# **Supplemental Material**

## Page Description

- 2 Supplemental Methods
- 4 Supplemental Results
- 5 Supplemental Discussion
- 9 Funding/Support
- 15 **Table S1.** Overview of participating studies and PWI measurements
- 16 **Table S2.** Summary of participant characteristics by cohort.
- 17 **Table S3**. Details regarding study samples, genotyping and data cleaning.
- 20 **Table S4.** Summary of genetic associations for P-wave maximum duration in combined ancestry analysis.
- 21 **Table S5**. Summary of significant genetic associations for P-wave maximum duration in participants of European and African ancestry.
- 22 **Table S6.** Comparison of all genome-wide significant loci across P-wave duration and P-wave terminal force analyses.
- **Table S7**. Shared associations between present and previous GWAS of P-wave duration.
- 25 **Table S8.** Significant eQTLs in left atrial appendage samples for genetic loci associated with P-wave duration.
- 31 **Table S9.** Significant eQTLs in the GTEx database
- 32 **Table S10.** Summary of genetic associations for P-wave terminal force in participants of European and African ancestry.
- 33 **Table S11**. Summary of genetic associations for P-wave terminal force in combined ancestry analysis.
- **Table S12**. Shared associations between present and previous GWAS of P-wave terminal force.
- 35 **Table S13.** Significant eQTLs in left atrial appendage samples for genetic loci associated with P-wave terminal force.
- 38 Figure S1. Manhattan plot for combined European and African ancestry participants.
- 39 **Figure S2**. Locus zoom plots P-wave duration.
- 41 **Figure S3**. Locus zoom plots P-wave terminal force.
- 43 Supplemental References

#### SUPPLEMENTAL METHODS

### Selection of ECGs

In studies with multiple visits, ECG were selected from following visits: baseline visit (MESA, RS I-III), exam 20 (FHS Original cohort), exam 6 (FHS Offspring cohort), and exam 1 (FHS Gen 3).

### Gene expression and eQTL analyses in left atrial tissue samples

Human left atrial tissue samples were obtained from the Cleveland Clinic Atrial Tissue Bank and Arrhythmia Biorepository, processed on the Illumina Human Hap550 v3 or Hap610 v1 chips and Illumina HumanHT-12 v3 or v4 chips to obtain genotype and RNA expression data, respectively. Human left atrial samples were obtained from 289 individuals of European American (EA) ethnicity; 266 samples were from left atrial appendage (LAA) tissue and 23 the left atrial pulmonary vein junction tissue (LA-PV). Of the 289 subjects, 80 were females, 70 had no history of AF, and 136 came from patients that were in AF at the time of tissue acquisition. Of 40 individuals of African American (AA) ethnicity, 25 were females, 16 had no history of AF, and 12 were in AF at the time of tissue acquisition; 34 samples were from LAA and 6 from LA-PV tissue; Detailed methods have been described previously.<sup>1</sup> SNP-gene expression association tests (eQTL analyses) were performed for all genome-wide significant genetic variants identified in analyses of P-wave duration and P-wave terminal force. False discovery rate (FDR) values were calculated from the p-values using the Benjamini and Hochberg method.<sup>2</sup> Cis probe-variant pairs with an FDR value less than 0.05 were deemed significant at the genome-wide level. In addition, for each variant set of interest, FDR values were calculated for that set.

### In silico functional annotation and eQTL analyses

We assessed the linkage disequilibrium (LD) between the most significant variant in our study and previous studies, for all genetic loci reported in previous published GWAS of P-wave indices, using the

pairwise LD function of the SNAP software version 2.2.<sup>3</sup> LD was categorized as follows; strong LD,  $r^2 \ge 0.8$ ; moderate LD,  $r^2 < 0.8$  and  $\ge 0.50$ ; weak LD,  $r^2 < 0.5$  and  $\ge 0.2$ ; no LD,  $r^2 < 0.2$ . We used the 1000 Genomes Pilot 1 SNP data set, and chose the European (CEU) population panel for variants identified in European studies and the African (YRI) population panel for variants discovered in African-American studies. We also used the SNAP software to identify proxies for the most significant SNP from each genetic locus identified in the GWAS, using the same settings as described above in addition to a distance limit of 500 kb and an LD  $r^2$  threshold of 0.8.

All top hits and their proxies were selected for eQTL and SNP function analyses. We performed a lookup of statistically significant eQTLs in cardiac and skeletal muscle tissues, using the Genome-Tissue Expression database (GTEx),<sup>4</sup> which was accessed on October 21, 2015. We assessed SNP function through the NCBI dbSNP website on October 30, 2015.

### SUPPLEMENTAL RESULTS

### P-wave duration and P-wave terminal force are genetically associated

After LD-clumping using  $r^2>0.1$ , 96 significant SNPs remained from the P-wave duration analysis and 75 significant SNPs remained from the P-wave terminal force analysis, which were included in the respective GRS. The P-wave terminal force GRS was associated with measured P-wave duration ( $\beta$ =0.007; SE=0.0005; p=1.2x10<sup>-42</sup>) and the P-wave duration GRS was associated with measured P-wave terminal force ( $\beta$ =11.2; SE=2.46, p=5.3x10<sup>-6</sup>). After LD-clumping using  $r^2>0.05$ , 85 significant SNPs remained from the P-wave duration analysis and 66 significant SNPs remained from the P-wave terminal force analysis, which were included in the respective GRS. The P-wave terminal force GRS was associated with measured P-wave duration ( $\beta$ =0.007; SE=0.0005; p=1.2x10<sup>-44</sup>) and the P-wave duration GRS was associated with measured P-wave terminal force ( $\beta$ =12.4; SE=2.67, p=3.3x10<sup>-6</sup>). The estimated percentage of total variance of the measured P-wave terminal force explained by the P-wave duration GRS is 0.06%, for both  $r^2$  thresholds, and conversely, the estimated fraction of the total variance of the measured P-wave duration explained by the P-wave terminal force GRS is 0.5%, for both  $r^2$  thresholds.

### SUPPLEMENTAL DISCUSSION

# The sodium channel (SCN5A/SCN10A), caveolin (CAV1/CAV2), and TBX5 loci broadly contribute to atrial conduction.

A limited number of genetic loci have been associated with several atrial electrocardiographic traits, suggesting that they are important contributors in the propagation of atrial electrical activity from the sinoatrial node through the atrioventricular node.

The genetic region that stands out as most robustly associated with the overall conduction properties of the atria and the AV-node in previous GWAS is clearly the *SCN5A/SCN10A* region. These wellcharacterized genes encode the sodium channels Na<sub>V</sub>1.5 and Na<sub>V</sub>1.8, crucial for depolarization of cardiomyocytes and the initialization of the action potential itself. These genes have been associated with the PR interval,<sup>5-11</sup> P-wave duration,<sup>5, 10, 12</sup> and P-wave segment<sup>5, 12</sup> and both were associated with Pwave duration in the present study. Moreover, the *SCN5A* locus has been associated with QRS duration<sup>13</sup> and Brugada syndrome,<sup>14</sup> underscoring the relevance of this region to overall cardiac conduction.

Similarly, the *TBX3/5* and *CAV1/CAV2* loci have been associated with PR-interval, PR-segment, <sup>6-9, 11, 12</sup>, AF, <sup>15-18</sup> and in the present study with P-wave duration. Both loci display convincing eQTLs in left atrial tissue in this study. *CAV1/CAV2* also has been related to AV-nodal automaticity and QRS duration.<sup>7, 13, 19</sup> The genes *NKX2-5* and *SOX5*, which both encode transcription factors important in the embryonic development of the atria, have been associated with both PR-interval<sup>6</sup> and heart rate.<sup>20, 21</sup>

### Genetic loci unique to P-wave duration

The 5p12 locus is adjacent to *HCN1*, which encodes the hyperpolarization activated cyclic nucleotidegated ion channel 1, a channel contributing to the pacemaker current in cardiac cells and neurons.<sup>22</sup> The most abundant HCN channel in the human sinoatrial node (SAN) is HCN4; however, expression of both *HCN1* and *HCN4* has been shown in rabbit SAN and Purkinje fibers<sup>23</sup> and HCN1 can co-assemble with other HCN channel isoforms.<sup>24</sup> *HCN1* deficient mice develop severe sinoatrial deficiency, including bradycardia, sinus dysrhythmia, sinus pauses, and other properties of sick sinus syndrome.<sup>25</sup>

The most significant variant on chromosome 2p21 (rs11689011) was intronic to *EPAS1*, which encodes a hypoxia-inducible transcription factor expressed mainly in vascular endothelial cells,<sup>26</sup> but also in the carotid body and in catecholamine producing organs in mice.<sup>27</sup> *EPAS1* deficient mice display reduced levels of catecholamines and pronounced bradycardia, before they die mid-gestation, without morphological changes in the circulatory system.<sup>27</sup> Overexpression of the *EPAS1* gene leads to increased expression of adrenomedullin, implicating *EPAS1* in the adaptation of cardiac myocytes during heart failure.<sup>28</sup> Two variants in strong LD with rs11689011 (rs7579899, CEU r<sup>2</sup>=1 and rs11894252, CEU r<sup>2</sup>=0.96) were reported in a previous GWAS to be associated with renal cell carcinoma.<sup>29, 30</sup> A third proxy, rs1867785 (CEU r<sup>2</sup>=0.96), has been associated with retinopathy in premature neonates and patent ductus arteriosus.<sup>31, 32</sup> However, the specific mechanism by which genetic variants at the *EPAS1* locus alters P-wave duration remains unclear.

The gene *SSBP3*, harboring the most significant variant at 1p32, has not previously been described in relation to any cardiac phenotype. However, AF-associated variants intronic to this gene were the strongest eQTLs identified in left atrial samples in this study. *SSBP3* encodes the single stranded DNA binding protein 3, which is expressed in heart tissue and has been suggested to be an important regulatory component of developmental programs in the cell.<sup>33</sup>

The locus at 4q26 surrounds *CAMK2D*, which encodes the Ca<sup>2+</sup>/Calmodulin-Dependent Protein Kinase Type II Delta. This serine/threonine protein kinase is activated at increased Ca<sup>2+</sup> levels and is involved in the regulation of calcium homeostasis and the excitation-contraction coupling in cardiomyocytes. *CAMK2D* has a range of cardiac downstream effects, such as regulation of sarcoplasmic reticulum Ca<sup>2+</sup>release through the ryanodine receptor<sup>34</sup> and Ca<sup>2+</sup>-uptake through phospholamban inhibition of SERCA,<sup>35</sup> regulation of voltage-gated L-type Ca<sup>2+</sup> channels,<sup>36, 37</sup> and regulation of Nav1.5<sup>38</sup> and Kv4.3,<sup>39</sup> which may lead to arrhythmogenesis. All of these functions may be involved in atrial conduction and modify P-wave duration.

The *CAND2* genetic locus was associated with P wave duration in combined meta-analysis of European and African-American ancestries. *CAND2* was previously associated with AF by Sinner et al.<sup>15</sup> The most significant AF variant (rs4642101) is in moderate LD with the most significant variant in our study (rs1467026, CEU r<sup>2</sup>=0.7), suggesting that the variants represent the same locus. Rs1467026 is a significant eQTL for *CAND2* (p=7.5x10<sup>-27</sup>), *KRT18P17* (p=9.2x10<sup>-11</sup>), and *RP11-767C1.2* (p=1.2x10<sup>-9</sup>) expression in skeletal muscle based on GTEx data. Sinner and colleagues showed that rs4642101 increased the expression of *CAND2* in left atrial tissue samples and that knockdown in zebrafish led to prolongation of the atrial action potential. Taken together, the association with both P-wave duration and AF, and the functional evidence provided by Sinner et al., implicate *CAND2* in atrial conduction and arrhythmogenesis, although further work is needed to clarify the underlying mechanism.

### Genetic loci unique to P-wave terminal force

The most significant variant at 1p13 is intronic to *KCND3*, which encodes K<sub>v</sub>4.3, the pore-forming subunit of the transient outward K<sup>+</sup> current, *I*<sub>to</sub>. The *I*<sub>to</sub> current is instrumental in phase 1 of cardiac repolarization and affects calcium handling. Another variant in the region surrounding *KCND3* has previously been associated with P-wave duration, but does not seem to represent the same signal (CEU r<sup>2</sup>=0.2).<sup>12</sup> Gain-of-function mutations in *KCND3* have been shown to be associated with early-onset AF,<sup>40</sup> shortening of action potential duration, and Brugada syndrome.<sup>41</sup> Although further studies are needed to elucidate the mechanism underlying the association between the *KCND3* locus and increased P-wave terminal force, we speculate that the P-wave terminal force could be affected by down-regulation of Kv4.3 that leads to a prolongation of the APD, with a resulting delayed atrial repolarization.

On chromosome 15q25, the most significant variant (rs201517563) was located intronic to *ALPK3*, which encodes the protein kinase alpha-kinase 3, abundantly expressed in cardiac tissue and active in cardiomyocyte differentiation. Interestingly, among the many transcription factors that bind to the promoter region of this gene are *NKX2-5* and *MEIS1*, both of which were previously associated with PR-interval.<sup>6</sup> The gene Neuromedin B (*NMB*), for which there were convincing eQTL associations at the 15q25 locus, has previously been associated with ECG defined left ventricular hypertrophy (rs2292462)<sup>42</sup> and the same variant was associated with left ventricular hypertrophy in type 2 diabetics.<sup>43</sup> *NMB* has also been associated with obesity in children.<sup>44</sup>

In African Americans only, the variant rs10832139 was identified 44 kb upstream of *SPON1* on chromosome 11. *SPON1* encodes Spondin 1 Extracellular Matrix Protein, which was first identified as a promoter of axon growth in the spinal cord and the peripheral nervous system.<sup>45</sup> Later, *SPON1* was shown to be a strong growth promoting factor for vascular smooth muscle cells<sup>46</sup> and it has been suggested as a candidate hypertension gene.<sup>47</sup> Recently, an intronic variant (rs2618516) in *SPON1* was associated with brain connectivity in a GWAS by Jahanshad and colleagues, and older individuals with this variant displayed milder dementia symptoms.<sup>48</sup> However, there was no LD between the two variants (CEU r<sup>2</sup>=0.01, YRI r<sup>2</sup>=0.02), and the biologic link between *SPON1* and P-wave terminal force is unclear.

The two final loci associated with P-wave terminal force, *C6orf195* and *PPP5D1*, have an unclear biologic link with the electrocardiographic phenotype and have not been reported in any previous GWAS.

### **FUNDING/SUPPORT**

ARIC: The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by the National Heart, Lung, and Blood Institute [HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, HHSN268201100012C, R01HL087641, R01HL59367, and R01HL086694]; the National Human Genome Research Institute [U01HG004402]; and the National Institutes of Health [HHSN268200625226C]. The authors thank the staff and participants of the ARIC study for their important contributions. Infrastructure was partly supported by National Institutes of Health and NIH Roadmap for Medical Research [UL1RR025005]. This work was additionally supported by National Heart, Lung, and Blood Institute [RC1-HL-099452] and the American Heart Association [09SDG2280087].

**Cleveland Clinic:** This work was supported by the National Institutes of Health [RO1 HL 111314 to MKC, DVW, JB, and JDS], the NIH National Center for Research Resources for Case Western Reserve University and The Cleveland Clinic Clinical and Translational Science Award [UL1-RR024989].

