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l. Bias-Variance Decomposition

In the simulation study the composition of the prediction errors (model errors) was studied as

follows:
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The theory is explained in the following.

MLR

Assuming the following relationship holds:

y =Xb+e =X,b, +X,b, + €, e~N(0,02)

where X, are the selected model variables, X, are omitted but true variables, b,, and b, are
the corresponding regression coefficients. Generally, the regression vector estimate can be
expressed for MLR under the usual assumptions [1] as follows:

byir = X' X)Xy = (X'X)'X"(Xb + €)

=b+(X'X)'X'e (1)



Substituting b = E[b] in (1) and rearranging equation (1) yields the following equation:
buir — E[buir]l = (X' X)X e (2)
According to equation (2) different regression vector estimates scatter randomly around their
expectation value. Thus, equation (2) describes random influences. Analogously, the MLR
estimate is exposed to randomness for a given variable subset as follows:

bmir — E[bmmir] = (X0X) ' Xne 3)
The following definitions are introduced for simplicity:

X = (X X)X,

H, =X,X.X,)"'X.,

Under the Gauss-Markov assumptions MLR is known to yield unbiased estimates of the
regression vector estimates [2]. These assumptions are not necessarily satisfied under model
uncertainty due to the omission of relevant variables [3]. The estimates of the selected
variables are likely to be biased if true variables are erroneously excluded. Thus, the selected
variables are systematically over- or underestimated. This bias is also known under the term
omitted variable bias. [3]. The omitted variable bias depends on the correlation of the omitted

and included variables and can be derived in case of MLR as follows [4]:

E[bpmir] = XmE(Y] = X5 (X B + X, 0,) = by + X7,X, b,

bias(Bm,MLR) =E [Bm,MLR] — b, = X;Xobo (4)
Thus, the regression vector estimate for a given variable subset can be calculated as follows:

Bm,MLR = E[Bm,MLR] +X,e=b, +X,X,b, + X,e (5)
The model error (ME) describes the squared difference between predicted and true response

as follows:
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Equation (6) describes the model error and refers to the reducible part of the estimated
prediction error. This model error can be diminished by model choice. The irreducible error
[1] is caused by the noise term and is not reducible by model selection. The model error is
interesting from a theoretical point of view since it highly depends on model choice. The error

term of equation (6) can be decomposed as follows:
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The first quadratic term on the right side of equation (7) refers to the influence of bias. The bias
derives partly from the omitted variable bias. Apart from the omitted variable bias, poor model
specification is another source of bias since relevant variables are not considered in the
prediction of new data. (The poor model specification is described by the term: X5 8, ). The
second term on the right side of equation 7 refers to random influences on the prediction of new
data. The cross-term in equation (7) was rather small in the simulation study and was neglected
for simplicity. This term even vanishes if the training and test data matrices are equal (Xzese,m =

X Xtesto = X,). This can be shown as follows:
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It follows since A, is symmetric and idempotent:
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In the simulation study bias and variance estimates were derived according to the

aforementioned bias-variance decomposition as follows:
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The term bias(ME) includes all sources of bias. The term bias(ME),, refers to the bias which

is caused by the omitted variables, bias(ME),4e1 Measures the bias due to poor model

specification. The term var(ME) refers to the variance term of the external prediction errors.

The bias-variance decomposition was applied for each data split into training and test data in the

outer loop of double cross-validation. In case of the simulation study the expectation values for

regression vector estimates were calucated for the specific variable subsets and for training data

sets. This was repeated for 200 simulated data sets. Thus, the approximate variance and bias

terms were calculated for specific variable subsets and particular training and test data splits in

the simulation study.



