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SUPPLEMENTAL METHODS

Selection of ECGs
In studies with multiple visits, ECG were selected from following visits: baseline visit (MESA, RS I-111),

exam 20 (FHS Original cohort), exam 6 (FHS Offspring cohort), and exam 1 (FHS Gen 3).

Gene expression and eQTL analyses in left atrial tissue samples

Human left atrial tissue samples were obtained from the Cleveland Clinic Atrial Tissue Bank and
Arrhythmia Biorepository, processed on the lllumina Human Hap550 v3 or Hap610 v1 chips and Illumina
HumanHT-12 v3 or v4 chips to obtain genotype and RNA expression data, respectively. Human left atrial
samples were obtained from 289 individuals of European American (EA) ethnicity; 266 samples were
from left atrial appendage (LAA) tissue and 23 the left atrial pulmonary vein junction tissue (LA-PV). Of
the 289 subjects, 80 were females, 70 had no history of AF, and 136 came from patients that were in AF
at the time of tissue acquisition. Of 40 individuals of African American (AA) ethnicity, 25 were females,
16 had no history of AF, and 12 were in AF at the time of tissue acquisition; 34 samples were from LAA
and 6 from LA-PV tissue; Detailed methods have been described previously.> SNP-gene expression
association tests (eQTL analyses) were performed for all genome-wide significant genetic variants
identified in analyses of P-wave duration and P-wave terminal force. False discovery rate (FDR) values
were calculated from the p-values using the Benjamini and Hochberg method.? Cis probe-variant pairs
with an FDR value less than 0.05 were deemed significant at the genome-wide level. In addition, for

each variant set of interest, FDR values were calculated for that set.

In silico functional annotation and eQTL analyses

We assessed the linkage disequilibrium (LD) between the most significant variant in our study and

previous studies, for all genetic loci reported in previous published GWAS of P-wave indices, using the
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pairwise LD function of the SNAP software version 2.2.3 LD was categorized as follows; strong LD, r>>0.8;
moderate LD, r’<0.8 and >0.50; weak LD, r?<0.5 and 20.2; no LD, r?<0.2. We used the 1000 Genomes
Pilot 1 SNP data set, and chose the European (CEU) population panel for variants identified in European
studies and the African (YRI) population panel for variants discovered in African-American studies. We
also used the SNAP software to identify proxies for the most significant SNP from each genetic locus
identified in the GWAS, using the same settings as described above in addition to a distance limit of 500

kb and an LD r? threshold of 0.8.

All top hits and their proxies were selected for eQTL and SNP function analyses. We performed a
lookup of statistically significant eQTLs in cardiac and skeletal muscle tissues, using the Genome-Tissue
Expression database (GTEx),* which was accessed on October 21, 2015. We assessed SNP function

through the NCBI dbSNP website on October 30, 2015.
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SUPPLEMENTAL RESULTS

P-wave duration and P-wave terminal force are genetically associated

After LD-clumping using r*>0.1, 96 significant SNPs remained from the P-wave duration analysis and

75 significant SNPs remained from the P-wave terminal force analysis, which were included in the
respective GRS. The P-wave terminal force GRS was associated with measured P-wave duration
(B=0.007; SE=0.0005; p=1.2x10*?) and the P-wave duration GRS was associated with measured P-wave
terminal force (B=11.2; SE=2.46, p=5.3x10°). After LD-clumping using r>>0.05, 85 significant SNPs
remained from the P-wave duration analysis and 66 significant SNPs remained from the P-wave terminal
force analysis, which were included in the respective GRS. The P-wave terminal force GRS was
associated with measured P-wave duration (B=0.007; SE=0.0005; p=1.2x10*%) and the P-wave duration
GRS was associated with measured P-wave terminal force (B=12.4; SE=2.67, p=3.3x10°®). The estimated
percentage of total variance of the measured P-wave terminal force explained by the P-wave duration
GRS is 0.06%, for both r? thresholds, and conversely, the estimated fraction of the total variance of the

measured P-wave duration explained by the P-wave terminal force GRS is 0.5%, for both r? thresholds.
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SUPPLEMENTAL DISCUSSION

The sodium channel (SCN5A/SCN10A), caveolin (CAV1/CAV2), and TBX5 loci broadly contribute to
atrial conduction.

A limited number of genetic loci have been associated with several atrial electrocardiographic traits,
suggesting that they are important contributors in the propagation of atrial electrical activity from the

sinoatrial node through the atrioventricular node.

The genetic region that stands out as most robustly associated with the overall conduction properties
of the atria and the AV-node in previous GWAS is clearly the SCN5A/SCN10A region. These well-
characterized genes encode the sodium channels Nay1.5 and Nay1.8, crucial for depolarization of
cardiomyocytes and the initialization of the action potential itself. These genes have been associated

t> 12 and both were associated with P-

with the PR interval,>!! P-wave duration,> %12 and P-wave segmen
wave duration in the present study. Moreover, the SCN5A locus has been associated with QRS

duration®® and Brugada syndrome,* underscoring the relevance of this region to overall cardiac

conduction.

Similarly, the TBX3/5 and CAV1/CAV2 loci have been associated with PR-interval, PR-segment,®% 1112,
AF, 18 and in the present study with P-wave duration. Both loci display convincing eQTLs in left atrial
tissue in this study. CAV1/CAV2 also has been related to AV-nodal automaticity and QRS duration.” 1> 1°
The genes NKX2-5 and SOX5, which both encode transcription factors important in the embryonic

development of the atria, have been associated with both PR-interval® and heart rate.?% 2!

Genetic loci unique to P-wave duration
The 5p12 locus is adjacent to HCN1, which encodes the hyperpolarization activated cyclic nucleotide-

gated ion channel 1, a channel contributing to the pacemaker current in cardiac cells and neurons.?? The
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most abundant HCN channel in the human sinoatrial node (SAN) is HCN4; however, expression of both
HCN1 and HCN4 has been shown in rabbit SAN and Purkinje fibers?® and HCN1 can co-assemble with
other HCN channel isoforms.?* HCN1 deficient mice develop severe sinoatrial deficiency, including

bradycardia, sinus dysrhythmia, sinus pauses, and other properties of sick sinus syndrome.?

The most significant variant on chromosome 2p21 (rs11689011) was intronic to EPAS1, which
encodes a hypoxia-inducible transcription factor expressed mainly in vascular endothelial cells,?® but
also in the carotid body and in catecholamine producing organs in mice.?” EPAS1 deficient mice display
reduced levels of catecholamines and pronounced bradycardia, before they die mid-gestation, without
morphological changes in the circulatory system.?” Overexpression of the EPAS1 gene leads to increased
expression of adrenomedullin, implicating EPAS1 in the adaptation of cardiac myocytes during heart
failure.?® Two variants in strong LD with rs11689011 (rs7579899, CEU r?=1 and rs11894252, CEU r?=0.96)
were reported in a previous GWAS to be associated with renal cell carcinoma.?® 3 A third proxy,
rs1867785 (CEU r?=0.96), has been associated with retinopathy in premature neonates and patent
ductus arteriosus.3" 32 However, the specific mechanism by which genetic variants at the EPAS1 locus

alters P-wave duration remains unclear.