**CHS**: This CHS research was supported by NHLBI [HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086, HHSN268200960009C, U01HL080295, R01HL087652, R01HL105756, R01HL103612, and R01HL120393] with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided from the National Institute on Aging (NIA) [R01AG023629]. A full list of principal CHS investigators and institutions can be found at CHS-NHLBI.org. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI [UL1TR000124], and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) [DK063491] to the Southern California Diabetes Endocrinology Research Center.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

**ERF:** The ERF study as a part of EUROSPAN (European Special Populations Research Network) was supported by European Commission FP6 STRP grant number 018947 [LSHG-CT-2006-01947] and also received funding from the European Community's Seventh Framework Programme [FP7/2007-2013/grant agreement HEALTH-F4-2007-201413] by the European Commission under the programme "Quality of Life and Management of the Living Resources" of 5th Framework Programme (no. QLG2-CT-2002-01254). The ERF study was further supported by ENGAGE consortium and CMSB. High-throughput analysis of the ERF data was supported by joint grant from Netherlands Organisation for Scientific Research and the Russian Foundation for Basic Research [NWO-RFBR 047.017.043]. ERF was further supported by the ZonMw grant [project 91111025]. We are grateful to all study participants and their relatives, general practitioners and neurologists for their contributions and to P. Veraart for her help in genealogy, J. Vergeer for the supervision of the laboratory work, and P. Snijders for his help in data collection.

FHS: This research was conducted using data and resources from FHS of the National Heart Lung and Blood Institute of the National Institutes of Health and Boston University School of Medicine based on analyses by Framingham Heart Study investigators participating in the SNP Health Association Resource (SHARe) project. This work was supported by Boston University's and the National Heart, Lung and Blood Institute's Framingham Heart Study [HHSN268201500001I and N01-HC-25195] and its contract with Affymetrix, Inc for genotyping services [N02-HL-6-4278]. A portion of this research utilized the Linux Cluster for Genetic Analysis (LinGA-II) funded by the Robert Dawson Evans Endowment of the Department of Medicine at Boston University School of Medicine and Boston Medical Center. Other support came from the American Heart Association [09FTF2190028] and the National Institutes of Health [5R21HL106092]. Dr. Benjamin was supported by grants from the National Institutes of Health [R01HL128914, 2R01HL092577, and 3R01HL092577-06S1].

**GHS:** The Gutenberg Health Study is funded through the government of Rheinland-Pfalz ("Stiftung Rheinland Pfalz für Innovation", [AZ 961-386261/733], the research programs "Wissen schafft Zukunft" and "Schwerpunkt Vaskuläre Prävention" of the Johannes Gutenberg-University of Mainz and its contract with Boehringer Ingelheim and PHILIPS Medical Systems including an unrestricted grant for the Gutenberg Health Study. Dr. Schnabel is supported by grants of Deutsche Forschungsgemeinschaft (German Research Foundation) Emmy Noether Program SCHN 1149/3-1, Bundesministerium für Bildung und Forschung [01ZX1408A], and European Research Council consolidator grant [648131].

**KORA**: The KORA research platform (KORA, Cooperative Research in the Region of Augsburg) was initiated and financed by the Helmholtz Zentrum München - German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ, the DZHK (German Centre for Cardiovascular Research) and by the BMBF (German Ministry of Education and Research). Support for KORA is provided by the German National Genome Research Network [NGFN 01GS0838, 01GR0803, BMBF-01EZ0874, 01GR0803, NGFN 01GI0204, 01GR0103, NGFN-2, NGFNPlus 01GS0823, and NGFNPlus 01GS0834]; German Federal Ministry of research [01EZ0874]; German Competence Network on AF (AFNET) [01 GI 0204/N]; Leducq Foundation [07-CVD 03], BMBF spitzen cluster personalized medicine m<sup>4</sup> [01 EX1021E], LMU Excellence Initiative [42595-6]; Munich Center of Health Sciences (MC Health) as part of LMUinnovativ. Dr. Sinner is supported by the German Heart Foundation.

**MESA:** MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by

contracts [N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-001079, and UL1-TR-000040]. Funding for SHARe genotyping was provided by NHLBI [N02-HL-64278]. Genotyping was performed at Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard and MIT (Boston, Massachusetts, USA).

Rotterdam Study: The Rotterdam Study (RS-I) is supported by the Erasmus Medical Center and Erasmus University Rotterdam; The Netherlands Organization for Scientific Research; The Netherlands Organization for Health Research and Development (ZonMw); the Research Institute for Diseases in the Elderly; The Netherlands Heart Foundation; the Ministry of Education, Culture and Science; the Ministry of Health Welfare and Sports; the European Commission; and the Municipality of Rotterdam. Support for genotyping was provided by The Netherlands Organization for Scientific Research (NWO) [175.010.2005.011 and 911.03.012] and Research Institute for Diseases in the Elderly (RIDE). This study was supported by The Netherlands Genomics Initiative (NGI)/Netherlands Organization for Scientific Research (NWO) [project nr. 050-060-810].

SHIP: SHIP is part of the Community Medicine Research net of the University of Greifswald, Germany, which is funded by the Federal Ministry of Education and Research [grants no. 01ZZ9603, 01ZZ0103, and 01ZZ0403], the Ministry of Cultural Affairs as well as the Social Ministry of the Federal State of Mecklenburg-West Pomerania. Generation of genome-wide data has been supported by the Federal Ministry of Education and Research [grant no. 03ZIK012] and a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. The University of Greifswald is a member of the Caché Campus program of the InterSystems GmbH.

**WHI CT:** The Women's Health Initiative clinical trials were funded by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services

[HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and HHSN271201100004C]. All contributors to WHI science are listed at https://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Lo ng%20List.pdf. YL and QD are partially supported by [R01HG006292 and R01HG006703 awarded to Y.L.].

WHI GARNET: Within the Genomics and Randomized Trials Network, a GWAS of Hormone Treatment and CVD and Metabolic Outcomes in the WHI was funded by the National Human Genome Research Institute, National Institutes of Health, U.S. Department of Health and Human Services through cooperative agreement [U01HG005152 to A.P.R.]. All contributors to GARNET science are listed @ https://www.garnetstudy.org/Home.

**WHI MOPMAP:** The Modification of PM-Mediated Arrhythmogenesis in Populations was funded by the National Institute of Environmental Health Sciences, National Institutes of Health, U.S. Department of Health and Human Services [R01ES017794 to E.A.W.].

**WHI SHARe:** The SNP Health Association Resource project was funded by the National Heart, Lung and Blood Institute, National Institutes of Health, U.S. Department of Health and Human Services through contract [N02HL64278].

**Other funding sources:** Dr. Christophersen is supported by a mobility grant from the Research Council of Norway [240149/F20]. Dr. Lubitz is supported by NIH [K23HL114724] and a Doris Duke Charitable Foundation Clinical Scientist Development Award [2014105]. Dr. Magnani is supported by Doris Duke Charitable Foundation Clinical Scientist Development Award [2015084]. Dr. Ellinor is supported by grants from the National Institutes of Health [1R01HL092577, R01HL128914, and 1K24HL105780], an Established Investigator Award from the American Heart Association [13EIA14220013] and the Fondation Leducq [14CVD01].

**Role of the Sponsor:** None of the funding agencies had any role in the study design, data collection or analysis, interpretation of the data, writing of the manuscript, or in the decision to submit the manuscript for publication.

| Study                                                                                       | Reference | ECG analysis software                                 | P-wave<br>duration | P-wave terminal<br>force |
|---------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------|--------------------|--------------------------|
| Atherosclerosis Risk in Communities (ARIC)<br>Study                                         | 49, 50    | GE 12-SL software                                     | х                  | x                        |
| Cardiovascular Health Study (CHS)                                                           | 51        | GE 12-SL software                                     | х                  | x                        |
| Erasmus Rucphen Family (ERF) Study                                                          | 52        | Modular ECG Analysis System                           | x                  | x                        |
| Framingham Heart Study (FHS)                                                                | 53, 54    | GE 12-SL software                                     | х                  | х                        |
| Cooperative Health Research in the Augsburg Region (KORA)                                   | 55        | The Hannover ECG system                               | x                  | NA                       |
| Gutenberg Health Study I (GHS I)                                                            | 56        | GE Healthcare software CASE,<br>CardioSoft, version 6 | х                  | NA                       |
| Multi-Ethnic Study of Atherosclerosis (MESA)                                                | 57        | GE 12-SL software                                     | x                  | x                        |
| Rotterdam Studies I, II, III                                                                | 58        | Modular ECG Analysis System                           | x                  | х                        |
| Study of Health in Pomerania (SHIP)                                                         | 59        | Modular ECG Analysis System                           | х                  | x                        |
| Women's Health Initiative clinical trials (WHI<br>CT):                                      | 60        |                                                       |                    |                          |
| Genome-wide Association Research<br>Network (GARNET)                                        |           | GE 12-SL software                                     | x                  | x                        |
| Modification of Particulate Matter-<br>Mediated Arrhythmogenesis in<br>Populations (MOPMAP) |           | GE 12-SL software                                     | х                  | x                        |
| SNP Health Association Resource Project (SHARe)                                             |           | GE 12-SL software                                     | x                  | x                        |

# Table S1. Overview of participating studies and PWI measurements

GE, General Electric; NA, not available

| Cohort        | Race | Participants | Males | Age   | HTN | Body mass<br>index | RR<br>interval, | PR<br>interval, | Maximum P-<br>wave | P-wave<br>terminal             |
|---------------|------|--------------|-------|-------|-----|--------------------|-----------------|-----------------|--------------------|--------------------------------|
|               |      | n            | %     | -     | %   | kg/m²              | ms              | ms              | duration, ms       | force, ms x<br>μV <sup>a</sup> |
| ADIC          | EA   | 8151         | 46    | 53±6  | 19  | 27±5               | 915±133         | 160±23          | 106±12             | 1490±1643                      |
| ARIC          | AA   | 2799         | 37    | 53±6  | 50  | 29±6               | 920±147         | 171±27          | 112±12             | 2009±1974                      |
| CHS           | EA   | 2415         | 36    | 72±5  | 46  | 26±4               | 948±145         | 166±27          | 110±13             | 2459±1917                      |
| ERF           | EA   | 1651         | 42    | 47±14 | 44  | 27±4               | 972±157         | 152±22          | 111±12             | 1468±1545                      |
| FHS           | EA   | 5878         | 45    | 47±14 | 20  | 27±5               | 971±157         | 158±23          | 105±12             | 1561±1600                      |
| KORA          | EA   | 1519         | 49    | 52±9  | 33  | 27±4               | 935±144         | 162±24          | 109±12             | NA                             |
|               | EA   | 1907         | 50    | 61±10 | 24  | 27±5               | 974±148         | 163±25          | 104±13             | 1928±1677                      |
|               | AA   | 964          | 50    | 60±10 | 37  | 30±6               | 977±150         | 169±27          | 107±12             | 2463±1961                      |
| GHS I         | EA   | 2204         | 51    | 54±11 | 41  | 27±4               | 1001±159        | 160±22          | 109±12             | NA                             |
| RS I          | EA   | 4552         | 40    | 68±9  | 49  | 26±4               | 865±139         | 167±25          | 119±13             | 2217±208                       |
| RS II         | EA   | 1453         | 45    | 64±8  | 56  | 27±4               | 871±131         | 165±23          | 117±13             | 2175±1809                      |
| RS III        | EA   | 2532         | 42    | 56±6  | 42  | 27±5               | 876±131         | 162±21          | 115±12             | 1170±1415                      |
| SHIP          | EA   | 2680         | 49    | 46±16 | 10  | 27±5               | 853±148         | 152±20          | 110±11             | 788±1237                       |
| WHI CT GARNET | EA   | 1617         | 0     | 65±7  | 31  | 28±6               | 920±132         | 159±24          | 106±13             | 2196±1834                      |
| WHI CT MOPMAP | EA   | 1119         | 0     | 62±7  | 32  | 28±6               | 922±132         | 158±23          | 106±13             | 2236±1900                      |
| WHI CT SHARe  | AA   | 3015         | 0     | 60±7  | 50  | 31±6               | 913±143         | 166±25          | 110±12             | 2671±2156                      |

## Table S2. Summary of participant characteristics by cohort.

Summary statistics are reported as mean  $\pm$  standard deviation unless otherwise noted. <sup>a</sup>P-wave terminal force equals the duration (ms) x the negative voltage deflection ( $\mu$ V) of the terminal part of the P-wave in lead V1. EA, European and European-American ancestry; AA, African and African-American ancestry; ARIC, Atherosclerosis Risk in Communities Study; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; FHS, Framingham Heart Study; MESA, Multi-Ethnic Study of Atherosclerosis; RS, Rotterdam Study; SHIP, Study of Health in Pomerania; WHI CT, Women's Health Initiative Clinical Trials cohort; GARNET, Genomics and Randomized Trials Network; MOPMAP, Modification of PM-Mediated Arrhythmogenesis in Populations; SHARe, SNP Health Association Resource.

|                              | GHS I                     | ARIC                                                | СНЅ                                                             | ERF                                                                             | FHS                                                                                   | KORA                                                                 | MESA                                        | RS-I, II, III                                       | SHIP                                   |                                                                                  | <b>WHI CT</b>                                                                |                                                  |
|------------------------------|---------------------------|-----------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------|
| Study                        | Gutenberg<br>Health Study | Atheroscleros<br>is Risk in<br>Communities<br>Study | Cardiovascula<br>r Health Study                                 | Erasmus<br>Rucphen<br>Family<br>Study                                           | Framingham<br>Heart Study                                                             | Kooperative<br>Gesungheitsfo<br>rschung in der<br>Region<br>Augsburg | Multi-Ethnic<br>Study of<br>Atherosclerosis | Rotterdam<br>Study                                  | The Study of<br>Health in<br>Pomerania | Genome-<br>wide<br>Association<br>Research<br>Network<br>Effects of<br>Treatment | Modification<br>of PM-<br>Mediated<br>Arrhythmoge<br>nesis in<br>Populations | SNP Health<br>Association<br>Resource<br>Project |
| Array                        | Affymetrix<br>6.0         | Affymetrix<br>6.0                                   | Illumina 370<br>CNV +<br>Illumina<br>ITMAT-Broad-<br>CARe (IBC) | Illumina<br>318K and<br>370K,<br>Affymetrix<br>250K                             | Affymetrix<br>Gene Chip®<br>500K Array<br>Set & 50K<br>Human Gene<br>Focused<br>Panel | Affymetrix 6.0                                                       | Affymetrix 6.0                              | Illumina<br>Infinium<br>HumanHap55<br>0 - chip v3.0 | Affymetrix<br>6.0                      | Illumina<br>HumanOmni<br>1-Quad v1-0<br>B                                        | Affymetrix<br>Gene Titan,<br>Axiom<br>Genome-<br>Wide Human<br>CEU 1         | Affymetrix<br>6.0                                |
| Calling<br>Algorithm         | Birdseed                  | Birdseed                                            | BeadStudio                                                      | BeadStudio                                                                      | BRLMM                                                                                 | Birdseed v2                                                          | Birdseed v2                                 | BeadStudio                                          | Birdseed v2                            | BeadStudio<br>v3.1.3.0                                                           | Affymetrix<br>Power Tools<br>v1.14.3                                         | Birdseed                                         |
| Per SNP Call<br>rate         | <95%                      | <95%                                                | <97%                                                            | <98%                                                                            | <97%                                                                                  | <93%                                                                 | <95%                                        | <98%                                                | ND                                     | 98%                                                                              | 95%                                                                          | 95%                                              |
| HWE p-value                  | <10 <sup>-4</sup>         | <10 <sup>-5</sup>                                   | <10 <sup>-5</sup>                                               | <10 <sup>-6</sup>                                                               | <10 <sup>-6</sup>                                                                     | NA                                                                   | NA                                          | <10 <sup>-6</sup>                                   | ND                                     | <10 <sup>-4</sup>                                                                | <10 <sup>-6</sup>                                                            | <10 <sup>-6</sup>                                |
| Mendelian<br>errors          | NA                        | NA                                                  | ≤2                                                              | Genotypes<br>were set to<br>missing for<br>problematic<br>family sub-<br>units. | N>100                                                                                 | NA                                                                   | NA                                          | NA                                                  | NA                                     | NA                                                                               | NA                                                                           | NA                                               |
| Excess<br>heterozygosit<br>Y | NA                        | NA                                                  | ND                                                              | ND                                                                              | Subject<br>hetero-<br>zygosity >5<br>SD away<br>from the<br>mean                      | ND                                                                   | >0.53                                       | >0.336; n=21                                        | ND                                     | NA                                                                               | NA                                                                           | NA                                               |
| MAF                          | <1%                       | EA: <0.5%<br>AA: <1%                                | Excluded<br>SNPs with 0<br>heterozygotes                        | <1%                                                                             | <1%                                                                                   | NA                                                                   | NA                                          | <1%                                                 | ND                                     | None                                                                             | <0.5%                                                                        | <1%                                              |