PCR

A widely applied matrix decomposition is the singular value decomposition (SVD) [1]. The
predictor matrix X (n rows and p columns) can be decomposed according to singular value
decomposition as follows:

X = UpnxrySrsery Virsp)

where r is the maximum (mathematical) rank of the predictor matrix. The matrices U and V
contain the left and right singular vectors. The diagonal matrix § contains the singular values
in decreasing order. The regression vector estimate for PCR can be described as follows [1]:
bpr = V,S; Uy (8)
where g (g < r) are the selected number of principal components. The omission of principal
components which are associated with negligibly small singular values often reduces the
variance considerably. If the predictor matrix is ill-conditioned and is almost singular the
omission of principal components often reduces the variance to a very large extent [1]. But
there is also a drawback because the omission of principal components causes some bias [1, 5].
Nevertheless, it is often reasonable to accept a small or moderate increase in bias for the benefit
of variance reduction. The difficulty is to find a reasonable bias-variance tradeoff [1]. The
following definitions are introduced for simplicity:

X, = V,8;0]

X =V;8;'Uf

where j are the omitted principal components. The expectation value of the PCR estimate can
be described as follows:

E[bpcr] = X;E[y] = X,Xb = V,S; U/ Xb

Analogously, the expectation value of the PCR estimate can be calculated for a given variable
subset (m) as follows:

E[bypcr] = X Ely] =X5,Xb



The following equation describes the bias of the PCR estimate for the full model [5]:
biasg,; = E[bpcg] —b = X,Xb — b = —X;Xb (9)
The following equation (8a) relates to the bias of the PCR estimate for a given variable subset:
biassypset = E[bypcr] — bm = X, Xb — b,

= E[Bm,PCR] — b, = ‘X'r'-n,q(Xobo + Xuby,) — by,

= E[bmpcr] — b = X, Xobo + X Ximbim — by (9a)
According to equation (9a), the bias due to rank approximation can be described for a specific
variable subset as follows:

bias, i = X.r'-n,qubm - b, = _X’r'-n Xmbm,

L]
In case of PCR the omitted variable bias can be described as follows:

bias ., = Xy, . Xob,

bias,,, = AfanXobo - X;Fn,onbo (10)

biasom of
by MLR

Equation (10) shows that MLR yields larger omitted variable bias than PCR since the omitted
variable bias also depends on the number of selected principal components. Certainly, the
PCR estimate is also exposed to random influences as follows [5]:

bpcr — E[bpcr] = X e (11)
The PCR estimate is exposed to random influences to a smaller extent as compared to the MLR
estimate:

bpcr — E[bpcr] = X'e — X%

The PCR estimate is exposed to random influences for a given variable subset as follows:
B.pcr — E[Bmpcr] = X g€ = Xne — X, e

Thus, the PCR estimate can be derived according to the aforementioned equations as follows:

BmPCR =E[b mPCR]JFXF e



Bm,PCR = bm + XTn,qubo + Xr;,qubm - bm + Xrtz,qe (12)
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Thus, the model error for external test data can be derived as follows:
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According to the aforementioned equations the approximate bias and variance terms can be

calculated as follows:
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The different sources of bias can be estimated as follows:

”Xtest,m (/\fr#n,qubm - bm) ”2

bias(ME),qn; =

Niest

Xyosr (X X))
biaS(ME)om= ” test,m( m,g<*o o)”
Ntest
2
X

bias(ME) ode1 = M

test

The term bias(ME),..,; refers to the bias due to rank approximation. The term



bias(ME),,, refers to the influence of the omitted variables on the prediction error estimates.

The term bias(ME) 4.1 relates to the bias due to poor model specification.



Il.  Supplementary Figures: Simulation model 2 and real data sets

Bias due to the omitted variables (simulation model 2)
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Figure S1 — Bias due to omitted variables (simulation model2)
Figure S1 shows the bias term which was caused by the omission of true variables
(ave.bias(ME),,,) for simulation model 2. The results are shown for TS-MLR and TS-PCR

in combination with different test data set sizes and cross-validation designs.
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Figure S2— Bias due to poor model specification (simulation model 2)

Figure S2 shows the bias term due to poor model specification (ave. bias(ME) p04¢1) fOr
simulation model 2. The results are shown for TS-MLR and TS-PCR in combination with
different cross-validation designs in the inner loop and for different test data set sizes in the
outer loop. The bias due to poor model specification was an important source of bias. This
bias term was particularly large in case of TS-MLR: CV.g% due to underfitting. Expectedly,

the bias due poor model specification tended to increase for lower training data set sizes and

larger validation data set sizes in the inner loop due to the selection of smaller models.
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Bias due to rank approximation (TS-PCR,
simulation model 2)
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Figure S3- Bias due to rank approximation (TS-PCR, simulation model 2)