The gene SSBP3, harboring the most significant variant at 1p32, has not previously been described in
relation to any cardiac phenotype. However, AF-associated variants intronic to this gene were the
strongest eQTLs identified in left atrial samples in this study. SSBP3 encodes the single stranded DNA
binding protein 3, which is expressed in heart tissue and has been suggested to be an important

regulatory component of developmental programs in the cell.®

The locus at 4926 surrounds CAMK2D, which encodes the Ca%*/Calmodulin-Dependent Protein Kinase
Type Il Delta. This serine/threonine protein kinase is activated at increased Ca®* levels and is involved in

the regulation of calcium homeostasis and the excitation-contraction coupling in cardiomyocytes.
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CAMK2D has a range of cardiac downstream effects, such as regulation of sarcoplasmic reticulum Ca?*-
release through the ryanodine receptor®* and Ca%*-uptake through phospholamban inhibition of
SERCA,* regulation of voltage-gated L-type Ca?* channels,*® 37 and regulation of Nav1.5%* and Kv4.3,%
which may lead to arrhythmogenesis. All of these functions may be involved in atrial conduction and

modify P-wave duration.

The CANDZ2 genetic locus was associated with P wave duration in combined meta-analysis of
European and African-American ancestries. CAND2 was previously associated with AF by Sinner et al.*®
The most significant AF variant (rs4642101) is in moderate LD with the most significant variant in our
study (rs1467026, CEU r?=0.7), suggesting that the variants represent the same locus. Rs1467026 is a
significant eQTL for CAND2 (p=7.5x10"?7), KRT18P17 (p=9.2x10'!), and RP11-767C1.2 (p=1.2x107)
expression in skeletal muscle based on GTEx data. Sinner and colleagues showed that rs4642101
increased the expression of CANDZ2 in left atrial tissue samples and that knockdown in zebrafish led to
prolongation of the atrial action potential. Taken together, the association with both P-wave duration
and AF, and the functional evidence provided by Sinner et al., implicate CANDZ2 in atrial conduction and

arrhythmogenesis, although further work is needed to clarify the underlying mechanism.

Genetic loci unique to P-wave terminal force

The most significant variant at 1p13 is intronic to KCND3, which encodes K,4.3, the pore-forming subunit
of the transient outward K* current, /.. The I, current is instrumental in phase 1 of cardiac
repolarization and affects calcium handling. Another variant in the region surrounding KCND3 has
previously been associated with P-wave duration, but does not seem to represent the same signal (CEU
r?=0.2).12 Gain-of-function mutations in KCND3 have been shown to be associated with early-onset AF,%
shortening of action potential duration, and Brugada syndrome.*! Although further studies are needed
to elucidate the mechanism underlying the association between the KCND3 locus and increased P-wave
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terminal force, we speculate that the P-wave terminal force could be affected by down-regulation of

Kv4.3 that leads to a prolongation of the APD, with a resulting delayed atrial repolarization.

On chromosome 1525, the most significant variant (rs201517563) was located intronic to ALPK3,
which encodes the protein kinase alpha-kinase 3, abundantly expressed in cardiac tissue and active in
cardiomyocyte differentiation. Interestingly, among the many transcription factors that bind to the
promoter region of this gene are NKX2-5 and MEIS1, both of which were previously associated with PR-
interval.® The gene Neuromedin B (NMB), for which there were convincing eQTL associations at the
15925 locus, has previously been associated with ECG defined left ventricular hypertrophy (rs2292462)*
and the same variant was associated with left ventricular hypertrophy in type 2 diabetics.** NMB has

also been associated with obesity in children.*

In African Americans only, the variant rs10832139 was identified 44 kb upstream of SPON1 on
chromosome 11. SPON1 encodes Spondin 1 Extracellular Matrix Protein, which was first identified as a
promoter of axon growth in the spinal cord and the peripheral nervous system.* Later, SPON1 was
shown to be a strong growth promoting factor for vascular smooth muscle cells*® and it has been
suggested as a candidate hypertension gene.*’ Recently, an intronic variant (rs2618516) in SPON1 was
associated with brain connectivity in a GWAS by Jahanshad and colleagues, and older individuals with
this variant displayed milder dementia symptoms.*® However, there was no LD between the two variants

(CEU r?=0.01, YRI r?=0.02), and the biologic link between SPON1 and P-wave terminal force is unclear.

The two final loci associated with P-wave terminal force, C6orf195 and PPP5D1, have an unclear
biologic link with the electrocardiographic phenotype and have not been reported in any previous

GWAS.
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Table S1. Overview of participating studies and PWI measurements

P-wave P-wave terminal
Study Reference ECG analysis software duration force
Atherosclerosis Risk in Communities (ARIC) 49,50 GE 12-SL software y «
Study
Cardiovascular Health Study (CHS) 51 GE 12-SL software X X
Erasmus Rucphen Family (ERF) Study 52 Modular ECG Analysis System X X
Framingham Heart Study (FHS) 23,54 GE 12-SL software X X
Cooperative Health Research in the Augsburg 55
Region (KORA) The Hannover ECG system X NA
GE Healthcare software CASE
Health I (GHS | 56 ! NA

Gutenberg Health Study | (GHS 1) CardioSoft, version 6 X
Multi-Ethnic Study of Atherosclerosis (MESA) 57 GE 12-SL software X X
Rotterdam Studies I, II, 11l 58 Modular ECG Analysis System X X
Study of Health in Pomerania (SHIP) 59 Modular ECG Analysis System X X
Women’s Health Initiative clinical trials (WHI 0
CT):

Genome-wide Association Research

Network (GARNET) GE 12-SL software X X

Modification of Particulate Matter-

Mediated Arrhythmogenesis in GE 12-SL software X X

Populations (MOPMAP)

SNP Health Association Resource Project GE 12-SL software y «

(SHARe)

GE, General Electric; NA, not available
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Table S2. Summary of participant characteristics by cohort.