# Table S3. Details regarding study samples, genotyping, and data cleaning.

| Selection<br>criteria for<br>PCs       | -                               | Analysis<br>committee<br>recommenda<br>tions                                                                | -                                                                                                      | Used linear<br>mixed<br>effects<br>models to<br>account for<br>relatedness | All PCs<br>unassociated<br>p>0.05                    | No population<br>substructure       | Analysis<br>committee<br>recommendatio<br>ns                                              | Outliers as<br>identified by<br>IBS clustering<br>were excluded                                                     | Eigenstrat,<br>MDS with<br>HapMap<br>reference<br>population        | -                               | >6 SD from<br>top 10 PCs            | -                                  |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------|-------------------------------------|------------------------------------|
| Number of<br>PCs in the<br>model       | 0                               | EA: 4<br>AA: 10                                                                                             | 0                                                                                                      | 0                                                                          | 0                                                    | 0                                   | EA: 0<br>AA: 10                                                                           | 4                                                                                                                   | 0                                                                   | 3                               | 3                                   | 10                                 |
| Number of                              | 662 405                         | EA: 711,589                                                                                                 |                                                                                                        | 679 524                                                                    | EA: 44E 140                                          | 651 506                             | EA: 854,755                                                                               | E12 840                                                                                                             | 960 224                                                             |                                 | E3E 600                             | 820.270                            |
| imputation                             | 662,405                         | AA: 806,416                                                                                                 |                                                                                                        | 078,524                                                                    | EA: 445,149                                          | 051,590                             | AA: 861,124                                                                               | 512,849                                                                                                             | 809,224                                                             | -                               | 535,000                             | 829,370                            |
| Imputation<br>software                 | IMPUTE<br>v.2.1.0 <sup>61</sup> | Pre-phasing<br>with Shapelt<br>v.1.r532 <sup>62</sup><br>Imputation<br>with IMPUTE<br>v.2.1.0 <sup>61</sup> | MACH1,<br>minimac <sup>63, 64</sup>                                                                    | MACH1<br>v.1.0.151 <sup>63,</sup><br>64                                    | MACH1<br>v.1.0.151 <sup>63, 64</sup>                 | MACH1<br>v.1.0.15 <sup>63, 64</sup> | IMPUTE<br>v.2.1.0 <sup>61</sup>                                                           | MACH1<br>v.1.0.151 <sup>63, 64</sup>                                                                                | IMPUTE<br>v.0.5.0<br>against<br>HapMap II<br>CEU v.22 <sup>61</sup> | BEAGLE<br>v.3.3.1 <sup>65</sup> | MACH1,<br>minimac <sup>63, 64</sup> | MACH<br>v.1.0.16 <sup>63, 64</sup> |
| Imputation<br>Backbone /<br>NCBI Build | Build 36                        | 1000<br>Genomes<br>Phase I<br>integrated<br>variant set<br>release (v.3)<br>in NCBI build<br>37 (hg19)      | 1000<br>Genomes<br>Phase I<br>integrated<br>variant set<br>release (v.3)<br>in NCBI build<br>37 (hg19) | Build 36                                                                   | Build 37                                             | Build 36                            | Build 36 /<br>EA: HapMap I+II<br>CEU r24<br>AA: HapMap<br>I+II<br>CEU+YRI+CHB+J<br>PT r22 | Build 36                                                                                                            | Build 36                                                            | Build 37                        | Build 36                            | Build 36                           |
| SNP position<br>from NCBI<br>build     | Build 36                        | Build 37                                                                                                    | Build 37                                                                                               | Build 36                                                                   | Build 37                                             | Build 36                            | Build 36                                                                                  | Build 36                                                                                                            | Build 36                                                            | 1000G EUR                       | Hapmap r22<br>CEU                   | Hapmap 2<br>YRI/CEU 1:1            |
| GWAS<br>Statistical<br>Analysis        | SNPTEST <sup>66</sup>           | FaST-LMM <sup>67</sup>                                                                                      | R <sup>68</sup>                                                                                        | GenABEL,<br>ProbABEL,<br>R <sup>68</sup>                                   | R packages<br>kinship, GEE,<br>coxpH 3 <sup>68</sup> | ProbABEL, R <sup>68</sup>           | R package<br>GEE <sup>68</sup>                                                            | Mach2QTL, <sup>63,</sup><br><sup>64</sup> GenABEL +<br>PLINK, <sup>69</sup> R, <sup>68</sup><br>GRIMP <sup>70</sup> | QUICKTEST<br>v.0.95 <sup>71</sup>                                   | R <sup>68</sup>                 | R <sup>68</sup>                     | R <sup>68</sup>                    |
| Total number<br>of SNPs used           |                                 | EA: 9,337,140                                                                                               | EA: 9.403.802                                                                                          | 2,402,234                                                                  | 8,522,176                                            |                                     | EA: 2,592,133                                                                             | RS-I<br>8,818,618, RS-<br>II 8,798,976,                                                                             |                                                                     |                                 |                                     |                                    |
| in the<br>analysis<br>(MAF>0.005)      | 2,564,344                       | AA:<br>15,879,929                                                                                           | (no MAF<br>filtering)                                                                                  | 2,320,937<br>(0.005 <<br>MAF <<br>0.995)                                   | (MAF>=0.01,<br>imputation<br>quality>0.3)            | 2,543,887                           | AA: 2,975,847                                                                             | RS-III<br>8,846,227<br>(MAF>0.01,<br>imputation<br>quality >0.3)                                                    | 2,748,910                                                           | 8,864,574                       | 2,543,830                           | 2,203,608                          |

| Inflation  |    | EA:<br>Pmax: 1.02<br>PTF: 1.01 | Pmax: 1.02 | Pmax:1.00 | Pmax: 1.01 |            | EA:<br>Pmax: 1.029<br>PTF: 1.036 | Pmax:<br>RS1: 1.025<br>RS2: 1.013<br>RS3: 1.013 |                         |           |           |           |
|------------|----|--------------------------------|------------|-----------|------------|------------|----------------------------------|-------------------------------------------------|-------------------------|-----------|-----------|-----------|
| factor (λ) | NA | AA:<br>Pmax: 1.01<br>PTF: 0.98 | PTF: 1.01  | PTF: 1.03 | PTF:1.02   | Pmax: 1.01 | AA:<br>Pmax: 1.029<br>PTF: 1.025 | RS1: 0.992<br>RS2: 0.958<br>RS3: 1.010          | Pmax: 0.98<br>PTF: 1.01 | PTF: 1.01 | PTF: 1.00 | PTF: 1.02 |

NA, not applicable; ND, not determined; PC, principal component; Pmax, maximum P-wave duration; PTF, P-wave terminal force

Table S4. Summary of genome-wide significant genetic associations for P-wave maximum duration in participants of European and African ancestry.

| SNP         | Chr   | Location<br>relative to<br>gene | Closest<br>gene | Minor/major allele           | MAF,<br>% | Minor allele<br>effect, β (SE) | P value                | Variance<br>explained,<br>% |
|-------------|-------|---------------------------------|-----------------|------------------------------|-----------|--------------------------------|------------------------|-----------------------------|
|             |       |                                 |                 | European ancestry (n=37,678) |           |                                |                        |                             |
| rs562408    | 1p32  | Intronic                        | SSBP3           | A/G                          | 44        | -0.53 (0.09)                   | 1.97x10 <sup>-8</sup>  | 0.09                        |
| rs11689011  | 2p21  | Intronic                        | EPAS1           | T/C                          | 42        | 0.60 (0.09)                    | 1.18x10 <sup>-10</sup> | 0.12                        |
| rs41312411  | 3p22  | Intronic                        | SCN5A           | G/C                          | 15        | 1.91 (0.15)                    | 9.63x10 <sup>-40</sup> | 0.43                        |
| rs6790396   | 3p22  | Intronic                        | SCN10A          | C/G                          | 41        | 1.22 (0.09)                    | 2.17x10 <sup>-39</sup> | 0.49                        |
| rs2285703   | 4q26  | Intronic                        | CAMK2D          | G/A                          | 26        | 0.56 (0.10)                    | 3.77x10 <sup>-8</sup>  | 0.08                        |
| rs4276421   | 5p12  | Intergenic                      | HCN1            | C/T                          | 42        | 0.61 (0.09)                    | 1.47x10 <sup>-11</sup> | 0.12                        |
| rs13242816  | 7q31  | Intronic                        | CAV1/CAV2       | T/C                          | 8         | 1.21 (0.19)                    | 8.24x10 <sup>-11</sup> | 0.11                        |
| rs148020424 | 12q24 | Intronic                        | TBX5            | G/GGAAAGAAAGAAAAGAGAAA       | 27        | 0.85 (0.12)                    | 5.72x10 <sup>-13</sup> | 0.13                        |
| rs452036    | 14q11 | Intronic                        | МҮН6            | A/G                          | 36        | 0.59 (0.10)                    | 6.49x10 <sup>-10</sup> | 0.09                        |
|             |       |                                 |                 | African ancestry (n=6778)    |           |                                |                        |                             |
| rs3922844   | 3p21  | Intronic                        | SCN5A           | T/C                          | 47        | -1.66 (0.22)                   | 3.26x10 <sup>-14</sup> | 0.83                        |
| rs1895582   | 12q24 | Intronic                        | TBX5            | G/A                          | 28        | 1.33 (0.23)                    | 1.41x10 <sup>-8</sup>  | 0.49                        |

Adjusted for age and sex. Chr, chromosome; MAF, Minor allele frequency; SE, standard error.

| SNP        | Chr   | Location<br>relative to gene | Closest gene | Minor / major<br>allele | MAF,<br>% | Minor allele effect,<br>β (SE) | P value                | Variance<br>explained, % |
|------------|-------|------------------------------|--------------|-------------------------|-----------|--------------------------------|------------------------|--------------------------|
| rs562408   | 1p32  | Intronic                     | SSBP3        | A/G                     | 43%       | -0.52 (0.09)                   | 2.78x10 <sup>-9</sup>  | 0.08                     |
| rs11894252 | 2p21  | Intronic                     | EPAS1        | T/C                     | 43%       | 0.52 (0.09)                    | 1.43x10 <sup>-9</sup>  | 0.08                     |
| rs1467026  | 3p25  | Intergenic                   | CAND2        | G/A                     | 39%       | 0.51 (0.09)                    | 1.61x10 <sup>-8</sup>  | 0.07                     |
| rs41312411 | 3p22  | Intronic                     | SCN5A        | G/C                     | 15%       | 1.90 (0.14)                    | 1.85x10 <sup>-40</sup> | 0.41                     |
| rs4276421  | 5p12  | Intergenic                   | HCN1         | C/T                     | 44%       | 0.58 (0.08)                    | 3.52x10 <sup>-12</sup> | 0.12                     |
| rs3801995  | 7q31  | Intronic                     | CAV1/CAV2    | T/C                     | 26%       | 0.60 (0.09)                    | 1.04x10 <sup>-10</sup> | 0.10                     |
| rs7312625  | 12q24 | Intronic                     | TBX5         | G/A                     | 27%       | 0.80 (0.09)                    | 2.41x10 <sup>-18</sup> | 0.18                     |
| rs452036   | 14q11 | Intronic                     | МҮН6         | A/G                     | 38%       | 0.64 (0.09)                    | 3.99x10 <sup>-13</sup> | 0.11                     |

Table S5. Summary of genetic associations for P-wave maximum duration in combined ancestry analysis.