Figure S3 shows the influence of the bias term due to rank approximation
(ave.bias(ME), 4,;) Tor simulation model 2. The results refer to varying test data set sizes
and are shown for TS-PCR in combination with different cross-validation designs. The bias
due to rank approximation was large in case of LOO-CV owing to the selection of low

numbers of latent variables.
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Average percentage of truly selected variables
Simulation model 2
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Figure S4 Average percentage of truly selected variables
Figure S4 shows the percentages of true variables which were selected in the inner loop of
double cross-validation for simulation model 2 (average over 200 simulations). The results are
shown for different test data set sizes in the outer loop of double cross-validation and different
variable selection algorithms in the inner loop (TS-MLR and TS-PCR in combination with

different cross-validation designs and Lasso).
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Average number of selected variables
Simulation model 2
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Figure S5 — Average number of selected variables

Figure S5 shows the number of selected variables in the inner loop of double cross-validation
for simulation model 2 (average over 200 simulations). The results are shown for different test
data set sizes in the outer loop of double cross-validation and different variable selection
algorithms in the inner loop (TS-MLR and TS-PCR in combination with different cross-

validation designs and Lasso). Recall that the true model consists of 6 variables.
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Average number of redundant variables
(simulation model 2)
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Figure S6 —Average number of redundant variables (simulation model 2)

Figure S6 shows the number of erroneously selected (redundant) variables for simulation
model 2 (average over 200 simulations). The results are shown for TS-MLR and TS-PCR and
Lasso (10-fold CV). TS-PCR and Lasso evidently select more irrelevant variables than TS-
MLR. Yet, in most case they perform better than TS-MLR. Hence, PCR as well as Lasso can
handle these variables better. PCR can reduce the influence of the irrelevant variables by a
lower rank approximations of the X-matrix which results in small regression coefficients for
the irrelevant variables. The same can be observed for Lasso while the regularization

mechanism is different.
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Average relative frequencies of selection
(TS-MLR; LOO-CV, simulation model 2)
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Figure S7a-b —Relative variable selection frequencies (simulation model 2)
Figure S7a-b shows the variable selection frequencies for different test data set sizes for
LOO-CV. Since the predictor matrices are almost symmetric, only variables 11-21 are shown.
In the simulation model 2 variables 13 and 15 are relatively weak predictors compared to
variable 14. Variable 14 was reliably selected even in case of smaller training data set sizes
since it is a strong predictor. Variables 13 and 15 were less frequently selected than variable
14 and the selection frequencies depended to a large extent on the test data set size. The
relatively weak but true predictors 13 and 15 were more frequently selected in case of larger

training data set sizes. This observation was true both for PCR and MLR but it was more
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evident in case of MLR. This also illustrates that the variable selection algorithm was capable
of identifying the relevant variables for a sufficiently large data set. As far as the insignificant
(erroneously selected) variables were concerned, the selection frequencies varied only slightly
dependent on different training data sizes. If the training data size was reduced, less relevant

but slightly more insignificant variables were selected in case of MLR.

Variability of the oracle error estimates (ave.vb(PE,,,.))
Simulation model 2
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Figure S8 -Variability of the oracle error estimates (ave. vb(PE y,4cie))
Figure S8 shows the variability of the error estimates derived from the oracle data (ave.vb(PE y,4c1e))
for different test data set sizes in the outer loop and for different variable selection algorithms in the
inner loop (Lasso, TS-MR and TS-PCR with different cross-validation designs). In case of PE ,,qcie
extremely large data sets were used to assess the prediction errors. Hence, limited and varying test data
sets were scarcely a source of variability as opposed to the prediction errors derived from the outer loop.
Consequently, the variability of PE,,.qqe Was primarily caused by model uncertainty and
ave.vb(PE ,,...1.) increased steadily with smaller training data set sizes owing to higher model

uncertainty.
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Figure S9 —Mean squared error for regression vector estimates (simulation model 2)