Participants Males HTN Boij mass RR PR Maximum P- P-wa.\ve
Cohort Race Age index interval, interval, wave terminal
n % % kg/m? ms ms duration, ms forcs{l:ns X
EA 8151 46 5316 19 2745 9154133 160+23 10612 149041643
ARIC AA 2799 37 5316 50 2916 9201147 171+27 112+12 200911974
CHS EA 2415 36 7245 46 2614 9481145 166127 110+13 2459+1917
ERF EA 1651 42 47+14 44 2714 9724157 152+22 111+12 146811545
FHS EA 5878 45 47+14 20 2745 971+157 158+23 10512 156141600
KORA EA 1519 49 5219 33 2714 9351144 162+24 109+12 NA
EA 1907 50 6110 24 2745 974+148 163+25 10413 192841677
MESA AA 964 50 60+10 37 3016 9774150 169+27 10712 2463+1961
GHS | EA 2204 51 54+11 41 2714 1001+159 160122 109+12 NA
RSI EA 4552 40 6819 49 2614 8651139 167+25 119+13 22174208
RS I EA 1453 45 6418 56 2714 8711131 165+23 11713 2175+1809
RS 1l EA 2532 42 5616 42 2745 8761131 162+21 115+12 117041415
SHIP EA 2680 49 46116 10 2745 8531148 152420 110+11 78841237
WHI CT GARNET EA 1617 0 6517 31 2816 920+132 159+24 10613 219611834
WHI CT MOPMAP EA 1119 0 6217 32 2816 9224132 158+23 10613 223611900
WHI CT SHARe AA 3015 0 60+7 50 3146 913+143 166125 11012 267112156

Summary statistics are reported as mean + standard deviation unless otherwise noted. ?P-wave terminal force equals the duration (ms) x the negative voltage
deflection (V) of the terminal part of the P-wave in lead V1. EA, European and European-American ancestry; AA, African and African-American ancestry; ARIC,
Atherosclerosis Risk in Communities Study; CHS, Cardiovascular Health Study; ERF, Erasmus Rucphen Family Study; FHS, Framingham Heart Study; MESA, Multi-
Ethnic Study of Atherosclerosis; RS, Rotterdam Study; SHIP, Study of Health in Pomerania; WHI CT, Women’s Health Initiative Clinical Trials cohort; GARNET,
Genomics and Randomized Trials Network; MOPMAP, Modification of PM-Mediated Arrhythmogenesis in Populations; SHARe, SNP Health Association

Resource.
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Table S3. Details regarding study samples, genotyping, and data cleaning.

GHS | ARIC CHS ERF FHS KORA MESA RS-I, 11, 1 SHIP WHI CT
Kooperative Gev:i?ize_ Modification
Ath | E f PM- NP Health
t.erc.>sc .eros . rasmus . Gesungheitsfo | Multi-Ethnic The Study of | Association 0 . S .ea.t
Gutenberg is Risk in Cardiovascula| Rucphen | Framingham ) Rotterdam : Mediated Association
Study e . rschung in der Study of Health in Research
Health Study | Communities | r Health Study Family Heart Study > . Study . Arrhythmoge | Resource
Region Atherosclerosis Pomerania Network L R
Study Study nesis in Project
Augsburg Effects of .
Populations
Treatment
Affymetrix .
Illumina 370 Illumina Gene Chip® llumina llumina g‘:t]y:ﬁ:::
Affymetrix Affymetrix CNV_ * 318K and 500K Array . . Infinium Affymetrix | HumanOmni Axiom Affymetrix
Array Illumina 370K, Set & 50K | Affymetrix 6.0 | Affymetrix 6.0
6.0 6.0 . HumanHap55 6.0 1-Quad v1-0 Genome- 6.0
ITMAT-Broad- | Affymetrix | Human Gene 0 - chio v3.0 B Wide Human
CARe (IBC) 250K Focused pvs.
CEU 1
Panel
. . Affymetrix
CaIIln.g Birdseed Birdseed BeadStudio | BeadStudio BRLMM Birdseed v2 Birdseed v2 BeadStudio | Birdseed v2 Beadstudio Power Tools Birdseed
Algorithm v3.1.3.0
v1.14.3
P NP Call
r:;s ca <95% <95% <97% <98% <97% <93% <95% <98% ND 98% 95% 95%
HWE p-value <10* <10°® <10°® <10°® <10°® NA NA <10°® ND <10* <10°® <10°®
Genotypes
were set to
Mendelian missing for
NA NA <2 . N>100 NA NA NA NA NA NA NA
errors problematic
family sub-
units.
Subject
hetero-
Excess zygosity >5
heterozygosit NA NA ND ND ‘;‘% aw‘;y ND >0.53 >0.336; n=21 ND NA NA NA
y from the
mean
EA: <0.5% Excluded
MAF <1% SNPs with 0 <1% <1% NA NA <1% ND None <0.5% <1%
AA:<1%  |heterozygotes
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Used linear

. . . . Eigenstrat,
Selection AnalYSIS mixed All PCs . AnalYSIS . OUtI.IETrS as MDS with
. committee effects . No population committee identified by >6 SD from
criteria for - - unassociated . . HapMap - -
recommenda models to substructure |recommendatio| IBS clustering top 10 PCs
PCs . p>0.05 reference
tions account for ns were excluded .
population
relatedness
Number of EA: 4 EA: O
PCs in the 0 0 0 0 0 4 0 3 3 10
model AA: 10 AA: 10
Number of EA: 711,589 EA: 854,755
SNPs used for 662,405 678,524 EA: 445,149 651,596 512,849 869,224 - 535,600 829,370
imputation AA: 806,416 AA: 861,124
Pre-phasing
IMPUTE
with Shapelt MACH1 v.0 LSJ 0
Imputation IMPUTE v.1.r532%2 MACH1, v.1.0.151% MACH1 MACH1 IMPUTE MACH1 a.a‘in.st BEAGLE MACH1, MACH
software v.2.1.0% Imputation | minimac®®® | 77, v.1.0.151%% % | v.1.0.15%% v.2.1.0% v.1.0.151%% ¢ HagMa I v.3.3.1% minimac®* | v.1.0.16% %
with IMPUTE piap
v.2.1.06! CEU v.22
1000 1000 Build 36 /
Genomes Genomes A HaoMan I+l
Imputation Phase | Phase | ’ C:E Zaf *
) . r
Backbone/ | Build3s | '"ieerated | integrated | g ng00 | g3z Build 36 _ Build 36 Build 36 Build 37 Build 36 Build 36
NCBI Build variant set variant set AA: HapMap
release (v.3) | release (v.3) 1+11
in NCBI build | in NCBI build CEU+YRI+CHB+J
37 (hg19) 37 (hg19) PTr22
SNP position Hapmap r22 | Hapmap 2
from NCBI Build 36 Build 37 Build 37 Build 36 Build 37 Build 36 Build 36 Build 36 Build 36 1000G EUR pmap pmap
build CEU YRI/CEU 1:1
Mach2QTL, &
GWAS GenABEL, | R packages P ’
Statistical SNPTEST®® | FaST-LMM® RS ProbABEL, | kinship, GEE, | ProbABEL, R | T Packae GenABEL + | QUICKTEST RS RS RS
Analysis RS coxph 3% GEE PLINK,® R, v.0.95
GRIMP”®
RS-I
Total number EA: 9,337,140 2,402,234 EA: 2,592,133 | 8,818,618, RS-
8,522,176 118,798,976,
of SNPs used EA: 9,403,802 2,320,037 | (MAF>0.01 RS- 111
in the 2,564,344 (no MAF T . o 2,543,887 2,748,910 8,864,574 2,543,830 2,203,608
analysis filtering) (0.005 < imputation 8,846,227
(MAF>0.005) AA: MAF< | quality>0.3) AA: 2,975,847 | (MAF>0.01,
: 15,879,929 0.995) imputation
quality >0.3)
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Inflation
factor (A)