Adjusted for age and sex. Chr, chromosome; MAF, minor allele frequency; SD, standard error.

|                                                               |       | Location            | Closest     | P-wave durat                   | ion analysis           | P-wave terminal                | force analysis         |
|---------------------------------------------------------------|-------|---------------------|-------------|--------------------------------|------------------------|--------------------------------|------------------------|
| SNP                                                           | Chr   | relative to<br>gene | gene        | Minor allele<br>effect, β (SE) | P value                | Minor allele<br>effect, β (SE) | P value                |
|                                                               |       |                     | Significant | in P-wave durat                | ion analysis           |                                |                        |
|                                                               |       |                     | Europ       | ean ancestry (n=3              | 7,678)                 |                                |                        |
| rs562408                                                      | 1p32  | Intronic            | SSBP3       | -0.53 (0.09)                   | 1.97x10 <sup>-8</sup>  | -7.29 (13.13)                  | 0.58                   |
| rs11689011                                                    | 2p21  | Intronic            | EPAS1       | 0.60 (0.09)                    | 1.18x10 <sup>-10</sup> | -7.25 (13.11)                  | 0.58                   |
| rs41312411                                                    | 3p22  | Intronic            | SCN5A       | 1.91 (0.15)                    | 9.63x10 <sup>-40</sup> | -0.68 (20.36)                  | 0.97                   |
| rs6790396                                                     | 3p22  | Intronic            | SCN10A      | 1.22 (0.09)                    | 2.17x10 <sup>-39</sup> | NA                             | NA                     |
| rs2285703                                                     | 4q26  | Intronic            | CAMK2D      | 0.56 (0.10)                    | 3.77x10 <sup>-8</sup>  | 19.21 (14.55)                  | 0.19                   |
| rs4276421                                                     | 5p12  | Intergenic          | HCN1        | 0.61 (0.09)                    | 1.47x10 <sup>-11</sup> | -2.19 (12.65)                  | 0.86                   |
| rs13242816                                                    | 7q31  | Intronic            | CAV1        | 1.21 (0.19)                    | 8.24x10 <sup>-11</sup> | 9.71 (26.00)                   | 0.71                   |
| rs148020424                                                   | 12q24 | Intronic            | TBX5        | 0.85 (0.12)                    | 5.72x10 <sup>-13</sup> | NA                             | NA                     |
| rs452036                                                      | 14q11 | Intronic            | МҮН6        | 0.59 (0.10)                    | 6.49x10 <sup>-10</sup> | 112.32 (13.37)                 | 4.44x10 <sup>-17</sup> |
|                                                               |       |                     | Afr         | ican ancestry (n=6             | 778)                   |                                |                        |
| rs3922844                                                     | 3p21  | Intronic            | SCN5A       | -1.66 (0.22)                   | 3.26x10 <sup>-14</sup> | 12.90 (37.29)                  | 0.73                   |
| rs1895582                                                     | 12q24 | Intronic            | TBX5        | 1.33 (0.23)                    | 1.41x10 <sup>-8</sup>  | -21.67 (39.67)                 | 0.58                   |
|                                                               |       | Sig                 | nificant in | P-wave terminal                | force analysis         | 5                              |                        |
|                                                               |       |                     | Europ       | ean ancestry (n=3              | 3,955)                 |                                |                        |
| rs12090194                                                    | 1p13  | Intronic            | KCND3       | -0.28 (0.10)                   | 0.004                  | 119 (13)                       | 5.56x10 <sup>-19</sup> |
| rs11242779                                                    | 6p25  | Intergenic          | C6orf195    | 0.37 (0.09)                    | 6.37x10 <sup>-5</sup>  | -71 (13)                       | 2.10x10 <sup>-8</sup>  |
| rs445754                                                      | 14q11 | Intronic            | МҮН6        | 0.54 (0.11)                    | 5.11x10 <sup>-7</sup>  | 131 (15)                       | 3.22x10 <sup>-18</sup> |
| rs201517563                                                   | 15q25 | Intergenic          | ALPK3       | NA                             | NA                     | -86 (15)                       | 3.95x10 <sup>-9</sup>  |
| rs4435363                                                     | 19q13 | Intronic            | PPP5D1      | 0.24 (0.11)                    | 0.039                  | -93 (16)                       | 3.84x10 <sup>-9</sup>  |
|                                                               |       |                     | Afr         | ican ancestry (n=6             | 778)                   |                                |                        |
| rs10832139 11p15 Intergenic SPON1 -0.50 (0.22) 0.025 214 (38) |       |                     |             |                                |                        | 214 (38)                       | 2.44x10 <sup>-8</sup>  |

Table S6. Comparison of all genome-wide significant loci across P-wave duration and P-wave terminal force analyses.

Variants that reached genome-wide significance in both P-wave duration and P-wave terminal force analyses are indicated by bold font. Chr, chromosome; SE, standard error; NA, not available.

| rsID present<br>study | Chr   | Closest<br>gene | Ancestry | rsID previous<br>study | LD, r <sup>2</sup> CEU/YRI | PR-interval                              | P-wave<br>duration    | PR-segment            | Heart rate                                  |
|-----------------------|-------|-----------------|----------|------------------------|----------------------------|------------------------------------------|-----------------------|-----------------------|---------------------------------------------|
| rs41312411            | 3p22  | SCN5A           | EUR      | rs11708996             | 0.94/NA                    | EUR <sup>6</sup>                         |                       |                       |                                             |
|                       |       |                 |          | rs6599222              | 0.55/NA                    | AA <sup>72</sup>                         |                       | EUR <sup>12</sup>     |                                             |
|                       |       |                 |          | rs7638909              | 0.16/NA                    | Kosrae <sup>5</sup> *                    | Kosrae <sup>5</sup> * | Kosrae <sup>5</sup> * |                                             |
| rs3922844             | 3p21  | SCN5A           | AA       | rs3922844              | 1/1                        | AA <sup>9, 72</sup>                      |                       | EUR <sup>12</sup>     |                                             |
|                       |       |                 |          | rs11708996             | 0.07/NA                    | EUR <sup>6</sup>                         |                       |                       |                                             |
|                       |       |                 |          | rs6599222              | 0.001/0.24                 | AA <sup>72</sup>                         |                       | EUR <sup>12</sup>     |                                             |
|                       |       |                 |          | rs7638909              | 0.05/0.006                 | Kosrae <sup>5</sup> *                    | Kosrae <sup>5</sup> * | Kosrae <sup>5</sup> * |                                             |
| rs6790396             | 3p21  | SCN10A          | EUR      | rs6800541              | 1/NA                       | EUR <sup>6</sup> , AS <sup>11</sup>      |                       |                       |                                             |
|                       |       |                 |          | rs6795970              | 0.97/0.07                  | EUR <sup>7</sup> , AS <sup>11</sup>      | AS <sup>10</sup>      |                       |                                             |
|                       |       |                 |          | rs6801957              | 0.97/1                     | AA <sup>9</sup> , AS <sup>11</sup>       | EUR <sup>12</sup>     | EUR <sup>12</sup>     |                                             |
|                       |       |                 |          | rs6798015              | 0.87/0.51                  | AA <sup>72</sup>                         |                       |                       |                                             |
| rs13242816            | 7q31  | CAV1            | EUR      | rs3807989              | 0.11/NA                    | EUR <sup>6, 7</sup> ,AS <sup>8, 11</sup> |                       | EUR <sup>12</sup>     |                                             |
|                       |       |                 |          | rs11773845             | 0.11/NA                    | AA <sup>9</sup>                          |                       |                       |                                             |
| rs3801995             | 7q31  | CAV1            | EUR+AA   | rs3807989              | 0.56/0.17                  | EUR <sup>6, 7</sup> ,AS <sup>8, 11</sup> |                       | EUR <sup>12</sup>     |                                             |
|                       |       |                 |          | rs11773845             | 0.56/0.17                  | AA <sup>9</sup>                          |                       |                       |                                             |
| rs148020424           | 12q24 | TBX5            | EUR      | rs7312625              | NA/NA                      | AA <sup>72</sup>                         |                       |                       |                                             |
|                       |       |                 |          | rs3825214              | NA/NA                      |                                          |                       |                       | EUR <sup>7</sup>                            |
|                       |       |                 |          | rs1895585              | NA/NA                      | AA <sup>9</sup>                          |                       |                       |                                             |
| rs1895582             | 12q24 | TBX5            | AA       | rs7312625              | 0.80/0.81                  | AA <sup>72</sup>                         |                       |                       |                                             |
|                       |       |                 |          | rs3825214              | 0.65/0.33                  |                                          |                       |                       | EUR <sup>7</sup>                            |
|                       |       |                 |          | rs1895585              | NA/NA                      | AA <sup>9</sup>                          |                       |                       |                                             |
| rs7312625             | 12q24 | TBX5            | EUR+AA   | rs7312625              | 1/1                        | AA <sup>72</sup>                         |                       |                       |                                             |
|                       |       |                 |          | rs3825214              | 0.76/0.23                  |                                          |                       |                       | EUR <sup>7</sup>                            |
|                       |       |                 |          | rs1895585              | 0.87/0.78                  | AA <sup>9</sup>                          |                       |                       |                                             |
| rs452036              | 14q11 | MYH6            | EUR      | rs452036               | 1/1                        |                                          |                       |                       | EUR <sup>20</sup> , AA <sup>73</sup>        |
|                       |       |                 |          | rs365990               | 0.96/1                     |                                          |                       |                       | EUR <sup>7, 20, 21</sup> , AA <sup>73</sup> |

Table S7. Shared associations between the present P-wave duration GWAS and previous PWI GWAS.

| rsID present<br>study | Chr | Closest<br>gene | Ancestry | rsID previous<br>study | LD, r <sup>2</sup> CEU/YRI | PR-interval | P-wave<br>duration | PR-segment | Heart rate        |
|-----------------------|-----|-----------------|----------|------------------------|----------------------------|-------------|--------------------|------------|-------------------|
|                       |     |                 |          | rs223116**             | 0.16/0.002                 |             |                    |            | EUR <sup>20</sup> |

Overview of shared genetic loci between present and previous GWAS. The variants identified in previous study are reported with rsID, LD information, previously associated electrocardiographic phenotype, and discovery ancestry group. Chr, chromosome; LD, Linkage disequilibrium; CEU, Utah residents with Northern and Western European ancestry from the 1000 Genomes; YRI, Yoruba in Ibadan, Nigeria, African ancestry group from the 1000 Genomes; NA, not available in SNAP LD search; EUR, European ancestry; AA, African American ancestry; AS, Asian ancestry. \*Founder population in Micronesia, \*\*Intronic to *MYH7*.

|            |                 |        |                |              |                 |         |       | Fold      | TSS          |        |                        |                        |
|------------|-----------------|--------|----------------|--------------|-----------------|---------|-------|-----------|--------------|--------|------------------------|------------------------|
| Index SNP  | Closest gene/s* | Chr    | Position       | rsID         | Probe ID        | Gene    | MA    | change**  | distance     | r²t    | FDR_gw‡                | FDR_dur++              |
|            | Variants ic     | lentif | ied in Europea | an ethnicity | GWAS analysis - | eQTLs i | n Eur | opean Ame | erican atria | l samp | les                    |                        |
| rs562408   | SSBP3           | 1      | 54742618 rs    | s562408      | ILMN_1814165    | SSBP3   | А     | 1.112     | 136.534      | 0.062  | 0.007                  | 0.003                  |
| rs562408   | SSBP3           | 1      | 54742471 rs    | s590041      | ILMN_1814165    | SSBP3   | Т     | 1.111     | 136.681      | 0.061  | 0.008                  | 0.003                  |
| rs41312411 | SCN5A           | 3      | 38624253 rs    | 53922844     | ILMN_1694956    | SCN5A   | Т     | 1.080     | 66.911       | 0.040  | 0.075                  | 0.034                  |
| rs13242816 | CAV1            | 7      | 116198621 rs   | s1997571     | ILMN_1687583    | CAV1    | G     | 0.819     | 33.782       | 0.184  | 7.90x10 <sup>-10</sup> | 5.40x10 <sup>-10</sup> |
| rs13242816 | CAV1            | 7      | 116198828 rs   | s1997572     | ILMN_1687583    | CAV1    | А     | 0.819     | 33.989       | 0.184  | 7.90x10 <sup>-10</sup> | 5.40x10 <sup>-10</sup> |
| rs13242816 | CAV1            | 7      | 116186241 rs   | s3807989     | ILMN_1687583    | CAV1    | А     | 0.819     | 21.402       | 0.184  | 8.07x10 <sup>-10</sup> | 5.40x10 <sup>-10</sup> |
| rs13242816 | CAV1            | 7      | 116191301 rs   | s11773845    | ILMN_1687583    | CAV1    | С     | 0.819     | 26.462       | 0.184  | 8.16x10 <sup>-10</sup> | 5.40x10 <sup>-10</sup> |
| rs13242816 | CAV1            | 7      | 116194228 rs   | s7804372     | ILMN_1687583    | CAV1    | А     | 0.859     | 29.389       | 0.082  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116197579 rs   | s3807994     | ILMN_1687583    | CAV1    | А     | 0.860     | 32.74        | 0.080  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116198466 rs   | s10953822    | ILMN_1687583    | CAV1    | С     | 0.860     | 33.627       | 0.080  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116198090 rs   | s6466588     | ILMN_1687583    | CAV1    | Т     | 0.860     | 33.251       | 0.080  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116197245 rs   | s3807992     | ILMN_1687583    | CAV1    | А     | 0.860     | 32.406       | 0.080  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116196763 rs   | s3807990     | ILMN_1687583    | CAV1    | Т     | 0.860     | 31.924       | 0.080  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116193705 rs   | s3757732     | ILMN_1687583    | CAV1    | А     | 0.860     | 28.866       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116193729 rs   | \$3757733    | ILMN_1687583    | CAV1    | А     | 0.860     | 28.89        | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116190597 rs   | s3801995     | ILMN_1687583    | CAV1    | Т     | 0.860     | 25.758       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116190693 rs   | s3815412     | ILMN_1687583    | CAV1    | С     | 0.860     | 25.854       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116194905 rs   | s729949      | ILMN_1687583    | CAV1    | А     | 0.860     | 30.066       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116194384 rs   | s7789117     | ILMN_1687583    | CAV1    | Т     | 0.860     | 29.545       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116191812 rs   | \$9885998    | ILMN_1687583    | CAV1    | А     | 0.860     | 26.973       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116191697 rs   | s9886216     | ILMN_1687583    | CAV1    | G     | 0.860     | 26.858       | 0.079  | 0.001                  | 0.0005                 |
| rs13242816 | CAV1            | 7      | 116198621 rs   | s1997571     | ILMN_2149226    | CAV1    | G     | 1.043     | 33.782       | 0.071  | 0.002                  | 0.001                  |
| rs13242816 | CAV1            | 7      | 116198828 rs   | s1997572     | ILMN_2149226    | CAV1    | А     | 1.043     | 33.989       | 0.071  | 0.002                  | 0.001                  |
| rs13242816 | CAV1            | 7      | 116191301 rs   | s11773845    | ILMN_2149226    | CAV1    | С     | 1.043     | 26.462       | 0.071  | 0.003                  | 0.001                  |
| rs13242816 | CAV1            | 7      | 116186241 rs   | s3807989     | ILMN_2149226    | CAV1    | А     | 1.043     | 21.402       | 0.070  | 0.003                  | 0.001                  |
| rs13242816 | CAV1            | 7      | 116198621 rs   | s1997571     | ILMN_1735220    | CAV2    | G     | 1.051     | 271.187      | 0.053  | 0.019                  | 0.009                  |
| rs13242816 | CAV1            | 7      | 116198828 rs   | s1997572     | ILMN_1735220    | CAV2    | А     | 1.051     | 271.394      | 0.053  | 0.019                  | 0.009                  |

Table S8. Significant eQTLs in left atrial tissue samples for genetic loci associated with P-wave duration.