Figure S9 shows the mean squared differences between the true and the estimated regression

coefficients (ave.mse(bgy.,)) for ni.s; = 5. The results are shown for different variable selection

algorithms in the inner loop (Lasso: 10-fold CV, TS-MLR and TS-PCR in combination with LOO-CV,

CV.0% and CV.gy). Lasso shows the smallest deviations from the theoretical values. In, particular

deviations for irrelevant variables are rather small. This explains why Lasso performs best despite the

fact that it selects a rather large amount of irrelevant variables.
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Solubility data
relative differences of the prediction error estimates
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Figure S10 — Solubility data: Relative deviations from the ‘oracle’ prediction error for

TS-PCR

There is no overall patter in the deviations. In the worst case the ‘oracle’ prediction error is

underestimated by 7%. The standard deviations, which are shown in the main body of the paper, indicate

that the deviations can be attributed to random fluctuations.
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Variable Selection (solubility data, 10-fold CV)
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Variable Selection (solubility data, LMO: d=80%)
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Figure S1la-c -Variable selection (solubility data)
Figure S11a-c shows the relative variable selection frequencies for different cross-validation
techniques in the inner loop (10-fold CV, CV.40% and CV-so%) and for n;.s, = 15 for the

solubility data set. In case of CV.go% the derived models almost exclusively consist of
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predictors which yielded high CAR scores in the variable preselection process.
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Figure S12 Artemisinin data: Relative deviations from the ‘oracle’ prediction error for SA-
kNN

All prediction errors underestimate the ‘oracle’ prediction error to a varying degree. Since the ‘oracle’
data set is rather small and the standard deviations of the estimates are rather large (see main body of

the paper), deviations can be attributed to random fluctuations.
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I11.  Supplementary Figures: Simulation Model 1

Selection of relevant variables (simulation model 1)
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Figure S13: Selection of relevant variables for simulation model 1

Figure S13 refers to simulation model 1 and shows the percentage of all true variables
(variables 7 and 14) which were selected in the inner loop. The results are shown for TS-PCR,
TS-MLR and Lasso. In case of the less challenging simulation model 1, all relevant variables
(variables 7 and 14) were reliably selected for all cross-validation designs in the inner loop.
Contrary to simulation model 2, TS-MLR was not susceptible to underfititing even for large
validation data set sizes in the inner loop since this model was far less complex and less

challenging than simulation model 2.
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Average number of redundant variables (simulation model 1)
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Figure S14: Average number of redundant variables (simulation model 1)
Figure S14 refers to simulation model 1 and shows the number of erroneously selected
(redundant) variables. The results are shown for TS-PCR, TS-MLR and Lasso. The number of

erroneously selected variables was very small in case of CV.go% (LMO: d=80%).
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Variance terms (simulation model 1)
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Figure S15: Variance terms (simulation model 1)

Figure S15 refers to simulation model 1 and shows the variance terms (ave.var(ME)). The
results are shown for TS-PCR and TS-MLR in combination with different cross-validation
designs in the inner loop and for different test data set sizes in the outer loop. Similar to
simulation model 2, the variance terms tended to decrease with larger validation data set sizes
and smaller test data set sizes. Larger validation data set sizes favoured less complex models
which reduced the variance terms. PCR yielded lower variance terms than MLR in case of

LOO-CV owing to rank approximation.
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Average bias terms (simulation model 1)
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Figure S16 Average bias terms (simulation model 1)

Figure S16 refers to simulation model 1 and shows the estimated bias terms. The results are
shown for TS-PCR. As far as simulation model 1 was concerned, PCR and MLR yielded
nearly unbiased error estimates since the true variables were reliably selected even in case of
large validation data set sizes. Thus, the bias due to poor model specification and the bias due
to omitted variables were completely irrelevant in case of the less challenging simulation
model 1. Rank approximation was the only source of bias in case of simulation model 1. In
case of large validation data set sizes TS-PCR selected almost the full rank and the influence
of rank approximation nearly vanished and was negligible. Generally, the bias term was

comparatively small and the variance term was more influential.