NA

EA:
Pmax: 1.02
PTF: 1.01

AA:
Pmax: 1.01
PTF: 0.98

Pmax: 1.02
PTF: 1.01

Pmax:1.00
PTF: 1.03

Pmax: 1.01
PTF:1.02

Pmax: 1.01

EA:
Pmax: 1.029
PTF: 1.036

AA:
Pmax: 1.029
PTF: 1.025

Pmax:
RS1:1.025
RS2:1.013
RS3:1.013

PTF:
RS1:0.992
RS2:0.958
RS3:1.010

Pmax: 0.98
PTF: 1.01

PTF: 1.01

PTF: 1.00

PTF: 1.02

NA, not applicable; ND, not determined; PC, principal component; Pmax, maximum P-wave duration; PTF, P-wave terminal force
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Table S4. Summary of genome-wide significant genetic associations for P-wave maximum duration in participants of European and African

ancestry.
Location . Variance
SNP Chr relative to Clgzsne:t Minor/major allele MQF' tl:;:z;t ;”(:Le) P value expli\ined,
gene %
European ancestry (n=37,678)
rs562408 1p32 Intronic SSBP3 A/G 44 -0.53 (0.09) 1.97x10 0.09
rs11689011 2p21 Intronic EPAS1 T/C 42 0.60 (0.09) 1.18x101° 0.12
rs41312411 3p22 Intronic SCN5A G/C 15 1.91 (0.15) 9.63x10™° 0.43
rs6790396 3p22 Intronic SCN10A C/G 41 1.22 (0.09) 2.17x10% 0.49
rs2285703 4926 Intronic CAMK2D G/A 26 0.56 (0.10) 3.77x108 0.08
rs4276421 5p12 Intergenic HCN1 C/T 42 0.61 (0.09) 1.47x1011 0.12
rs13242816 7931 Intronic CAV1/CAV2 T/C 8 1.21(0.19) 8.24x101! 0.11
rs148020424 12924 Intronic TBX5 G/GGAAAGAAAGAAAAGAGAAA 27 0.85 (0.12) 5.72x10713 0.13
rs452036 14q11 Intronic MYH6 A/G 36 0.59 (0.10) 6.49x101° 0.09
African ancestry (n=6778)
rs3922844 3p21 Intronic SCN5A T/C a7 -1.66 (0.22) 3.26x10°% 0.83
rs1895582 12q24 Intronic TBX5 G/A 28 1.33(0.23) 1.41x10% 0.49

Adjusted for age and sex. Chr, chromosome; MAF, Minor allele frequency; SE, standard error.
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Table S5. Summary of genetic associations for P-wave maximum duration in combined ancestry analysis.

SNP Chr Location Closest zene Minor / major  MAF, Minor allele effect, P value Variance
relative to gene & allele % B (SE) explained, %
(562408 1p32 Intronic SSBP3 A/G 43% -0.52 (0.09) 2.78x10° 0.08
rs11894252 2p21 Intronic EPAS1 T/C 43% 0.52 (0.09) 1.43x10° 0.08
rs1467026 3p25 Intergenic CAND2 G/A 39% 0.51 (0.09) 1.61x10® 0.07
rs41312411 3p22 Intronic SCN5A G/C 15% 1.90 (0.14) 1.85x104° 0.41
rs4276421 5p12 Intergenic HCN1 c/T 44% 0.58 (0.08) 3.52x10™12 0.12
rs3801995 7931 Intronic CAV1/CAV2 T/C 26% 0.60 (0.09) 1.04x101° 0.10
rs7312625 12924 Intronic TBX5 G/A 27% 0.80 (0.09) 2.41x10%8 0.18
rs452036 14911 Intronic MYH6 A/G 38% 0.64 (0.09) 3.99x10™3 0.11

Adjusted for age and sex. Chr, chromosome; MAF, minor allele frequency; SD, standard error.
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Table S6. Comparison of all genome-wide significant loci across P-wave duration and P-wave terminal
force analyses.

Location P-wave duration analysis P-wave terminal force analysis
SNP Chr relative to Closest Minor allele Minor allele
gene gene effect, B (SE) P value effect, B (SE) P value
Significant in P-wave duration analysis
European ancestry (n=37,678)
rs562408 1p32 Intronic SSBP3 -0.53 (0.09) 1.97x108 -7.29 (13.13) 0.58
rs11689011 2p21 Intronic EPAS1 0.60 (0.09) 1.18x101° -7.25(13.11) 0.58
rs41312411 3p22 Intronic SCN5A 1.91 (0.15) 9.63x104° -0.68 (20.36) 0.97
rs6790396 3p22 Intronic SCN10A 1.22 (0.09) 2.17x10%° NA NA
rs2285703 4926 Intronic  CAMK2D 0.56 (0.10) 3.77x10% 19.21 (14.55) 0.19
rs4276421 5p12 Intergenic  HCN1 0.61 (0.09) 1.47x101! -2.19 (12.65) 0.86
rs13242816 7931 Intronic CAV1 1.21 (0.19) 8.24x101 9.71 (26.00) 0.71
rs148020424 12924  Intronic TBX5 0.85 (0.12) 5.72x10%3 NA NA
rs452036 14q11 Intronic MYH6 0.59 (0.10) 6.49x10°1° 112.32(13.37) 4.44x10Y
African ancestry (n=6778)
rs3922844 3p21 Intronic SCN5A -1.66 (0.22) 3.26x10% 12.90 (37.29) 0.73
rs1895582 12924 Intronic TBX5 1.33 (0.23) 1.41x108 -21.67 (39.67) 0.58
Significant in P-wave terminal force analysis
European ancestry (n=33,955)
rs12090194 1p13 Intronic KCND3 -0.28 (0.10) 0.004 119 (13) 5.56x10%°
rs11242779 6p25 Intergenic C6orf195 0.37 (0.09) 6.37x10° -71(13) 2.10x10®
rs445754 14911 Intronic MYH6 0.54 (0.11) 5.11x107 131 (15) 3.22x101®
rs201517563 15925 Intergenic  ALPK3 NA NA -86 (15) 3.95x10°
rs4435363 19913  Intronic PPP5D1 0.24 (0.11) 0.039 -93 (16) 3.84x10°
African ancestry (n=6778)
rs10832139 11pl1l5 Intergenic  SPON1 -0.50 (0.22) 0.025 214 (38) 2.44x10°8

Variants that reached genome-wide significance in both P-wave duration and P-wave terminal force analyses are
indicated by bold font. Chr, chromosome; SE, standard error; NA, not available.
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Table S7. Shared associations between the present P-wave duration GWAS and previous PWI GWAS.