| rs13242816 <b>(</b> | CAV1      | 7  | 116191301 rs11773845  | ILMN_1735220 | CAV2 | С | 1.051 | 263.867 | 0.052 | 0.020 | 0.010 |
|---------------------|-----------|----|-----------------------|--------------|------|---|-------|---------|-------|-------|-------|
| rs13242816 <b>(</b> | CAV1      | 7  | 116186241 rs3807989   | ILMN_1735220 | CAV2 | А | 1.051 | 258.807 | 0.052 | 0.021 | 0.010 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116197579 rs3807994   | ILMN_2149226 | CAV1 | А | 1.037 | 32.74   | 0.040 | 0.074 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116196763 rs3807990   | ILMN_2149226 | CAV1 | Т | 1.037 | 31.924  | 0.040 | 0.074 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116198466 rs10953822  | ILMN_2149226 | CAV1 | С | 1.037 | 33.627  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116198090 rs6466588   | ILMN_2149226 | CAV1 | Т | 1.037 | 33.251  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116197245 rs3807992   | ILMN_2149226 | CAV1 | А | 1.037 | 32.406  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116193705 rs3757732   | ILMN_2149226 | CAV1 | А | 1.037 | 28.866  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116193729 rs3757733   | ILMN_2149226 | CAV1 | А | 1.037 | 28.89   | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116190597 rs3801995   | ILMN_2149226 | CAV1 | Т | 1.037 | 25.758  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116190693 rs3815412   | ILMN_2149226 | CAV1 | С | 1.037 | 25.854  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116194905 rs729949    | ILMN_2149226 | CAV1 | А | 1.037 | 30.066  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116194384 rs7789117   | ILMN_2149226 | CAV1 | Т | 1.037 | 29.545  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116191812 rs9885998   | ILMN_2149226 | CAV1 | А | 1.037 | 26.973  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116191697 rs9886216   | ILMN_2149226 | CAV1 | G | 1.037 | 26.858  | 0.040 | 0.075 | 0.034 |
| rs13242816 <b>(</b> | CAV1      | 7  | 116194228 rs7804372   | ILMN_1735220 | CAV2 | А | 1.051 | 266.794 | 0.039 | 0.082 | 0.037 |
| rs148020424         | TBX5      | 12 | 114802361 rs1946295   | ILMN_1742362 | TBX5 | А | 0.891 | 43.886  | 0.074 | 0.002 | 0.001 |
| rs148020424         | TBX5      | 12 | 114804898 rs3825215   | ILMN_1742362 | TBX5 | G | 0.891 | 41.349  | 0.074 | 0.002 | 0.001 |
| rs148020424         | TBX5      | 12 | 114802138 rs1895585   | ILMN_1742362 | TBX5 | А | 0.891 | 44.109  | 0.073 | 0.002 | 0.001 |
| rs148020424         | ТВХ5      | 12 | 114800813 rs4767237   | ILMN_1742362 | TBX5 | А | 0.891 | 45.434  | 0.073 | 0.002 | 0.001 |
| rs148020424         | TBX5      | 12 | 114807035 rs1895582   | ILMN_1742362 | TBX5 | G | 0.890 | 39.212  | 0.072 | 0.002 | 0.001 |
| rs148020424         | TBX5      | 12 | 114806885 rs1895583   | ILMN_1742362 | TBX5 | А | 0.891 | 39.362  | 0.070 | 0.003 | 0.001 |
| rs148020424 LOC25   | 5480;TBX5 | 12 | 114789226 rs2384407   | ILMN_1742362 | TBX5 | G | 0.899 | 57.021  | 0.067 | 0.004 | 0.002 |
| rs148020424         | TBX5      | 12 | 114799974 rs7312625   | ILMN_1742362 | TBX5 | G | 0.898 | 46.273  | 0.066 | 0.004 | 0.002 |
| rs148020424         | TBX5      | 12 | 114805057 rs148020424 | ILMN_1742362 | TBX5 | G | 0.898 | 41.19   | 0.064 | 0.006 | 0.003 |
| rs148020424         | ТВХ5      | 12 | 114802760 rs1946293   | ILMN_1742362 | TBX5 | G | 0.902 | 43.487  | 0.060 | 0.008 | 0.004 |
| rs148020424         | TBX5      | 12 | 114801772 rs7135659   | ILMN_1742362 | TBX5 | G | 0.902 | 44.475  | 0.060 | 0.008 | 0.004 |
| rs148020424         | TBX5      | 12 | 114793240 rs883079    | ILMN_1742362 | TBX5 | С | 0.905 | 53.007  | 0.060 | 0.008 | 0.004 |
| rs148020424         | ТВХ5      | 12 | 114797306 rs7955405   | ILMN_1742362 | TBX5 | А | 0.908 | 48.941  | 0.054 | 0.017 | 0.008 |
| rs148020424         | ТВХ5      | 12 | 114797093 rs10507248  | ILMN_1742362 | TBX5 | G | 0.908 | 49.154  | 0.054 | 0.017 | 0.008 |
| rs148020424 LOC25   | 5480;TBX5 | 12 | 114789350 rs2384408   | ILMN_1742362 | TBX5 | А | 0.899 | 56.897  | 0.048 | 0.032 | 0.016 |
| rs148020424         | TBX5      | 12 | 114766735 rs10850315  | ILMN_1742362 | TBX5 | G | 0.916 | 79.512  | 0.044 | 0.048 | 0.027 |
|                     |           |    |                       |              |      |   |       |         |       |       |       |

| rs148020424 | TBX5           | 12    | 114807655 rs11378406      | ILMN_1742362 7    | TBX5    | А     | 0.912    | 38.592       | 0.043    | 0.055                  | 0.032                  |
|-------------|----------------|-------|---------------------------|-------------------|---------|-------|----------|--------------|----------|------------------------|------------------------|
| rs148020424 | LOC255480;TBX5 | 12    | 114789810 rs2891503       | ILMN_1742362 7    | TBX5    | А     | 0.913    | 56.437       | 0.042    | 0.062                  | 0.034                  |
| rs148020424 | LOC255480;TBX5 | 12    | 114790884 rs1895597       | ILMN_1742362 7    | TBX5    | Т     | 0.912    | 55.363       | 0.042    | 0.063                  | 0.034                  |
| rs148020424 | LOC255480;TBX5 | 12    | 114790500 rs7977083       | ILMN_1742362 7    | TBX5    | А     | 0.916    | 55.747       | 0.041    | 0.065                  | 0.034                  |
| rs148020424 | TBX5           | 12    | 114794057 rs2113433       | ILMN_1742362 7    | TBX5    | т     | 0.909    | 52.19        | 0.041    | 0.066                  | 0.034                  |
| rs148020424 | LOC255480;TBX5 | 12    | 114791455 rs7316919       | ILMN_1742362 7    | TBX5    | А     | 0.917    | 54.792       | 0.041    | 0.068                  | 0.034                  |
| rs148020424 | LOC255480;TBX5 | 12    | 114789046 rs7308120       | ILMN_1742362 7    | TBX5    | Т     | 0.907    | 57.201       | 0.040    | 0.072                  | 0.034                  |
|             | Variants id    | entif | ied in combined ethnicity | GWAS analysis - e | QTLs in | n Eur | opean Am | erican atria | ıl sampl | es                     |                        |
| rs562408    | SSBP3          | 1     | 54742618 rs562408         | ILMN_1814165 S.   | SBP3    | А     | 1.112    | 136.534      | 0.062    | 0.007                  | 0.003                  |
| rs562408    | SSBP3          | 1     | 54741767 rs603901         | ILMN_1814165 S.   | SBP3    | С     | 1.110    | 137.385      | 0.060    | 0.008                  | 0.003                  |
| rs562408    | SSBP3          | 1     | 54736800 rs9662034        | ILMN_1814165 S    | SBP3    | С     | 1.106    | 142.352      | 0.056    | 0.014                  | 0.006                  |
| rs562408    | SSBP3          | 1     | 54735974 rs1537430        | ILMN_1814165 S    | SBP3    | С     | 1.106    | 143.178      | 0.055    | 0.015                  | 0.006                  |
| rs562408    | SSBP3          | 1     | 54732940 rs679200         | ILMN_1814165 S.   | SBP3    | Α     | 1.099    | 146.212      | 0.050    | 0.025                  | 0.010                  |
| rs41312411  | SCN5A          | 3     | 38624253 rs3922844        | ILMN_1694956 Sc   | CN5A    | Т     | 1.080    | 66.911       | 0.040    | 0.075                  | 0.030                  |
| rs3801995   | CAV2           | 7     | 116145957 rs4730743       | ILMN_1687583 C    | CAV1    | А     | 0.805    | -18.882      | 0.237    | 2.93x10 <sup>-13</sup> | 2.25x10 <sup>-13</sup> |
| rs3801995   | CAV2           | 7     | 116145849 rs10271007      | ILMN_1687583 C    | CAV1    | А     | 0.805    | -18.99       | 0.237    | 2.95x10 <sup>-13</sup> | 2.25x10 <sup>-13</sup> |
| rs3801995   | CAV1           | 7     | 116198621 rs1997571       | ILMN_1687583 C    | CAV1    | G     | 0.819    | 33.782       | 0.184    | 7.90x10 <sup>-10</sup> | 4.20x10 <sup>-10</sup> |
| rs3801995   | CAV1           | 7     | 116198828 rs1997572       | ILMN_1687583 C    | CAV1    | А     | 0.819    | 33.989       | 0.184    | 7.90x10 <sup>-10</sup> | 4.20x10 <sup>-10</sup> |
| rs3801995   | CAV1           | 7     | 116186241 rs3807989       | ILMN_1687583 C    | CAV1    | А     | 0.819    | 21.402       | 0.184    | 8.07x10 <sup>-10</sup> | 4.20x10 <sup>-10</sup> |
| rs3801995   | CAV1;CAV2      | 7     | 116118330 rs926197        | ILMN_1687583 C    | CAV1    | С     | 0.827    | -46.509      | 0.182    | 1.00x10 <sup>-9</sup>  | 4.44x10 <sup>-10</sup> |
| rs3801995   | CAV2           | 7     | 116145849 rs10271007      | ILMN_1735220 C    | CAV2    | А     | 1.088    | 218.415      | 0.161    | 2.09x10 <sup>-8</sup>  | 8.56x10 <sup>-9</sup>  |
| rs3801995   | CAV2           | 7     | 116145957 rs4730743       | ILMN_1735220 C    | CAV2    | А     | 1.088    | 218.523      | 0.161    | 2.10x10 <sup>-8</sup>  | 8.56x10 <sup>-9</sup>  |
| rs3801995   | CAV1;CAV2      | 7     | 116118330 rs926197        | ILMN_1735220 C    | CAV2    | С     | 1.079    | 190.896      | 0.133    | 9.91x10 <sup>-7</sup>  | 4.89x10 <sup>-7</sup>  |
| rs3801995   | CAV1           | 7     | 116194228 rs7804372       | ILMN_1687583 C    | CAV1    | А     | 0.859    | 29.389       | 0.082    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116197579 rs3807994       | ILMN_1687583 C    | CAV1    | А     | 0.860    | 32.74        | 0.080    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116198466 rs10953822      | ILMN_1687583 C    | CAV1    | С     | 0.860    | 33.627       | 0.080    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116197245 rs3807992       | ILMN_1687583 C    | CAV1    | А     | 0.860    | 32.406       | 0.080    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116196763 rs3807990       | ILMN_1687583 C    | CAV1    | Т     | 0.860    | 31.924       | 0.080    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116193705 rs3757732       | ILMN_1687583 C    | CAV1    | А     | 0.860    | 28.866       | 0.079    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116193729 rs3757733       | ILMN_1687583 C    | CAV1    | А     | 0.860    | 28.89        | 0.079    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116190597 rs3801995       | ILMN_1687583 C    | CAV1    | Т     | 0.860    | 25.758       | 0.079    | 0.001                  | 0.0004                 |
| rs3801995   | CAV1           | 7     | 116190693 rs3815412       | ILMN_1687583 C    | CAV1    | С     | 0.860    | 25.854       | 0.079    | 0.001                  | 0.0004                 |

| rs3801995 | CAV1      | 7  | 116194905 rs729949   | ILMN_1687583 | CAV1 | А | 0.860 | 30.066  | 0.079 | 0.001 | 0.0004 |
|-----------|-----------|----|----------------------|--------------|------|---|-------|---------|-------|-------|--------|
| rs3801995 | CAV1      | 7  | 116194384 rs7789117  | ILMN_1687583 | CAV1 | Т | 0.860 | 29.545  | 0.079 | 0.001 | 0.0004 |
| rs3801995 | CAV1      | 7  | 116191812 rs9885998  | ILMN_1687583 | CAV1 | А | 0.860 | 26.973  | 0.079 | 0.001 | 0.0004 |
| rs3801995 | CAV1      | 7  | 116191697 rs9886216  | ILMN_1687583 | CAV1 | G | 0.860 | 26.858  | 0.079 | 0.001 | 0.0004 |
| rs3801995 | CAV1      | 7  | 116198621 rs1997571  | ILMN_2149226 | CAV1 | G | 1.043 | 33.782  | 0.071 | 0.002 | 0.001  |
| rs3801995 | CAV1      | 7  | 116198828 rs1997572  | ILMN_2149226 | CAV1 | А | 1.043 | 33.989  | 0.071 | 0.002 | 0.001  |
| rs3801995 | CAV1      | 7  | 116186241 rs3807989  | ILMN_2149226 | CAV1 | А | 1.043 | 21.402  | 0.070 | 0.003 | 0.001  |
| rs3801995 | CAV2      | 7  | 116145957 rs4730743  | ILMN_2149226 | CAV1 | А | 1.040 | -18.882 | 0.066 | 0.004 | 0.002  |
| rs3801995 | CAV2      | 7  | 116145849 rs10271007 | ILMN_2149226 | CAV1 | А | 1.040 | -18.99  | 0.066 | 0.004 | 0.002  |
| rs3801995 | CAV1      | 7  | 116198621 rs1997571  | ILMN_1735220 | CAV2 | G | 1.051 | 271.187 | 0.053 | 0.019 | 0.007  |
| rs3801995 | CAV1      | 7  | 116198828 rs1997572  | ILMN_1735220 | CAV2 | А | 1.051 | 271.394 | 0.053 | 0.019 | 0.007  |
| rs3801995 | CAV1      | 7  | 116186241 rs3807989  | ILMN_1735220 | CAV2 | А | 1.051 | 258.807 | 0.052 | 0.021 | 0.009  |
| rs3801995 | CAV1      | 7  | 116197579 rs3807994  | ILMN_2149226 | CAV1 | А | 1.037 | 32.74   | 0.040 | 0.074 | 0.030  |
| rs3801995 | CAV1      | 7  | 116196763 rs3807990  | ILMN_2149226 | CAV1 | Т | 1.037 | 31.924  | 0.040 | 0.074 | 0.030  |
| rs3801995 | CAV1      | 7  | 116198466 rs10953822 | ILMN_2149226 | CAV1 | С | 1.037 | 33.627  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116197245 rs3807992  | ILMN_2149226 | CAV1 | А | 1.037 | 32.406  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116193705 rs3757732  | ILMN_2149226 | CAV1 | А | 1.037 | 28.866  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116193729 rs3757733  | ILMN_2149226 | CAV1 | А | 1.037 | 28.89   | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116190597 rs3801995  | ILMN_2149226 | CAV1 | Т | 1.037 | 25.758  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116190693 rs3815412  | ILMN_2149226 | CAV1 | С | 1.037 | 25.854  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116194905 rs729949   | ILMN_2149226 | CAV1 | А | 1.037 | 30.066  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116194384 rs7789117  | ILMN_2149226 | CAV1 | Т | 1.037 | 29.545  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116191812 rs9885998  | ILMN_2149226 | CAV1 | А | 1.037 | 26.973  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116191697 rs9886216  | ILMN_2149226 | CAV1 | G | 1.037 | 26.858  | 0.040 | 0.075 | 0.030  |
| rs3801995 | CAV1      | 7  | 116194228 rs7804372  | ILMN_1735220 | CAV2 | А | 1.051 | 266.794 | 0.039 | 0.082 | 0.033  |
| rs3801995 | CAV1;CAV2 | 7  | 116118330 rs926197   | ILMN_2149226 | CAV1 | С | 1.029 | -46.509 | 0.036 | 0.109 | 0.049  |
| rs7312625 | TBX5      | 12 | 114802361 rs1946295  | ILMN_1742362 | TBX5 | А | 0.891 | 43.886  | 0.074 | 0.002 | 0.001  |
| rs7312625 | TBX5      | 12 | 114804898 rs3825215  | ILMN_1742362 | TBX5 | G | 0.891 | 41.349  | 0.074 | 0.002 | 0.001  |
| rs7312625 | TBX5      | 12 | 114802138 rs1895585  | ILMN_1742362 | TBX5 | А | 0.891 | 44.109  | 0.073 | 0.002 | 0.001  |
| rs7312625 | TBX5      | 12 | 114800813 rs4767237  | ILMN_1742362 | TBX5 | А | 0.891 | 45.434  | 0.073 | 0.002 | 0.001  |
| rs7312625 | TBX5      | 12 | 114807035 rs1895582  | ILMN_1742362 | TBX5 | G | 0.890 | 39.212  | 0.072 | 0.002 | 0.001  |
| rs7312625 | TBX5      | 12 | 114806885 rs1895583  | ILMN_1742362 | TBX5 | А | 0.891 | 39.362  | 0.070 | 0.003 | 0.001  |