24



Average prediction error estimates (simulation model 1)
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Figure S17 Average prediction error estimates (simulation model 1)

Figure S17 refers to simulation model 1 and shows the average prediction error estimates
derived from the outer loop. The results are shown for TS-PCR, TS-MLR and Lasso. As far as
simulation model 1 was concerned, PCR and MLR vyielded very similar prediction error
estimates in the outer loop. PCR yielded similar results to MLR in case of LOO-CV since the
decrease in variance due to rank approximation was almost compensated by the increase in
bias. Contrary to simulation model 2, TS-PCR and TS-MLR in combination with CV_gos
(LMO: d=80%) yielded lower prediction errors than Lasso. This was due to the fact that the

number of irrelevant variables was high in case of Lasso.

25



IVV. Molecule indexes of solubility data set used for variable
preselection

Solubility data

Indexes of the molecules from the Training Set

Indexes of the
molecules from Test

Setl
9 | 8 | 160 | 221 | 342 | 406 | 509 | 623 | 688 | 776 | 880 | 973 1 112 | 178 | 236
12 | 87 | 164 | 224 | 345 | 410 | 518 | 626 | 692 | 783 | 887 | 990 13 | 127 | 179 | 240
13 | 94 | 167 | 232 | 347 | 415 | 522 | 627 | 699 | 797 | 891 | 992 14 | 128 | 186 | 245
16 | 96 | 168 | 233 | 349 | 421 | 523 | 629 | 702 | 798 | 903 | 1002 | 16 | 129 | 187 | 250
20 | 109 | 171 | 234 | 353 | 425 | 524 | 632 | 704 | 805 | 904 | 1006 | 23 | 131 | 189 | 253
31| 117 | 179 | 247 | 357 | 438 | 533 | 638 | 706 | 806 | 909 | 1007 | 27 | 133 | 191 | 256
32 | 120 | 182 | 252 | 359 | 439 | 534 | 641 | 714 | 810 | 910 | 1019 | 47 | 134 | 192 | 266
39 | 121 | 184 | 258 | 360 | 443 | 543 | 642 | 718 | 821 | 911 | 1026 | 49 | 138 | 197 | 268
47 | 131 | 185 | 260 | 361 | 449 | 547 | 643 | 726 | 827 | 914 | 1028 | 55 | 143 | 201 | 269
48 | 132 | 187 | 272 | 363 | 454 | 553 | 644 | 730 | 834 | 915 56 | 151 | 202 | 271
52 | 134 | 190 | 278 | 368 | 456 | 561 | 645 | 731 | 836 | 917 66 | 152 | 208 | 272
53 | 137 | 192 | 281 | 374 | 458 | 566 | 649 | 736 | 837 | 925 76 | 155 | 214
54 | 140 | 196 | 283 | 380 | 466 | 577 | 651 | 741 | 838 | 933 80 | 158 | 216
56 | 141 | 198 | 290 | 382 | 471 | 580 | 664 | 747 | 847 | 935 81 | 159 | 218
57 | 145 | 202 | 293 | 387 | 473 | 584 | 667 | 751 | 848 | 943 84 | 167 | 219
64 | 148 | 203 | 295 | 388 | 480 | 586 | 676 | 758 | 850 | 950 91 | 168 | 223
66 | 154 | 205 | 298 | 391 | 484 | 589 | 677 | 761 | 860 | 951 97 | 172 | 226
76 | 155 | 210 | 302 | 393 | 504 | 596 | 679 | 763 | 862 | 952 107 | 173 | 229
80 | 156 | 217 | 312 | 395 | 506 | 603 | 683 | 764 | 878 | 956 110 | 175 | 231
85 | 158 | 219 | 323 | 401 | 507 | 611 | 684 | 769 | 776 | 962 111 | 177 | 234

Table S1 Indexes of the 300 molecules (solubility data set) which were used for variable

preselection.
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