rsID present Chr Closest Ancestry rsID previous LD, r2 CEU/YRI PR-interval P-wa.v € PR-segment Heart rate
study gene study duration
rs41312411 | 3p22 | SCNSA | EUR | rs11708996 | 0.94/NA EUR®
rs6599222 0.55/NA AA” EUR®
rs7638909 0.16/NA Kosrae®* Kosrae®* Kosrae>*
rs3922844 | 3p21 | SCN5A | AA rs3922844 1/1 AA?72 EUR™
rs11708996 |  0.07/NA EUR®
rs6599222 | 0.001/0.24 AA” EUR®
rs7638909 0.05/0.006 Kosrae>* Kosrae>* Kosrae>*
rs6790396 | 3p21 |SCNIOA| EUR rs6800541 1/NA EUR®, AS™?
rs6795970 | 0.97/0.07 EUR’, AS"! AS™
rs6801957 0.97/1 AR, AS™ EUR™ EUR™
rs6798015 | 0.87/0.51 AA”
rs13242816 | 7931 | CAVI | EUR rs3807989 0.11/NA EUR®7,AS® 1! EUR™
rs11773845 |  0.11/NA AA°
rs3801995 | 7g31 | CAVI | EUR+AA | rs3807989 | 0.56/0.17 | EURS7AS®™ EUR®
rs11773845 | 0.56/0.17 AA°
rs148020424 | 12q24 | TBX5 | EUR rs7312625 NA/NA AA”
rs3825214 NA/NA EUR’
rs1895585 NA/NA AA°
rs1895582 | 12q24 | TBX5 | AA rs7312625 | 0.80/0.81 AA”
rs3825214 | 0.65/0.33 EUR’
rs1895585 NA/NA AA°
rs7312625 | 12q24 | TBX5 | EUR+AA | rs7312625 1/1 AA”
rs3825214 | 0.76/0.23 EUR’
rs1895585 | 0.87/0.78 AA°
rs452036 | 14q11 | MYH6 | EUR rs452036 1/1 EUR®, AA7®
rs365990 0.96/1 EUR’ 2021, AA73
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ID t cl t ID i . P-
rsib presen Chr 0ses Ancestry rsib previous LD, r2 CEU/YRI PR-interval wa_ve PR-segment Heart rate
study gene study duration
rs223116** 0.16/0.002 EUR%

Overview of shared genetic loci between present and previous GWAS. The variants identified in previous study are reported with rsID, LD
information, previously associated electrocardiographic phenotype, and discovery ancestry group. Chr, chromosome; LD, Linkage disequilibrium;
CEU, Utah residents with Northern and Western European ancestry from the 1000 Genomes; YRI, Yoruba in Ibadan, Nigeria, African ancestry
group from the 1000 Genomes; NA, not available in SNAP LD search; EUR, European ancestry; AA, African American ancestry; AS, Asian ancestry.
*Founder population in Micronesia, **Intronic to MYH?7.
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Table S8. Significant eQTLs in left atrial tissue samples for genetic loci associated with P-wave duration.

Index SNP  Closest gene/s* Chr

Position rsiD

Probe ID

Fold

TSS

Gene MA change** distance

r’t  FDR_gwi FDR_durtt

Variants identified in European ethnicity GWAS analysis - eQTLs in European American atrial samples

rs562408

rs562408

rs41312411
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816
rs13242816

SSBP3
SSBP3

SCN5A
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1

1

1
3
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7

54742618 rs562408

54742471 rs590041

38624253 rs3922844
116198621 rs1997571
116198828 rs1997572
116186241 rs3807989
116191301 rs11773845
116194228 rs7804372
116197579 rs3807994
116198466 rs10953822
116198090 rs6466588
116197245 rs3807992
116196763 rs3807990
116193705 rs3757732
116193729 rs3757733
116190597 rs3801995
116190693 rs3815412
116194905 rs729949
116194384 rs7789117
116191812 rs9885998
116191697 rs9886216
116198621 rs1997571
116198828 rs1997572
116191301 rs11773845
116186241 rs3807989
116198621 rs1997571
116198828 rs1997572

ILMN_1814165 SSBP3
ILMN_1814165 SSBP3
ILMN_1694956 SCN5A

ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_1687583
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_1735220
ILMN_1735220
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CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV2
CAV2

A

>oOoOro0oro00>» 420442242 40>»2>02>»>0 14

1.112
1.111
1.080
0.819
0.819
0.819
0.819
0.859
0.860
0.860
0.860
0.860
0.860
0.860
0.860
0.860
0.860
0.860
0.860
0.860
0.860
1.043
1.043
1.043
1.043
1.051
1.051

136.534
136.681
66.911
33.782
33.989
21.402
26.462
29.389
32.74
33.627
33.251
32.406
31.924
28.866
28.89
25.758
25.854
30.066
29.545
26.973
26.858
33.782
33.989
26.462
21.402
271.187
271.394

0.062 0.007
0.061 0.008
0.040 0.075

0.184 7.90x10°
0.184 7.90x10°
0.184 8.07x10°
0.184 8.16x10°

0.082 0.001
0.080 0.001
0.080 0.001
0.080 0.001
0.080 0.001
0.080 0.001
0.079 0.001
0.079 0.001
0.079 0.001
0.079 0.001
0.079 0.001
0.079 0.001
0.079 0.001
0.079 0.001
0.071 0.002
0.071 0.002
0.071 0.003
0.070 0.003
0.053 0.019
0.053 0.019

0.003
0.003
0.034
5.40x10°
5.40x10°
5.40x10°
5.40x10°
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.0005
0.001
0.001
0.001
0.001
0.009
0.009



rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs13242816 CAV1
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 LOC255480;TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5
rs148020424 TBX5

rs148020424 LOC255480;TBX5

rs148020424

TBX5

NN NN NN N N NN N NN NN

PR R R R R R R R R R R R R R R
N NN NNMNNMNNNNNNNNNNN

116191301 rs11773845
116186241 rs3807989
116197579 rs3807994
116196763 rs3807990
116198466 rs10953822
116198090 rs6466588
116197245 rs3807992
116193705 rs3757732
116193729 rs3757733
116190597 rs3801995
116190693 rs3815412
116194905 rs729949
116194384 rs7789117
116191812 rs9885998
116191697 rs9886216
116194228 rs7804372
114802361 rs1946295
114804898 rs3825215
114802138 rs1895585
114800813 rs4767237
114807035 rs1895582
114806885 rs1895583
114789226 rs2384407
114799974 rs7312625
114805057 rs148020424
114802760 rs1946293
114801772 rs7135659
114793240 rs883079
114797306 rs7955405
114797093 rs10507248
114789350 rs2384408
114766735 rs10850315

ILMN_1735220
ILMN_1735220
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_2149226
ILMN_1735220
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
ILMN_1742362
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CAV2
CAV2
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV1
CAV2
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5
TBX5

OrToOrT000000>TO0Z2ZTO>2>TONO0>A1>0-A12>2>2>-40-44>>O0

1.051
1.051
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.037
1.051
0.891
0.891
0.891
0.891
0.890
0.891
0.899
0.898
0.898
0.902
0.902
0.905
0.908
0.908
0.899
0.916

263.867
258.807
32.74
31.924
33.627
33.251
32.406
28.866
28.89
25.758
25.854
30.066
29.545
26.973
26.858
266.794
43.886
41.349
44.109
45.434
39.212
39.362
57.021
46.273
41.19
43.487
44.475
53.007
48.941
49.154
56.897
79.512