| rs7312625 | LOC255480;TBX5  | 12   | 114789226 rs2384407       | ILMN_1742362     | TBX5      | G      | 0.899    | 57.021     | 0.067      | 0.004 | 0.002  |
|-----------|-----------------|------|---------------------------|------------------|-----------|--------|----------|------------|------------|-------|--------|
| rs7312625 | TBX5            | 12   | 114799974 rs7312625       | ILMN_1742362     | TBX5      | G      | 0.898    | 46.273     | 0.066      | 0.004 | 0.002  |
| rs7312625 | TBX5            | 12   | 114805057 rs148020424     | ILMN_1742362     | TBX5      | G      | 0.898    | 41.19      | 0.064      | 0.006 | 0.002  |
| rs7312625 | TBX5            | 12   | 114802760 rs1946293       | ILMN_1742362     | TBX5      | G      | 0.902    | 43.487     | 0.060      | 0.008 | 0.003  |
| rs7312625 | TBX5            | 12   | 114801772 rs7135659       | ILMN_1742362     | TBX5      | G      | 0.902    | 44.475     | 0.060      | 0.008 | 0.003  |
| rs7312625 | TBX5            | 12   | 114793240 rs883079        | ILMN_1742362     | TBX5      | С      | 0.905    | 53.007     | 0.060      | 0.008 | 0.003  |
| rs7312625 | TBX5            | 12   | 114797306 rs7955405       | ILMN_1742362     | TBX5      | Α      | 0.908    | 48.941     | 0.054      | 0.017 | 0.007  |
| rs7312625 | TBX5            | 12   | 114797093 rs10507248      | ILMN_1742362     | TBX5      | G      | 0.908    | 49.154     | 0.054      | 0.017 | 0.007  |
| rs7312625 | LOC255480;TBX5  | 12   | 114789350 rs2384408       | ILMN_1742362     | TBX5      | А      | 0.899    | 56.897     | 0.048      | 0.032 | 0.014  |
| rs7312625 | TBX5            | 12   | 114766735 rs10850315      | ILMN_1742362     | TBX5      | G      | 0.916    | 79.512     | 0.044      | 0.048 | 0.023  |
| rs7312625 | TBX5            | 12   | 114807655 rs11378406      | ILMN_1742362     | TBX5      | А      | 0.912    | 38.592     | 0.043      | 0.055 | 0.027  |
| rs7312625 | LOC255480;TBX5  | 12   | 114789810 rs2891503       | ILMN_1742362     | TBX5      | А      | 0.913    | 56.437     | 0.042      | 0.062 | 0.030  |
| rs7312625 | LOC255480;TBX5  | 12   | 114790884 rs1895597       | ILMN_1742362     | TBX5      | Т      | 0.912    | 55.363     | 0.042      | 0.063 | 0.030  |
| rs7312625 | LOC255480;TBX5  | 12   | 114789478 rs2384409       | ILMN_1742362     | TBX5      | А      | 0.908    | 56.769     | 0.041      | 0.064 | 0.030  |
| rs7312625 | LOC255480;TBX5  | 12   | 114790500 rs7977083       | ILMN_1742362     | TBX5      | А      | 0.916    | 55.747     | 0.041      | 0.065 | 0.030  |
| rs7312625 | TBX5            | 12   | 114794057 rs2113433       | ILMN_1742362     | TBX5      | Т      | 0.909    | 52.19      | 0.041      | 0.066 | 0.030  |
| rs7312625 | LOC255480;TBX5  | 12   | 114791455 rs7316919       | ILMN_1742362     | TBX5      | А      | 0.917    | 54.792     | 0.041      | 0.068 | 0.030  |
| rs7312625 | LOC255480;TBX5  | 12   | 114789046 rs7308120       | ILMN_1742362     | TBX5      | Т      | 0.907    | 57.201     | 0.040      | 0.072 | 0.030  |
| rs7312625 | TBX5            | 12   | 114792236 rs6489956       | ILMN_1742362     | TBX5      | Т      | 0.912    | 54.011     | 0.039      | 0.085 | 0.035  |
| rs7312625 | TBX5            | 12   | 114814286 rs7964303       | ILMN_1742362     | TBX5      | Т      | 0.919    | 31.961     | 0.037      | 0.102 | 0.044  |
| rs7312625 | LOC255480;TBX5  | 12   | 114791528 rs1895596       | ILMN_1742362     | TBX5      | А      | 0.905    | 54.719     | 0.036      | 0.110 | 0.049  |
| rs452036  | МҮН6            | 14   | 23863802 rs445754         | ILMN_1702105     | EFS       | Т      | 1.091    | -28.841    | 0.036      | 0.113 | 0.050  |
|           | Variants identi | fied | in African American ethni | city GWAS analys | sis - eQ1 | TLs in | European | American a | atrial sar | nples |        |
| rs3922844 | SCN5A           | 3    | 38624253 rs3922844        | ILMN_1694956     | SCN5A     | Т      | 1.080    | 66.911     | 0.040      | 0.075 | 0.003  |
| rs1895582 | TBX5            | 12   | 114807035 rs1895582       | ILMN_1742362     | TBX5      | G      | 0.890    | 39.212     | 0.072      | 0.002 | 0.0001 |
| rs1895582 | TBX5            | 12   | 114799974 rs7312625       | ILMN_1742362     | TBX5      | G      | 0.898    | 46.273     | 0.066      | 0.004 | 0.0001 |
| rs1895582 | TBX5            | 12   | 114807035 rs1895582       | ILMN_2376958     | TBX5      | G      | 0.947    | 39.212     | 0.024      | 0.303 | 0.022  |

Filtered at FDR\_dur<0.05. Grey highlighting of rows indicates eQTLs that did not reach genome-wide FDR. There were no significant eQTLs for variants identified in the African American ancestry analysis or the combined ancestry analysis in the African American atrial samples. TSS, transcription start site; SNP, single nucleotide polymorphism; Chr, chromosome. MA, minor allele in the atrial tissue biobank. \*Bold text indicates variant located in gene, otherwise closest gene/s. \*\*Fold change in expression when dosage of MA increases by 1. †Explained

(adjusted) variation in probe ID by dosage of rsID/squared adjusted Pearson correlation. ‡Genome-wide false discovery rate. ++False discovery rate specific to variant set.

| Table S9. | . Significant | eQTLs in t | the GTEx | database. |
|-----------|---------------|------------|----------|-----------|
|-----------|---------------|------------|----------|-----------|

| SNP        | Chr   | Closest<br>gene | Ancestry | eQTL gene          | Smallest eQTL P-value  | Tissue           |
|------------|-------|-----------------|----------|--------------------|------------------------|------------------|
|            |       |                 | P        | -wave duration     |                        |                  |
| rs562408   | 1p32  | SSBP3           | EUR      | SSBP3              | 3.47x10 <sup>-12</sup> | Atrial appendage |
|            |       |                 | EUR      | SSBP3              | 3.21x10 <sup>-6</sup>  | Left ventricle   |
|            |       |                 | EUR      | MRPL37             | 2.9x10 <sup>-10</sup>  | Atrial appendage |
| rs1895582  | 12q24 | TBX5            | AA       | TBX5               | 3.84x10 <sup>-6</sup>  | Left ventricle   |
| rs1467026  | 3p25  | CAND2           | EA+AA    | CAND2              | 7.5x10 <sup>-27</sup>  | Skeletal muscle  |
|            |       |                 |          | KRT18P17           | 9.19x10 <sup>-11</sup> | Skeletal muscle  |
|            |       |                 |          | RP11-767C1.2       | 1.2x10 <sup>-9</sup>   | Skeletal muscle  |
|            |       |                 | P-wa     | ave terminal force |                        |                  |
| rs11073730 | 15q25 | ALPK3           | EUR      | RP11-182J1.16      | 1.71x10 <sup>-7</sup>  | Atrial appendage |
|            |       |                 | EUR      | CSPG4P11           | 1.79x10 <sup>-7</sup>  | Atrial appendage |
|            |       |                 | EUR      | AC103965.1         | 2.82x10 <sup>-8</sup>  | Atrial appendage |
|            |       |                 | EUR      | AC103965.1         | 9.04x10 <sup>-8</sup>  | Left ventricle   |
|            |       |                 | EUR      | RP11-182J1.16      | 9.83x10 <sup>-6</sup>  | Left ventricle   |
|            |       |                 | EUR      | WDR73              | 1.12x10 <sup>-7</sup>  | Left ventricle   |
|            |       |                 | EUR      | AC103965.1         | 9.34x10 <sup>-10</sup> | Skeletal muscle  |
|            |       |                 | EUR      | ALPK3              | 1.12x10 <sup>-17</sup> | Skeletal muscle  |
|            |       |                 | EUR      | CSPG4P11           | 1.08x10 <sup>-5</sup>  | Skeletal muscle  |
|            |       |                 | EUR      | WDR73              | 1.37x10 <sup>-8</sup>  | Skeletal muscle  |

Chr, chromosome; EUR, European ancestry; AA, African American ancestry

Table S10. Summary of genome-wide significant genetic associations for P-wave terminal force in participants of European and African ancestry.

| SNP         | Chr                       | Location<br>relative to<br>gene | Closest gene | Minor/major<br>allele | MAF, % | Minor allele<br>effect, β (SE) | P value                | Variance<br>explained, % |  |  |  |
|-------------|---------------------------|---------------------------------|--------------|-----------------------|--------|--------------------------------|------------------------|--------------------------|--|--|--|
|             |                           |                                 | European     | ancestry (n=33,95     | 5)     |                                |                        |                          |  |  |  |
| rs12090194  | 1p13                      | Intronic                        | KCND3        | T/C                   | 32     | 119 (13)                       | 5.56x10 <sup>-19</sup> | 0.25                     |  |  |  |
| rs11242779  | 6p25                      | Intergenic                      | C6orf195     | C/T                   | 49     | -71 (13)                       | 2.10x10 <sup>-8</sup>  | 0.09                     |  |  |  |
| rs445754    | 14q11                     | Intronic                        | MYH6         | T/G                   | 23     | 131 (15)                       | 3.22x10 <sup>-18</sup> | 0.22                     |  |  |  |
| rs201517563 | 15q25                     | Intronic                        | ALPK3/NMB    | TA/T                  | 47     | -86 (15)                       | 3.95x10 <sup>-9</sup>  | 0.10                     |  |  |  |
| rs4435363   | 19q13                     | Intronic                        | PPP5D1       | G/A                   | 20     | -93 (16)                       | 3.84x10 <sup>-9</sup>  | 0.10                     |  |  |  |
|             | African ancestry (n=6778) |                                 |              |                       |        |                                |                        |                          |  |  |  |
| rs10832139  | 11p15                     | Intergenic                      | SPON1        | G/A                   | 41     | 214 (38)                       | 2.44x10 <sup>-8</sup>  | 0.47                     |  |  |  |

Adjusted for age and sex. Chr, chromosome; MAF, Minor allele frequency; SE, standard error.

| SNP        | Chr   | Location<br>relative to<br>gene | Closest<br>gene | Minor /<br>major allele | MAF, % | Minor allele<br>effect, β (SE) | P value                | Variance<br>explained, % |
|------------|-------|---------------------------------|-----------------|-------------------------|--------|--------------------------------|------------------------|--------------------------|
| rs4839185  | 1p13  | Intronic                        | KCND3           | C/T                     | 31%    | 117 (13)                       | 3.14x10 <sup>-20</sup> | 0.20                     |
| rs11099412 | 4q28  | Intergenic                      | PCDH18          | A/G                     | 11%    | 244 (41)                       | 2.52x10 <sup>-9</sup>  | 0.09                     |
| rs11242779 | 6p25  | Intergenic                      | C6orf195        | C/T                     | 48%    | -72 (12)                       | 7.90x10 <sup>-9</sup>  | 0.09                     |
| rs445754   | 14q11 | Intronic                        | МҮН6            | T/G                     | 24%    | 136 (14)                       | 4.20x10 <sup>-22</sup> | 0.23                     |
| rs2115630  | 15q25 | Intronic                        | ALPK3/NMB       | T/C                     | 46%    | 85 (14)                        | 6.38x10 <sup>-10</sup> | 0.09                     |
| rs4435363  | 19q13 | Intronic                        | PPP5D1          | G/A                     | 20%    | -96 (16)                       | 1.15x10 <sup>-9</sup>  | 0.09                     |

Table S11. Summary of genetic associations for P-wave terminal force in combined ancestry analysis

Adjusted for age and sex. Chr, chromosome; MAF, minor allele frequency; SD, standard error.

| rsID       |       |         |          | rsID      |                    |             |                   |            |                                         |
|------------|-------|---------|----------|-----------|--------------------|-------------|-------------------|------------|-----------------------------------------|
| present    |       | Closest |          | previous  | LD, r <sup>2</sup> |             | P-wave            |            |                                         |
| study      | Chr   | gene    | Ancestry | study     | CEU/YRI            | PR-interval | duration          | PR-segment | Heart rate                              |
| rs12090194 | 1p13  | KCND3   | EUR      | rs2798334 | 0.20/0.01          |             | EUR <sup>12</sup> |            |                                         |
| rs4839185  | 1p13  | KCND3   | EUR+AA   | rs2798334 | NA/NA              |             | EUR <sup>12</sup> |            |                                         |
| rs445754   | 14q11 | MYH6    | EUR      | rs452036  | 0.65/0.26          |             | EUR*              |            | EUR <sup>20</sup> , AA <sup>73</sup>    |
|            |       |         |          | rs365990  | 0.62/0.26          |             |                   |            | EUR <sup>7, 21</sup> , AA <sup>73</sup> |

Table S12. Shared associations between present and previous GWAS of P-wave terminal force.

