S11a-c shows the relative variable selection frequencies for different cross-validation 

techniques in the inner loop (10-fold CV, CV-40% and CV-80%) and for 𝑛𝑡𝑒𝑠𝑡 = 15 for the 

solubility data set. In case of CV-80% the derived models almost exclusively consist of 
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predictors which yielded high CAR scores in the variable preselection process.  

 

Figure S12 Artemisinin data: Relative deviations from the ‘oracle’ prediction error for SA-

kNN 

All prediction errors underestimate the ‘oracle’ prediction error to a varying degree. Since the ‘oracle’ 

data set is rather small and the standard deviations of the estimates are rather large (see main body of 

the paper), deviations can be attributed to random fluctuations. 
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III. Supplementary Figures: Simulation Model 1 

 

 

 

Figure S13:  Selection of relevant variables for simulation model 1 

Figure S13 refers to simulation model 1 and shows the percentage of all true variables 

(variables 7 and 14) which were selected in the inner loop. The results are shown for TS-PCR, 

TS-MLR and Lasso. In case of the less challenging simulation model 1, all relevant variables 

(variables 7 and 14) were reliably selected for all cross-validation designs in the inner loop. 

Contrary to simulation model 2, TS-MLR was not susceptible to underfititing even for large 

validation data set sizes in the inner loop since this model was far less complex and less 

challenging than simulation model 2. 
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Figure S14: Average number of redundant variables (simulation model 1) 

Figure S14 refers to simulation model 1 and shows the number of erroneously selected 

(redundant) variables. The results are shown for TS-PCR, TS-MLR and Lasso. The number of 

erroneously selected variables was very small in case of CV-80% (LMO: d=80%).  
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Figure S15:  Variance terms (simulation model 1) 

Figure S15 refers to simulation model 1 and shows the variance terms (𝒂𝒗𝒆. 𝒗𝒂𝒓(𝑴𝑬)). The 

results are shown for TS-PCR and TS-MLR in combination with different cross-validation 

designs in the inner loop and for different test data set sizes in the outer loop. Similar to 

simulation model 2, the variance terms tended to decrease with larger validation data set sizes 

and smaller test data set sizes. Larger validation data set sizes favoured less complex models 

which reduced the variance terms. PCR yielded lower variance terms than MLR in case of 

LOO-CV owing to rank approximation. 
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Figure S16 Average bias terms (simulation model 1) 

Figure S16 refers to simulation model 1 and shows the estimated bias terms. The results are 

shown for TS-PCR. As far as simulation model 1 was concerned, PCR and MLR yielded 

nearly unbiased error estimates since the true variables were reliably selected even in case of 

large validation data set sizes. Thus, the bias due to poor model specification and the bias due 

to omitted variables were completely irrelevant in case of the less challenging simulation 

model 1. Rank approximation was the only source of bias in case of simulation model 1. In 

case of large validation data set sizes TS-PCR selected almost the full rank and the influence 

of rank approximation nearly vanished and was negligible. Generally, the bias term was 

comparatively small and the variance term was more influential.  
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Figure S17 Average prediction error estimates (simulation model 1) 

Figure S17 refers to simulation model 1 and shows the average prediction error estimates 

derived from the outer loop. The results are shown for TS-PCR, TS-MLR and Lasso. As far as 

simulation model 1 was concerned, PCR and MLR yielded very similar prediction error 

estimates in the outer loop. PCR yielded similar results to MLR in case of LOO-CV since the 

decrease in variance due to rank approximation was almost compensated by the increase in 

bias. Contrary to simulation model 2, TS-PCR and TS-MLR in combination with CV-80% 

(LMO: d=80%) yielded lower prediction errors than Lasso. This was due to the fact that the 

number of irrelevant variables was high in case of Lasso. 
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IV. Molecule indexes of solubility data set used for variable 

preselection 

Table S1 Indexes of the 300 molecules (solubility data set) which were used for variable 

preselection. 

 

 
Solubility data 

 

 
Indexes of the molecules from the Training Set  
 

Indexes of the 
molecules from Test 
Set 1  

9 86 160 221 342 406 509 623 688 776 880 973 1 112 178 236 

12 87 164 224 345 410 518 626 692 783 887 990 13 127 179 240 

13 94 167 232 347 415 522 627 699 797 891 992 14 128 186 245 

16 96 168 233 349 421 523 629 702 798 903 1002 16 129 187 250 

20 109 171 234 353 425 524 632 704 805 904 1006 23 131 189 253 

31 117 179 247 357 438 533 638 706 806 909 1007 27 133 191 256 

32 120 182 252 359 439 534 641 714 810 910 1019 47 134 192 266 

39 121 184 258 360 443 543 642 718 821 911 1026 49 138 197 268 

47 131 185 260 361 449 547 643 726 827 914 1028 55 143 201 269 

48 132 187 272 363 454 553 644 730 834 915  56 151 202 271 

52 134 190 278 368 456 561 645 731 836 917  66 152 208 272 

53 137 192 281 374 458 566 649 736 837 925  76 155 214  

54 140 196 283 380 466 577 651 741 838 933  80 158 216  

56 141 198 290 382 471 580 664 747 847 935  81 159 218  

57 145 202 293 387 473 584 667 751 848 943  84 167 219  

64 148 203 295 388 480 586 676 758 850 950  91 168 223  

66 154 205 298 391 484 589 677 761 860 951  97 172 226  

76 155 210 302 393 504 596 679 763 862 952  107 173 229  

80 156 217 312 395 506 603 683 764 878 956  110 175 231  

85 158 219 323 401 507 611 684 769 776 962  111 177 234  
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