0.052
0.052
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.040
0.039
0.074
0.074
0.073
0.073
0.072
0.070
0.067
0.066
0.064
0.060
0.060
0.060
0.054
0.054
0.048
0.044

0.020
0.021
0.074
0.074
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.075
0.082
0.002
0.002
0.002
0.002
0.002
0.003
0.004
0.004
0.006
0.008
0.008
0.008
0.017
0.017
0.032
0.048

0.010
0.010
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.034
0.037
0.001
0.001
0.001
0.001
0.001
0.001
0.002
0.002
0.003
0.004
0.004
0.004
0.008
0.008
0.016
0.027



rs148020424 TBX5 12 114807655 rs11378406 |(ILMN_1742362 TBX5 A 0.912 38.592 0.043 0.055 0.032
rs148020424 LOC255480,TBX5 12 114789810 rs2891503 |ILMN_1742362 TBX5 A 0.913 56.437 0.042 0.062 0.034
rs148020424 LOC255480,TBX5 12 114790884 rs1895597 |ILMN_1742362 TBX5 T 0.912 55.363 0.042 0.063 0.034
rs148020424 LOC255480,TBX5 12 114790500 rs7977083 |ILMN_1742362 TBX5 A 0.916 55.747 0.041 0.065 0.034
rs148020424 TBX5 12 114794057 rs2113433 |ILMIN_1742362 TBX5 T 0.909 52.19 0.041 0.066 0.034
rs148020424 LOC255480,TBX5 12 114791455 rs7316919 |ILMN_1742362 TBX5 A 0.917 54.792 0.041 0.068 0.034
rs148020424 LOC255480,TBX5 12 114789046 rs7308120 |ILMN_1742362 TBX5 T 0.907 57.201 0.040 0.072 0.034
Variants identified in combined ethnicity GWAS analysis - eQTLs in European American atrial samples
rs562408 SSBP3 1 54742618 rs562408 ILMN_1814165 SSBP3 A 1.112  136.534 0.062 0.007 0.003
rs562408 SSBP3 1 54741767 rs603901 ILMN_1814165 SSBP3 C 1.110 137.385 0.060 0.008 0.003
rs562408 SSBP3 1 54736800 rs9662034 |ILMN_1814165 SSBP3 C 1.106  142.352 0.056 0.014 0.006
rs562408 SSBP3 1 54735974 rs1537430 |ILMN_1814165 SSBP3 C 1.106  143.178 0.055 0.015 0.006
rs562408 SSBP3 1 54732940 rs679200 ILMN_1814165 SSBP3 A 1.099 146.212 0.050 0.025 0.010
rs41312411 SCN5A 3 38624253 rs3922844 |ILMN_1694956 SCN5A T 1.080 66.911 0.040 0.075 0.030
rs3801995 CAV2 7 116145957 rs4730743 |ILMN_1687583 CAV1 A 0.805 -18.882 0.237 2.93x10* 2.25x10*
rs3801995 CAV2 7 116145849 rs10271007 |ILMN_1687583 CAV1 A 0.805 -18.99 0.237 2.95x10™3  2.25x10™3
rs3801995 CAV1 7 116198621 rs1997571 |ILMN_1687583 CAV1 G 0.819 33.782 0.184 7.90x10° 4.20x10°
rs3801995 CAV1 7 116198828 rs1997572 |ILMN_1687583 CAV1 A 0.819 33.989 0.184 7.90x10° 4.20x10°
rs3801995 CAV1 7 116186241 rs3807989 |ILMN_1687583 CAV1 A 0.819 21.402 0.184 8.07x10° 4.20x10%°
rs3801995 CAV1;CAV2 7 116118330rs926197 ILMN_1687583 CAV1 C 0.827 -46.509 0.182 1.00x10° 4.44x107°
rs3801995 CAV2 7 116145849 rs10271007 |ILMN_1735220 CAV2 A 1.088 218.415 0.161 2.09x10® 8.56x10°
rs3801995 CAV2 7 116145957 rs4730743 |ILMN_1735220 CAV2 A 1.088 218.523 0.161 2.10x10® 8.56x107
rs3801995 CAV1;CAV2 7 116118330rs926197 ILMN_1735220 CAV2 C 1.079 190.896 0.133 9.91x107  4.89x10~
rs3801995 CAV1 7 116194228 rs7804372 |ILMN_1687583 CAV1 A 0.859 29.389 0.082 0.001 0.0004
rs3801995 CAV1 7 116197579 rs3807994 |ILMN_1687583 CAV1 A 0.860 32.74 0.080 0.001 0.0004
rs3801995 CAV1 7 116198466 rs10953822 |ILMN_1687583 CAV1i C 0.860 33.627 0.080 0.001 0.0004
rs3801995 CAV1 7 116197245 rs3807992 |ILMN_1687583 CAV1 A 0.860 32.406 0.080 0.001 0.0004
rs3801995 CAV1 7 116196763 rs3807990 |ILMN_1687583 CAV1I T 0.860 31.924 0.080 0.001 0.0004
rs3801995 CAV1 7 116193705 rs3757732 |ILMN_1687583 CAV1 A 0.860 28.866 0.079 0.001 0.0004
rs3801995 CAV1 7 116193729rs3757733 |ILMN_1687583 CAV1 A 0.860 28.89 0.079 0.001 0.0004
rs3801995 CAV1 7 116190597 rs3801995 |ILMN_1687583 CAV1I T 0.860 25.758 0.079 0.001 0.0004
rs3801995 CAV1 7 116190693 rs3815412 |ILMN_1687583 CAV1 C 0.860 25.854 0.079 0.001 0.0004
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rs7312625 LOC255480;TBX5 12 114789226 rs2384407 |ILMN_1742362 TBX5 G 0.899 57.021 0.067 0.004 0.002
rs7312625 TBX5 12 114799974 rs7312625 |ILMN_1742362 TBX5 G 0.898 46.273 0.066 0.004 0.002
rs7312625 TBX5 12 114805057 rs148020424|ILMN_1742362 TBX5 G 0.898 41.19 0.064 0.006 0.002
rs7312625 TBX5 12 114802760 rs1946293 |ILMN_1742362 TBX5 G 0.902 43.487 0.060 0.008 0.003
rs7312625 TBX5 12 114801772 rs7135659 |ILMN_1742362 TBX5 G 0.902 44.475 0.060 0.008 0.003
rs7312625 TBX5 12 114793240 rs883079 ILMN_1742362 TBX5 C 0.905 53.007 0.060 0.008 0.003
rs7312625 TBX5 12 114797306 rs7955405 |ILMN_1742362 TBX5 A 0.908 48.941 0.054 0.017 0.007
rs7312625 TBX5 12 114797093 rs10507248 |ILMN_1742362 TBX5 G 0.908 49.154 0.054 0.017 0.007
rs7312625 LOC255480;TBX5 12 114789350 rs2384408 |ILMN_1742362 TBX5 A 0.899 56.897 0.048 0.032 0.014
rs7312625 TBX5 12 114766735 rs10850315 |ILMN_1742362 TBX5 G 0.916 79.512 0.044 0.048 0.023
rs7312625 TBX5 12 114807655 rs11378406 |ILMN_1742362 TBX5 A 0.912 38.592 0.043 0.055 0.027
rs7312625 LOC255480;TBX5 12 114789810 rs2891503 |ILMN_1742362 TBX5 A 0.913 56.437 0.042 0.062 0.030
rs7312625 LOC255480;TBX5 12 114790884 rs1895597 |ILMN_1742362 TBX5 T 0.912 55.363 0.042 0.063 0.030
rs7312625 LOC255480;TBX5 12 114789478 rs2384409 |ILMN_1742362 TBX5 A 0.908 56.769 0.041 0.064 0.030
rs7312625 LOC255480;TBX5 12 114790500 rs7977083 |ILMN_1742362 TBX5 A 0.916 55.747 0.041 0.065 0.030
rs7312625 TBX5 12 114794057 rs2113433 |ILMN_1742362 TBX5 T 0.909 52.19 0.041 0.066 0.030
rs7312625 LOC255480;TBX5 12 114791455 rs7316919 |ILMN_1742362 TBX5 A 0.917 54.792 0.041 0.068 0.030
rs7312625 LOC255480;TBX5 12 114789046 rs7308120 |ILMN_1742362 TBX5 T 0.907 57.201 0.040 0.072 0.030
rs7312625 TBX5 12 114792236 rs6489956 |ILMN_1742362 TBX5 T 0.912 54.011 0.039 0.085 0.035
rs7312625 TBX5 12 114814286 rs7964303 |ILMN_1742362 TBX5 T 0.919 31.961 0.037 0.102 0.044
rs7312625 LOC255480;TBX5 12 114791528 rs1895596 [ILMN_1742362 TBX5 A 0.905 54.719 0.036 0.110 0.049
rs452036 MYH6 14 23863802 rs445754 ILMN_1702105 EFS T 1.091 -28.841 0.036 0.113 0.050
Variants identified in African American ethnicity GWAS analysis - eQTLs in European American atrial samples
rs3922844 SCN5A 3 38624253 rs3922844  ILMN_1694956 SCN5A T 1.080 66.911 0.040 0.075 0.003
rs1895582 TBX5 12 114807035 rs1895582 ILMN_1742362 TBX5 G 0.890 39.212 0.072 0.002 0.0001
rs1895582 TBX5 12 114799974 rs7312625 ILMN_1742362 TBX5 G 0.898 46.273 0.066 0.004 0.0001
rs1895582 TBX5 12 114807035 rs1895582 ILMN_2376958 TBX5 G 0.947 39.212 0.024 0.303 0.022