Overview of shared genetic loci between present and previous GWAS. The variants identified in previous studies are reported with rsID, LD information, previously associated electrocardiographic phenotype, and ancestry group. Chr, chromosome; LD, Linkage disequilibrium; CEU, Utah residents with Northern and Western European ancestry from the 1000 Genomes; YRI, Yoruba in Ibadan, Nigeria, African ancestry group from the 1000 Genomes; NA, not available in SNAP LD search; EUR, European ancestry; AA, African American ancestry. \*Variant from the present study on P-wave duration.

|             | Closest |       |              |             |                 |           |          | Fold       | TSS         |           |         |           |
|-------------|---------|-------|--------------|-------------|-----------------|-----------|----------|------------|-------------|-----------|---------|-----------|
| Index SNP   | gene/s* | Chr   | Position     | eQTL SNP    | Probe ID        | Gene      | MA       | change**   | distance    | r²†       | FDR_gw‡ | FDR_dur++ |
|             | Var     | iants | s identified | in European | ancestry GWAS a | nalysis - | eQTLs in | European / | American at | rial samı | oles    |           |
| rs201517563 | ALPK3   | 15    | 85361960     | rs4633690   | ILMN_2347592    | NMB       | Т        | 1.122      | -160.166    | 0.060     | 0.009   | 0.024     |
| rs201517563 | ALPK3   | 15    | 85363708     | rs11854291  | ILMN_2347592    | NMB       | С        | 1.123      | -161.914    | 0.060     | 0.009   | 0.024     |
| rs201517563 | ALPK3   | 15    | 85364516     | rs2115630   | ILMN_2347592    | NMB       | Т        | 1.123      | -162.722    | 0.060     | 0.009   | 0.024     |
| rs201517563 | ALPK3   | 15    | 85355841     | rs35828350  | ILMN_2347592    | NMB       | А        | 0.874      | -154.047    | 0.058     | 0.011   | 0.024     |
| rs201517563 | ZNF592  | 15    | 85276935     | rs58581703  | ILMN_2347592    | NMB       | Т        | 1.117      | -75.141     | 0.053     | 0.019   | 0.031     |
| rs201517563 | ZNF592  | 15    | 85318065     | rs11633377  | ILMN_2347592    | NMB       | G        | 0.888      | -116.271    | 0.051     | 0.024   | 0.031     |
| rs201517563 | ZNF592  | 15    | 85344550     | rs12912388  | ILMN_2347592    | NMB       | А        | 0.888      | -142.756    | 0.051     | 0.024   | 0.031     |
| rs201517563 | ZNF592  | 15    | 85343980     | rs35960805  | ILMN_2347592    | NMB       | G        | 0.888      | -142.186    | 0.051     | 0.024   | 0.031     |
| rs201517563 | ZNF592  | 15    | 85347709     | rs17601029  | ILMN_2347592    | NMB       | G        | 0.888      | -145.915    | 0.050     | 0.026   | 0.031     |
| rs201517563 | ALPK3   | 15    | 85373498     | rs35545192  | ILMN_2347592    | NMB       | СТ       | 0.890      | -171.704    | 0.049     | 0.030   | 0.033     |
| rs201517563 | ALPK3   | 15    | 85377441     | rs35808647  | ILMN_2347592    | NMB       | А        | 0.891      | -175.647    | 0.048     | 0.033   | 0.035     |
| rs201517563 | ALPK3   | 15    | 85374112     | rs2340652   | ILMN_2347592    | NMB       | G        | 0.891      | -172.318    | 0.046     | 0.040   | 0.040     |
| rs201517563 | SEC11A  | 15    | 85242529     | rs8029660   | ILMN_2347592    | NMB       | А        | 1.112      | -40.735     | 0.045     | 0.046   | 0.044     |
|             | Vari    | iants | identified   | in combined | ancestry GWAS a | nalysis - | eQTLs i  | n European | American at | rial sam  | ples    |           |
| rs2115630   | ALPK3   | 15    | 85361960     | rs4633690   | ILMN_2347592    | NMB       | Т        | 1.122      | -160.166    | 0.060     | 0.009   | 0.011     |
| rs2115630   | ALPK3   | 15    | 85363708     | rs11854291  | ILMN_2347592    | NMB       | С        | 1.123      | -161.914    | 0.060     | 0.009   | 0.011     |
| rs2115630   | ALPK3   | 15    | 85364516     | rs2115630   | ILMN_2347592    | NMB       | Т        | 1.123      | -162.722    | 0.060     | 0.009   | 0.011     |
| rs2115630   | SEC11A  | 15    | 85253258     | rs8033459   | ILMN_2347592    | NMB       | Т        | 1.124      | -51.464     | 0.059     | 0.009   | 0.011     |
| rs2115630   | ALPK3   | 15    | 85372645     | rs6496452   | ILMN_2347592    | NMB       | Т        | 1.124      | -170.851    | 0.059     | 0.010   | 0.011     |
| rs2115630   | ALPK3   | 15    | 85355841     | rs35828350  | ILMN_2347592    | NMB       | А        | 0.874      | -154.047    | 0.058     | 0.011   | 0.011     |
| rs2115630   | SEC11A  | 15    | 85255385     | rs8027779   | ILMN_2347592    | NMB       | С        | 1.118      | -53.591     | 0.054     | 0.017   | 0.011     |
| rs2115630   | ZNF592  | 15    | 85334952     | rs28595395  | ILMN_2347592    | NMB       | С        | 1.121      | -133.158    | 0.054     | 0.017   | 0.011     |
| rs2115630   | ALPK3   | 15    | 85357649     | rs56864281  | ILMN_2347592    | NMB       | А        | 0.882      | -155.855    | 0.054     | 0.017   | 0.011     |
| rs2115630   | ZNF592  | 15    | 85333396     | rs61074241  | ILMN_2347592    | NMB       | Т        | 0.877      | -131.602    | 0.053     | 0.018   | 0.011     |
| rs2115630   | ZNF592  | 15    | 85282635     | rs1030863   | ILMN_2347592    | NMB       | Т        | 1.118      | -80.841     | 0.053     | 0.018   | 0.011     |
| rs2115630   | ZNF592  | 15    | 85349231     | rs35630683  | ILMN_2347592    | NMB       | С        | 0.883      | -147.437    | 0.053     | 0.018   | 0.011     |
| rs2115630   | ZNF592  | 15    | 85318080     | rs9788687   | ILMN_2347592    | NMB       | Т        | 1.117      | -116.286    | 0.053     | 0.019   | 0.011     |

 Table S13. Significant eQTLs in left atrial tissue samples for genetic loci associated with P-wave terminal force.

| rs2115630 | ZNF592 | 15 85276935 rs58581703  | ILMN_2347592 | NMB | Т  | 1.117 | -75.141  | 0.053 | 0.019 | 0.011 |
|-----------|--------|-------------------------|--------------|-----|----|-------|----------|-------|-------|-------|
| rs2115630 | ZNF592 | 15 85320924 rs202221250 | ILMN_2347592 | NMB | AC | 1.117 | -119.13  | 0.053 | 0.019 | 0.011 |
| rs2115630 | ZNF592 | 15 85323568 rs55646601  | ILMN_2347592 | NMB | Т  | 1.117 | -121.774 | 0.052 | 0.020 | 0.011 |
| rs2115630 | ZNF592 | 15 85350081 rs11073729  | ILMN_2347592 | NMB | С  | 1.115 | -148.287 | 0.052 | 0.020 | 0.011 |
| rs2115630 | ZNF592 | 15 85297793 rs6496401   | ILMN_2347592 | NMB | Т  | 1.116 | -95.999  | 0.052 | 0.020 | 0.011 |
| rs2115630 | ZNF592 | 15 85280212 rs34570071  | ILMN_2347592 | NMB | А  | 0.885 | -78.418  | 0.052 | 0.022 | 0.011 |
| rs2115630 | SEC11A | 15 85273880 rs12592554  | ILMN_2347592 | NMB | А  | 1.116 | -72.086  | 0.052 | 0.022 | 0.011 |
| rs2115630 | ZNF592 | 15 85277888 rs8028490   | ILMN_2347592 | NMB | А  | 1.116 | -76.094  | 0.051 | 0.023 | 0.011 |
| rs2115630 | ZNF592 | 15 85318065 rs11633377  | ILMN_2347592 | NMB | G  | 0.888 | -116.271 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85302373 rs12899981  | ILMN_2347592 | NMB | А  | 0.888 | -100.579 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85337699 rs12903134  | ILMN_2347592 | NMB | А  | 0.888 | -135.905 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85322351 rs12908549  | ILMN_2347592 | NMB | G  | 0.888 | -120.557 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85344550 rs12912388  | ILMN_2347592 | NMB | А  | 0.888 | -142.756 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85337800 rs35726233  | ILMN_2347592 | NMB | Т  | 0.888 | -136.006 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85311382 rs35758837  | ILMN_2347592 | NMB | Т  | 0.888 | -109.588 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85343980 rs35960805  | ILMN_2347592 | NMB | G  | 0.888 | -142.186 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85319692 rs36033486  | ILMN_2347592 | NMB | G  | 0.888 | -117.898 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85321220 rs62019469  | ILMN_2347592 | NMB | С  | 0.888 | -119.426 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85288087 rs62019463  | ILMN_2347592 | NMB | А  | 0.888 | -86.293  | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85285536 rs17599989  | ILMN_2347592 | NMB | С  | 0.888 | -83.742  | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85280210 rs35738019  | ILMN_2347592 | NMB | С  | 0.888 | -78.416  | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85280792 rs60957376  | ILMN_2347592 | NMB | G  | 0.888 | -78.998  | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85316465 rs12914760  | ILMN_2347592 | NMB | Т  | 0.887 | -114.671 | 0.051 | 0.024 | 0.011 |
| rs2115630 | ZNF592 | 15 85298662 rs12910012  | ILMN_2347592 | NMB | С  | 0.888 | -96.868  | 0.051 | 0.024 | 0.011 |
| rs2115630 | SEC11A | 15 85268036 rs62021226  | ILMN_2347592 | NMB | С  | 0.888 | -66.242  | 0.050 | 0.025 | 0.011 |
| rs2115630 | ZNF592 | 15 85294469 rs62019464  | ILMN_2347592 | NMB | А  | 0.888 | -92.675  | 0.050 | 0.025 | 0.011 |
| rs2115630 | SEC11A | 15 85264461 rs58416181  | ILMN_2347592 | NMB | А  | 0.888 | -62.667  | 0.050 | 0.025 | 0.011 |
| rs2115630 | ZNF592 | 15 85324467 rs11633267  | ILMN_2347592 | NMB | С  | 0.888 | -122.673 | 0.050 | 0.025 | 0.011 |
| rs2115630 | ZNF592 | 15 85347709 rs17601029  | ILMN_2347592 | NMB | G  | 0.888 | -145.915 | 0.050 | 0.026 | 0.011 |
| rs2115630 | ZNF592 | 15 85331271 rs34342559  | ILMN_2347592 | NMB | G  | 0.888 | -129.477 | 0.049 | 0.028 | 0.011 |
| rs2115630 | ZNF592 | 15 85331629 rs35557864  | ILMN_2347592 | NMB | G  | 0.888 | -129.835 | 0.049 | 0.028 | 0.011 |
| rs2115630 | ZNF592 | 15 85331493 rs62019472  | ILMN_2347592 | NMB | G  | 0.888 | -129.699 | 0.049 | 0.028 | 0.011 |

| rs2115630 | ALPK3  | 15 85373498 rs35545192 | ILMN_2347592 | NMB | СТ | 0.890 | -171.704 | 0.049 | 0.030 | 0.012 |
|-----------|--------|------------------------|--------------|-----|----|-------|----------|-------|-------|-------|
| rs2115630 | ALPK3  | 15 85377441 rs35808647 | ILMN_2347592 | NMB | А  | 0.891 | -175.647 | 0.048 | 0.033 | 0.013 |
| rs2115630 | SEC11A | 15 85258203 rs35524990 | ILMN_2347592 | NMB | С  | 0.890 | -56.409  | 0.048 | 0.034 | 0.013 |
| rs2115630 | SEC11A | 15 85257599 rs34900908 | ILMN_2347592 | NMB | А  | 0.890 | -55.805  | 0.048 | 0.034 | 0.013 |
| rs2115630 | SEC11A | 15 85256159 rs62021219 | ILMN_2347592 | NMB | Т  | 0.890 | -54.365  | 0.047 | 0.034 | 0.013 |
| rs2115630 | SEC11A | 15 85256303 rs12907808 | ILMN_2347592 | NMB | С  | 0.890 | -54.509  | 0.047 | 0.034 | 0.013 |
| rs2115630 | SEC11A | 15 85250253 rs4643294  | ILMN_2347592 | NMB | Т  | 0.890 | -48.459  | 0.047 | 0.035 | 0.013 |
| rs2115630 | SEC11A | 15 85248133 rs35316992 | ILMN_2347592 | NMB | G  | 0.891 | -46.339  | 0.047 | 0.035 | 0.013 |
| rs2115630 | SEC11A | 15 85240403 rs12908699 | ILMN_2347592 | NMB | Т  | 0.891 | -38.609  | 0.047 | 0.036 | 0.013 |
| rs2115630 | SEC11A | 15 85231585 rs34028043 | ILMN_2347592 | NMB | А  | 0.892 | -29.791  | 0.046 | 0.038 | 0.014 |
| rs2115630 | ALPK3  | 15 85374112 rs2340652  | ILMN_2347592 | NMB | G  | 0.891 | -172.318 | 0.046 | 0.040 | 0.014 |
| rs2115630 | ZNF592 | 15 85354596 rs11073730 | ILMN_2347592 | NMB | т  | 1.104 | -152.802 | 0.042 | 0.063 | 0.026 |

Filtered at FDR\_ptf<0.05. Grey highlighting of rows indicates eQTLs that did not reach genome-wide FDR. There were no significant eQTLs for variants identified in the African American and combined ancestry analysis in the African American atrial samples and no significant eQTLs for variants identified in the African American ancestry analysis in the European ancestry atrial samples. TSS, transcription start site; SNP, single nucleotide polymorphism; Chr, chromosome; MA, minor allele in the atrial tissue biobank. \*Bold text indicates variant located in gene, otherwise closest gene/s. \*\*Fold change in expression when dosage of MA increases by 1. †Explained (adjusted) variation in probe ID by dosage of rsID/squared adjusted Pearson correlation. ‡Genome-wide false discovery rate. ††False discovery rate specific to variant set.

## **Supplemental Figures**

Figure S1. Manhattan plots of meta-analyses results for combined ancestry genome-wide association studies of maximum P-wave duration and P-wave terminal force















At each novel locus, all SNPs in a limited region are plotted by chromosomal location and p-value (left vertical axis) from the meta-analysis. The most significant SNP is plotted as a diamond-shape, and all other SNPs are colored according to their linkage disequilibrium (LD) with the top SNP. For the *TBX5* locus (G), this is true for the second most significant variant, due to missing LD data for the most significant variant (grey). Red depicts the highest LD while blue depicts the lowest, as shown in the legend in each plot. Estimated recombination rate is displayed for each region (right vertical axis). Gene annotation is presented below the plot. LD and recombination information is based on the 1000 Genomes November 2014 EUR release. All plots were made using LocusZoom.<sup>74</sup> A-H shows novel loci, whereas I-J shows replicated loci. A, *SSBP3*; B, *EPAS1*; C, *CAND2*; D, *CAMK2D*; E, *HCN1*; F, *CAV1/2*; G, *TBX5*; H, *MYH6*; I, *SCN5A*; J, *SCN10A*.





At each novel locus, all SNPs in a limited region are plotted by chromosomal location and p-value (left vertical axis) from the meta-analysis. The most significant SNP is plotted as a diamond-shape, and all

other SNPs are colored according to their linkage disequilibrium (LD) with the top SNP. Red depicts the highest LD while blue depicts the lowest, as shown in the legend in each plot. Estimated recombination rate is displayed for each region (right vertical axis). Gene annotation is presented below the plot. LD and recombination information is based on the 1000 Genomes November 2014 EUR release. All plots were made using LocusZoom.<sup>74</sup> **A**, *KCND3*; **B**, *C6orf195*; **C**, *MYH6*; **D**, *ALPK3/NMB*; **E**, *PPP5D1*; **F**, *SPON1*.

## **Supplemental References**

- 1. Deshmukh A, Barnard J, Sun H, Newton D, Castel L, Pettersson G, et al. Left atrial transcriptional changes associated with atrial fibrillation susceptibility and persistence. *Circ Arrhythm Electrophysiol*. 2015;8:32-41.
- 2. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society*. 1995;57:289-300.
- 3. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, De Bakker PIW. SNAP: A webbased tool for identification and annotation of proxy SNPs using HapMap. *Bioinformatics*. 2008;24:2938-2939.
- 4. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. *Nat Genet*. 2013;45:580-585.
- 5. Smith JG, Lowe JK, Kovvali S, Maller JB, Salit J, Daly MJ, et al. Genome-wide association study of electrocardiographic conduction measures in an isolated founder population: Kosrae. *Heart Rhythm*. 2009;6:634-641.
- 6. Pfeufer A, Noord Cv, Marciante KD, van NC, Marciante KD, Arking DE, et al. Genome-wide association study of PR interval. *Nat Genet*. 2010;42:153-159.
- Holm H, Gudbjartsson DF, Arnar DO, Thorleifsson G, Thorgeirsson G, Stefansdottir H, et al. Several common variants modulate heart rate, PR interval and QRS duration. *Nat Genet*. 2010;42:117-122.
- 8. Hong K-W, Lim JE, Kim JW, Tabara Y, Ueshima H, Miki T, et al. Identification of three novel genetic variations associated with electrocardiographic traits (QRS duration and PR interval) in East Asians. *Hum Mol Genet*. 2014;23:6659-6667.
- 9. Butler AAM, Yin X, Evans DDS, Nalls MA, Smith EN, Tanaka T, et al. Novel loci associated with PR interval in a genome-wide association study of 10 African American cohorts. *Circ Cardiovasc Genet*. 2012;5:639-646.
- 10. Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R, et al. Genetic variation in SCN10A influences cardiac conduction. *Nat Genet*. 2010;42:149-152.
- 11. Sano M, Kamitsuji S, Kamatani N, Hong K-W, Han B-G, Kim Y, et al. Genome-wide association study of electrocardiographic parameters identifies a new association for PR interval and confirms previously reported associations. *Hum Mol Genet*. 2014;23:6668-6676.
- Verweij N, Mateo Leach I, van den Boogaard M, van Veldhuisen DJ, Christoffels VM, Hillege HL, et al. Genetic determinants of P wave duration and PR segment. *Circ Cardiovasc Genet*. 2014;7:475-481.
- 13. Sotoodehnia N, Isaacs A, de Bakker PIW, Dörr M, Newton-Cheh C, Nolte IM, et al. Common variants in 22 loci are associated with QRS duration and cardiac ventricular conduction. *Nat Genet*. 2010;42:1068-1076.
- 14. Bezzina CR, Barc J, Mizusawa Y, Remme CA, Gourraud J-B, Simonet F, et al. Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death. *Nat Genet*. 2013;45:1044-1049.
- 15. Sinner MF, Tucker NR, Lunetta KL, Ozaki K, Smith JG, Trompet S, et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. *Circulation*. 2014;130:1225-1235.
- 16. Tsai C-T, Hsieh C-S, Chang S-N, Chuang EY, Juang J-MJ, Lin L-Y, et al. Next-generation sequencing of nine atrial fibrillation candidate genes identified novel de novo mutations in patients with extreme trait of atrial fibrillation. *J Med Genet*. 2015;52:28-36.
- 17. Lubitz Sa, Lunetta KL, Lin H, Arking DE, Trompet S, Li G, et al. Novel genetic markers associate with atrial fibrillation risk in europeans and Japanese. *J Am Coll Cardiol*. 2014;63:1200-1210.

- 18. Weeke P, Muhammad R, Delaney JT, Shaffer C, Mosley JD, Blair M, et al. Whole-exome sequencing in familial atrial fibrillation. *Eur Heart J*. 2014;35:2477-2483.
- 19. Lin H, Sinner MF, Brody JA, Arking DE, Lunetta KL, Rienstra M, et al. Targeted sequencing in candidate genes for atrial fibrillation: the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Targeted Sequencing Study. *Heart Rhythm*. 2014;11:452-457.
- 20. Eijgelsheim M, Newton-Cheh C, Sotoodehnia N, de Bakker PIW, Müller M, Morrison AC, et al. Genome-wide association analysis identifies multiple loci related to resting heart rate. *Hum Mol Genet*. 2010;19:3885-3894.
- 21. den Hoed M, Eijgelsheim M, Esko T, Brundel BJJM, Peal DS, Evans DM, et al. Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders. *Nat Genet*. 2013;45:621-631.
- 22. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA, et al. Identification of a Gene Encoding a Hyperpolarization-Activated Pacemaker Channel of Brain. *Cell*. 1998;93:717-729.
- 23. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z, et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. *Circ Res*. 1999;85:e1-6.
- 24. Ulens C, Tytgat J. Functional heteromerization of HCN1 and HCN2 pacemaker channels. *J Biol Chem*. 2001;276:6069-6072.
- 25. Fenske S, Krause SC, Hassan SIH, Becirovic E, Auer F, Bernard R, et al. Sick sinus syndrome in HCN1-deficient mice. *Circulation*. 2013;128:2585-2594.
- 26. Tian H, McKnight SL, Russell DW. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. *Genes Dev*. 1997;11:72-82.
- 27. Tian H, Hammer RE, Matsumoto AM, Russell DW, McKnight SL. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. *Genes Dev.* 1998;12:3320-3324.
- 28. Tanaka T, Akiyama H, Kanai H, Sato M, Takeda S, Sekiguchi K, et al. Endothelial PAS domain protein 1 (EPAS1) induces adrenomedullin gene expression in cardiac myocytes: role of EPAS1 in an inflammatory response in cardiac myocytes. *J Mol Cell Cardiol*. 2002;34:739-748.
- 29. Purdue MP, Johansson M, Zelenika D, Toro JR, Scelo G, Moore LE, et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. *Nat Genet*. 2011;43:60-65.
- 30. Han SS, Yeager M, Moore LE, Wei M-H, Pfeiffer R, Toure O, et al. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. *Hum Mol Genet*. 2012;21:1190-1200.
- 31. Mohamed S, Schaa K, Cooper ME, Ahrens E, Alvarado A, Colaizy T, et al. Genetic Contributions to the Development of Retinopathy of Prematurity. *Pediatr Res.* 2009;65:193-197.
- 32. Dagle JM, Lepp NT, Cooper ME, Schaa KL, Kelsey KJP, Orr KL, et al. Determination of Genetic Predisposition to Patent Ductus Arteriosus in Preterm Infants. *Pediatrics*. 2009;123:1116-1123.
- Xu Z, Meng X, Cai Y, Liang H, Nagarajan L, Brandt SJ. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. *Genes Dev*. 2007;21:942-955.
- 34. Hain J r, Onoue H, Mayrleitner M, Fleischer S, Schindler H. Phosphorylation Modulates the Function of the Calcium Release Channel of Sarcoplasmic Reticulum from Cardiac Muscle. *J Biol Chem.* 1995;270:2074-2081.
- 35. Hagemann D, Kuschel M, Kuramochi T, Zhu W, Cheng H, Xiao RP. Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. *J Biol Chem*. 2000;275:22532-22536.

- 36. Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM. Transgenic CaMKIIδc overexpression uniquely alters cardiac myocyte Ca2+ handling: Reduced SR Ca2+ load and activated SR Ca2+ release. *Circ Res.* 2003;92:904-911.
- 37. Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, et al. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. *Circ Res.* 2006;98:235-244.
- Wagner S, Dybkova N, Rasenack ECL, Jacobshagen C, Fabritz L, Kirchhof P, et al.
   Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. *J Clin Invest*.
   2006;116:3127-3138.
- 39. Tessier S, Karczewski P, Krause E-G, Pansard Y, Acar C, Lang-Lazdunski M, et al. Regulation of the Transient Outward K+ Current by Ca2+/Calmodulin-Dependent Protein Kinases II in Human Atrial Myocytes. *Circ Res.* 1999;85:810-819.
- 40. Olesen MS, Refsgaard L, Holst AG, Larsen AP, Grubb S, Haunsø S, et al. A novel KCND3 gain-offunction mutation associated with early-onset of persistent lone atrial fibrillation. *Cardiovasc Res.* 2013;98:488-495.
- 41. Giudicessi JR, Ye D, Tester DJ, Crotti L, Mugione A, Nesterenko VV, et al. Transient outward current (I(to)) gain-of-function mutations in the KCND3-encoded Kv4.3 potassium channel and Brugada syndrome. *Heart Rhythm*. 2011;8:1024-1032.
- Shah S, Nelson CP, Gaunt TR, van der Harst P, Barnes T, Braund PS, et al. Four genetic loci influencing electrocardiographic indices of left ventricular hypertrophy. *Circ Cardiovasc Genet*. 2011;4:626-635.
- 43. Parry HM, Donnelly LA, Van Zuydam N, Doney AS, Elder DH, Morris AD, et al. Genetic variants predicting left ventricular hypertrophy in a diabetic population: a Go-DARTS study including meta-analysis. *Cardiovasc Diabetol*. 2013;12:109.
- 44. Oeffner F, Bornholdt D, Ziegler A, Hinney A, Görg T, Gerber G, et al. Significant association between a silent polymorphism in the neuromedin B gene and body weight in German children and adolescents. *Acta Diabetol*. 2000;37:93-101.
- 45. Burstyn-Cohen T, Tzarfaty V, Frumkin A, Feinstein Y, Stoeckli E, Klar A. F-Spondin Is Required for Accurate Pathfinding of Commissural Axons at the Floor Plate. *Neuron*. 1999;23:233-246.
- 46. Miyamoto K, Morishita Y, Yamazaki M, Minamino N, Kangawa K, Matsuo H, et al. Isolation and characterization of vascular smooth muscle cell growth promoting factor from bovine ovarian follicular fluid and its cDNA cloning from bovine and human ovary. *Arch Biochem Biophys*. 2001;390:93-100.
- 47. Clemitson J-R, Dixon RJ, Haines S, Bingham AJ, Patel BR, Hall L, et al. Genetic dissection of a blood pressure quantitative trait locus on rat chromosome 1 and gene expression analysis identifies SPON1 as a novel candidate hypertension gene. *Circ Res.* 2007;100:992-999.
- 48. Jahanshad N, Rajagopalan P, Hua X, Hibar DP, Nir TM, Toga AW, et al. Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. *Proc Natl Acad Sci U S A*. 2013;110:4768-4773.
- 49. investigators TA. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. *Am J Epidemiol*. 1989;129:687-702.
- 50. Alonso A, Agarwal SK, Soliman EZ, Ambrose M, Chamberlain AM, Prineas RJ, et al. Incidence of atrial fibrillation in whites and African-Americans: the Atherosclerosis Risk in Communities (ARIC) study. *Am Heart J*. 2009;158:111-117.
- 51. Fried LP, Borhani NO, Enright P, Furberg CD, Gardin JM, Kronmal RA, et al. The cardiovascular health study: Design and rationale. *Ann Epidemiol*. 1991;1:263-276.

- 52. Aulchenko YS, Heutink P, Mackay I, Bertoli-Avella AM, Pullen J, Vaessen N, et al. Linkage disequilibrium in young genetically isolated Dutch population. *Eur J Hum Genet*. 2004;12:527-534.
- 53. Dawber TR, Meadors GF, Moore FE. Epidemiological approaches to heart disease: the Framingham Study. *American journal of public health and the nation's health*. 1951;41:279-281.
- 54. Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham offspring study. *Am J Epidemiol*. 1979;110:281-290.
- 55. Wichmann H-E, Gieger C, Illig T, Group MKS. KORA-gen--resource for population genetics, controls and a broad spectrum of disease phenotypes. *Gesundheitswesen (Bundesverband der Ärzte des Öffentlichen Gesundheitsdienstes (Germany))*. 2005;67 Suppl 1:S26-30.
- 56. Schnabel RB, Johannsen SS, Wild PS, Blankenberg S. [Prevalence and risk factors of atrial fibrillation in Germany : data from the Gutenberg Health Study]. *Herz*. 2015;40:8-15.
- 57. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez Roux AV, Folsom AR, et al. Multi-Ethnic Study of Atherosclerosis: objectives and design. *Am J Epidemiol*. 2002;156:871-881.
- 58. Hofman A, Brusselle GGO, Darwish Murad S, van Duijn CM, Franco OH, Goedegebure A, et al. The Rotterdam Study: 2016 objectives and design update. *Eur J Epidemiol*. 2015;30:661-708.
- 59. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort profile: the study of health in Pomerania. *Int J Epidemiol*. 2011;40:294-307.
- 60. Design of the Women's Health Initiative clinical trial and observational study. The Women's Health Initiative Study Group. *Control Clin Trials*. 1998;19:61-109.
- 61. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. *Nat Genet*. 2012;44:955-959.
- 62. O'Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al. A general approach for haplotype phasing across the full spectrum of relatedness. *PLoS genetics*. 2014;10:e1004234.
- 63. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: Using Sequence and Genotype Data to Estimate Haplotypes and Unobserved Genotypes. *Genet Epidemiol*. 2010;34:816-834.
- 64. Li Y, Willer C, Sanna S, Abecasis G. Genotype imputation. *Annual review of genomics and human genetics*. 2009;10:387-406.
- 65. Browning SR, Browning BL. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. *Am J Hum Genet*. 2007;81:1084-1097.
- 66. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genomewide association studies by imputation of genotypes. *Nat Genet*. 2007;39:906-913.
- 67. Lippert C, Xiang J, Horta D, Widmer C, Kadie C, Heckerman D, et al. Greater Power and Computational Efficiency for Kernel-Based Association Testing of Sets of Genetic Variants. *Bioinformatics (Oxford, England)*. 2014:1-9.
- 68. Team RDC. *R: A Language and Environment for Statistical Computing*; 2014.
- 69. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. *Nat Protoc.* 2010;5:1564-1573.
- 70. Estrada K, Abuseiris A, Grosveld FG, Uitterlinden AG, Knoch TA, Rivadeneira F. GRIMP: a weband grid-based tool for high-speed analysis of large-scale genome-wide association using imputed data. *Bioinformatics*. 2009;25:2750-2752.
- 71. Kutalik Z, Johnson T, Bochud M, Mooser V, Vollenweider P, Waeber G, et al. Methods for testing association between uncertain genotypes and quantitative traits. *Biostatistics (Oxford, England)*. 2011;12:1-17.
- 72. Smith JG, Magnani JW, Palmer C, Meng YA, Soliman EZ, Musani SK, et al. Genome-wide association studies of the PR interval in African Americans. *PLoS genetics*. 2011;7:e1001304.

- 73. Deo R, Nalls MA, Avery CL, Smith JG, Evans DS, Keller MF, et al. Common genetic variation near the connexin-43 gene is associated with resting heart rate in African Americans: a genome-wide association study of 13,372 participants. *Heart Rhythm*. 2013;10:401-408.
- 74. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, et al. LocusZoom: Regional visualization of genome-wide association scan results. *Bioinformatics*. 2010;26:2336-2337.