Filtered at FDR_dur<0.05. Grey highlighting of rows indicates eQTLs that did not reach genome-wide FDR. There were no significant eQTLs for
variants identified in the African American ancestry analysis or the combined ancestry analysis in the African American atrial samples. TSS,

transcription start site; SNP, single nucleotide polymorphism; Chr, chromosome. MA, minor allele in the atrial tissue biobank. *Bold text
indicates variant located in gene, otherwise closest gene/s. **Fold change in expression when dosage of MA increases by 1. TExplained
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(adjusted) variation in probe ID by dosage of rsID/squared adjusted Pearson correlation. ¥Genome-wide false discovery rate. TtFalse discovery
rate specific to variant set.
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Table S9. Significant eQTLs in the GTEx database.

Closest

SNP Chr gene Ancestry eQTL gene Smallest eQTL P-value Tissue
P-wave duration

rs562408 1p32 SSBP3 EUR SSBP3 3.47x10 %2 Atrial appendage

EUR S5BP3 3.21x10° Left ventricle
EUR MRPL37 2.9x10%° Atrial appendage

rs1895582 12924 TBX5 AA TBX5 3.84x10°® Left ventricle
rs1467026 3p25 CAND2 EA+AA CAND2 7.5x10%’ Skeletal muscle
KRT18P17 9.19x10! Skeletal muscle
RP11-767C1.2 1.2x10°° Skeletal muscle

P-wave terminal force

rs11073730 15925 ALPK3 EUR RP11-182J1.16 1.71x107 Atrial appendage
EUR CSPG4P11 1.79x107 Atrial appendage
EUR AC103965.1 2.82x10°® Atrial appendage

EUR AC103965.1 9.04x10°% Left ventricle

EUR RP11-182J1.16 9.83x10° Left ventricle

EUR WDR73 1.12x107 Left ventricle
EUR AC103965.1 9.34x10"° Skeletal muscle
EUR ALPK3 1.12x10Y Skeletal muscle
EUR CSPG4P11 1.08x10° Skeletal muscle
EUR WDR73 1.37x10°® Skeletal muscle

Chr, chromosome; EUR, European ancestry; AA, African American ancestry
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Table $10. Summary of genome-wide significant genetic associations for P-wave terminal force in participants of European and African

ancestry.
Loca_tion Minor/major Minor allele Variance
SNP Chr rel::,‘:: to Closest gene allele MAF, % effect, B (SE) P value explained, %
European ancestry (n=33,955)
rs12090194 1p13 Intronic KCND3 T/C 32 119 (13) 5.56x107"° 0.25
rs11242779 6p25 Intergenic Cé6orf195 C/T 49 -71(13) 2.10x10® 0.09
rs445754 14911 Intronic MYH6 T/G 23 131 (15) 3.22x10%8 0.22
rs201517563 15925 Intronic ALPK3/NMB TA/T 47 -86 (15) 3.95x10° 0.10
rs4435363 19913 Intronic PPP5D1 G/A 20 -93 (16) 3.84x10° 0.10
African ancestry (n=6778)
rs10832139 11p15 Intergenic SPON1 G/A 41 214 (38) 2.44x10® 0.47

Adjusted for age and sex. Chr, chromosome; MAF, Minor allele frequency; SE, standard error.
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Table S11. Summary of genetic associations for P-wave terminal force in combined ancestry analysis

SNP Chr rtl;?acta;:f:o Closest Minor / MAE. % Minor allele P value Variance
gene gene major allele ! effect, B (SE) explained, %
rs4839185 1p13 Intronic KCND3 c/T 31% 117 (13) 3.14x10%° 0.20
rs11099412 428 Intergenic PCDH18 A/G 11% 244 (41) 2.52x10° 0.09
rs11242779 6p25 Intergenic C6orf195 C/T 48% -72 (12) 7.90x10°° 0.09
rs445754 14q11 Intronic MYH6 T/G 24% 136 (14) 4.20x10% 0.23
rs2115630 15925 Intronic ALPK3/NMB T/C 46% 85 (14) 6.38x10%° 0.09
rs4435363 19913 Intronic PPP5D1 G/A 20% -96 (16) 1.15x107° 0.09

Adjusted for age and sex. Chr, chromosome; MAF, minor allele frequency; SD, standard error.
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Table S12. Shared associations between present and previous GWAS of P-wave terminal force.

rsiD rsiD
present Closest previous LD, r? P-wave
study Chr gene | Ancestry study CEU/YRI PR-interval duration PR-segment Heart rate
rs12090194 | 1p13 KCND3 EUR rs2798334 0.20/0.01 EUR??
rs4839185 1p13 KCND3 | EUR+AA | rs2798334 NA/NA EUR??
rs445754 14911 | MYH6 EUR rs452036 0.65/0.26 EUR* EUR%, AA™?
rs365990 0.62/0.26 EUR” 21, AA73

Overview of shared genetic loci between present and previous GWAS. The variants identified in previous studies are reported with rsID, LD
information, previously associated electrocardiographic phenotype, and ancestry group. Chr, chromosome; LD, Linkage disequilibrium; CEU,
Utah residents with Northern and Western European ancestry from the 1000 Genomes; YRI, Yoruba in Ibadan, Nigeria, African ancestry group
from the 1000 Genomes; NA, not available in SNAP LD search; EUR, European ancestry; AA, African American ancestry. *Variant from the

present study on P-wave duration.
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Table S13. Significant eQTLs in left atrial tissue samples for genetic loci associated with P-wave terminal force.

Closest Fold TSS
Index SNP  gene/s* Chr Position eQTLSNP Probe ID Gene MA change** distance r’t FDR_gwi FDR_durtt
Variants identified in European ancestry GWAS analysis - eQTLs in European American atrial samples
rs201517563 ALPK3 15 85361960 rs4633690 |ILMN_2347592 NMB T 1.122 -160.166  0.060 0.009 0.024
rs201517563 ALPK3 15 85363708 rs11854291 |ILMIN_2347592 NMB C 1.123 -161.914 0.060 0.009 0.024
rs201517563 ALPK3 15 85364516 rs2115630 |ILMN_2347592 NMB T 1.123 -162.722  0.060 0.009 0.024
rs201517563 ALPK3 15 85355841 rs35828350 (ILMN_2347592 NMB A 0.874 -154.047 0.058 0.011 0.024
rs201517563 ZNF592 15 85276935 rs58581703 |ILMIN_2347592 NMB T 1.117 -75.141  0.053 0.019 0.031
rs201517563 ZNF592 15 85318065 rs11633377 |ILMN_2347592 NMB G 0.888 -116.271 0.051 0.024 0.031
rs201517563 ZNF592 15 85344550 rs12912388 |ILMIN_2347592 NMB A 0.888 -142.756  0.051 0.024 0.031
rs201517563 ZNF592 15 85343980 rs35960805 |ILMN_2347592 NMB G 0.888 -142.186  0.051 0.024 0.031
rs201517563 ZNF592 15 85347709 rs17601029 |ILMN_2347592 NMB G 0.888 -145.915 0.050 0.026 0.031
rs201517563 ALPK3 15 85373498 rs35545192 |ILMIN_2347592 NMB CT 0.890 -171.704  0.049 0.030 0.033
rs201517563 ALPK3 15 85377441 rs35808647 |ILMN_2347592 NMB A 0.891 -175.647 0.048 0.033 0.035
rs201517563 ALPK3 15 85374112 rs2340652 |ILMIN_2347592 NMB G 0.891 -172.318 0.046 0.040 0.040
rs201517563 SEC11A 15 85242529 rs8029660 |ILMN_2347592 NMB A 1.112 -40.735 0.045 0.046 0.044
Variants identified in combined ancestry GWAS analysis - eQTLs in European American atrial samples

rs2115630 ALPK3 15 85361960 rs4633690 |ILMN_2347592 NMB T 1.122 -160.166  0.060 0.009 0.011
rs2115630 ALPK3 15 85363708 rs11854291 |ILMN_2347592 NMB C 1.123 -161.914 0.060 0.009 0.011
rs2115630 ALPK3 15 85364516 rs2115630 |ILMN_2347592 NMB T 1.123 -162.722  0.060 0.009 0.011
rs2115630 SEC11A 15 85253258 rs8033459 |ILMIN_2347592 NMB T 1.124 -51.464 0.059 0.009 0.011
rs2115630 ALPK3 15 85372645 rs6496452 |ILMN_2347592 NMB T 1.124 -170.851 0.059 0.010 0.011
rs2115630 ALPK3 15 85355841 rs35828350 (ILMN_2347592 NMB A 0.874 -154.047 0.058 0.011 0.011
rs2115630 SEC11A 15 85255385 rs8027779 |ILMN_2347592 NMB C 1.118 -53.591 0.054 0.017 0.011
rs2115630 ZNF592 15 85334952 rs28595395 |ILMN_2347592 NMB C 1.121 -133.158 0.054 0.017 0.011
rs2115630 ALPK3 15 85357649 rs56864281 |(ILMN_2347592 NMB A 0.882 -155.855 0.054 0.017 0.011
rs2115630 ZNF592 15 85333396 rs61074241 |ILMN_2347592 NMB T 0.877 -131.602 0.053 0.018 0.011
rs2115630 ZNF592 15 85282635 rs1030863 |ILMN_2347592 NMB T 1.118 -80.841 0.053 0.018 0.011
rs2115630 ZNF592 15 85349231 rs35630683 |(ILMN_2347592 NMB C 0.883 -147.437 0.053 0.018 0.011
rs2115630 ZNF592 15 85318080 rs9788687 |ILMN_2347592 NMB T 1.117 -116.286 0.053 0.019 0.011
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Filtered at FDR_ptf<0.05. Grey highlighting of rows indicates eQTLs that did not reach genome-wide FDR. There were no significant eQTLs for
variants identified in the African American and combined ancestry analysis in the African American atrial samples and no significant eQTLs for
variants identified in the African American ancestry analysis in the European ancestry atrial samples. TSS, transcription start site; SNP, single

nucleotide polymorphism; Chr, chromosome; MA, minor allele in the atrial tissue biobank. *Bold text indicates variant located in gene,

otherwise closest gene/s. **Fold change in expression when dosage of MA increases by 1. tExplained (adjusted) variation in probe ID by dosage
of rsID/squared adjusted Pearson correlation. ¥Genome-wide false discovery rate. t1False discovery rate specific to variant set.
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Supplemental Figures

Figure S1. Manhattan plots of meta-analyses results for combined ancestry genome-wide association
studies of maximum P-wave duration and P-wave terminal force
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Figure S2. Regional plots of genetic loci significantly associated with P-wave maximum duration in
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legend in each plot. Estimated recombination rate is displayed for each region (right vertical axis). Gene
annotation is presented below the plot. LD and recombination information is based on the 1000
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Figure S3. Regional plots of genetic loci significantly associated with P-wave terminal force.
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other SNPs are colored according to their linkage disequilibrium (LD) with the top SNP. Red depicts the
highest LD while blue depicts the lowest, as shown in the legend in each plot. Estimated recombination
rate is displayed for each region (right vertical axis). Gene annotation is presented below the plot. LD
and recombination information is based on the 1000 Genomes November 2014 EUR release. All plots
were made using LocusZoom.”* A, KCND3; B, C6orf195; C, MYH6; D, ALPK3/NMB; E, PPP5D1; F, SPON1.
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