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Supplementary Text

Thermodynamic analysis of nucleic acid hybridization on the sensor

We used the two schemes shown in Figure S11 to estimate the difference in free energy of
ssSDNA adsorption and dsDNA hybridization at the nanotube surface. As parameters needed for
such a calculation are available from Jung et al.* for a 17-mer duplex strand, we focus our
analysis for this particular DNA length and sequence. For case A, one ssSDNA is already
adsorbed on the nanotube surface and its complementary partner sSDNA is introduced in the
solution like the experimental setup reported in this paper. The change in free energy upon
hybridization is approximately -135 kcal/mol (at (300 K, 1 bar), which clearly indicates that
hybridization is preferred over adsorption. Similar analysis for case B, where both strands are
initially adsorbed on the nanotube surface, the change in free energy upon hybridization (again
using values reported by Jung et al.) is approximately +9 kcal/mol. This indicates that when both
strands are initially adsorbed (Figure S11 Case B), ssDNA adsorption is slightly more favorable
than dsDNA hybridization. In our experimental setup of miR-19 hybridization on the nanotube,
we expect the case A to be the relevant one as complementary strand is introduced after sSSDNA
and surfactant are allowed to adsorb on the nanotube surface. Thus, our analysis findings are

consistent with the observed hybridization leading to the function of biosensor / reporter.

Effects of amphipathic molecules on sensor response

Several classes of amphipathic molecules were introduced to the GT15mirl9 sensor to assess
their potential to modulate the optical response to hybridization. Selected molecules included
ionic surfactants, non-ionic triblock copolymers, non-ionic surfactants, PEG-functionalized lipid,
and BSA due to their variety of steric and electrostatic properties (Table S1). After treatment for

4 hours with each amphipathic molecule, but before addition of target oligonucleotide, emission
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spectra were measured to assess the effect of each molecule in the absence of target miRNA. The
impact on center wavelength and intensity are shown for the (7,5) nanotube, which was similar
to the responses of other chiralities (Figure S12). All molecules either elicited a blue-shift to
varying degrees or had no apparent effect. SDC was an outlier in that the intensity was enhanced
2-3 fold. While other molecules were found to also enhance intensity to different degrees, none

matched the effect of SDC.

For each set of surfactant-treated nanotubes, complementary and non-complementary target
oligonucleotides were introduced and incubated for 4 hours. Each amphipathic molecule was
tested at a final concentration of 0.2% wt/vol with 2 mg/L of GT15mir19. Endpoint data showed
that SDBS and IGEPAL provided the greatest enhancement of target miRNA-induced blue-
shifting, followed by SDS, Brij52, and lipid-PEG to a smaller extent (Figure S13). The presence
of Pluronic, SDC, and Triton X-100 resulted in no apparent blue-shift of the sensor upon
introduction of target miRNA, although we note that SDC and Triton X-100 substantially blue-
shifted the nanotube before target oligonucleotides were added. The initial blue-shift suggests
that these amphiphiles likely coated the nanotube so efficiently as to displace water from the
nanotube surface and prevent the capture sequence of the GT15mirl9 oligonucleotide from
interacting with the nanotube surface prior to hybridization. There are no obvious patterns
relating the structure of the amphiphiles to the modulation of the response to miRNA, although
there are certain factors that can be noted. It is not surprising that SDC caused an initial blue-
shift and prevented the response to miRNA, for example, because it is a very strong surfactant
that is known to efficiently suspend nanotubes and enhance nanotube emission. Pluronic and

Triton X-100 are fairly large/bulky surfactant molecules which may have similarly prevented



interactions of the capture sequence with the nanotube surface. We also note the structural
similarity between SDBS and IGEPAL, the two surfactants that resulted in the largest
hybridization-induced enhancements. The supramolecular interactions of the surfactant
molecules with each other and the nanotube surface are complex and warrant further study in this

context.

SDBS-induced spectroscopic changes

Previous work has shown that the optical transition energies for DNA-wrapped nanotubes are
red-shifted by 10-20 meV (14-22 nm, depending on chirality) and quenched as compared to
nanotubes suspended entirely with small molecule anionic surfactants like SDS or SDBS**. A
proposed mechanism has attributed this finding to incomplete coverage of the nanotube surface
by DNA, which allows for greater accessibility of water, resulting in an increased polarity of the
local solvent environment (higher local dielectric constant) in the immediate vicinity of the
nanotube®. In the current work, we observed a blue-shifted shoulder in the spectrum of the
GTmirl9 sensor in the absence of the complementary miR-19 strand upon introduction of SDBS
(Figure 1h and S14). In light of previous findings, this spectral change suggests that SDBS binds
to the exposed surfaces on the DNA-suspended nanotube, causing the displacement of water
from the nanotube surface, which produces a slight blue-shift in the emission. When target RNA
or DNA hybridizes and the duplex dissociates from the surface, bare nanotube surface is exposed,
allowing SDBS to bind and become the dominant factor determining of the nanotube emission
peak wavelength, and intensity. The net effect was a dramatic blue-shift (4-17 nm, depending on
the nanotube chirality) and intensity increase (1.3 -2.2 fold) from the assembly of supramolecular

complexes of SDBS, triggered by the introduction of target RNA or DNA.



From spectroscopic studies of the GT15mirl9 sensor response, we observed a blue shift in
nanotube excitation wavelengths, suggesting that the binding of miR-19 RNA and DNA affects
the ground state absorption energies in addition to the excited state. Figure S15a shows the
correlation between the excitation wavelength shift and the emission wavelength shift for the
ensemble of chiralities, yielding a Pearson correlation coefficient of 0.87744 (p=0.00188). When
plotted as change in energy (Figure S15b), the Pearson correlation coefficient is similar 0.90656
(p=0.0007). The environmental effects on nanotube optical properties have been shown to
depend at least in part on the mod type of the nanotube®. On stratifying the nanotubes by mod
type, defined for any nanotube as mod(n-m,3), we found that mod2 nanotubes exhibited an
emission energy modulation that increased nearly linearly (R?=0.9272) with nanotube diameter
(Figure S16a). Interestingly, for the mod2 nanotubes, the intensity enhancement did not show the
same linear relationship with nanotube diameter, although all nanotubes increased in intensity. A
maximum was found for nanotubes ~0.9 nm in diameter (Figure S16b). A slight difference also
became apparent between the responses to target DNA and RNA, with RNA eliciting a slightly
enhanced intensity increase for small diameter nanotubes and a slightly dampened enhancement
for larger diameter nanotubes. This small, diameter-dependent difference may be related to the
difference in binding strength and hydration between DNA-DNA hybrids and DNA-RNA

hybrids® .

Molecular weight of the sensor complex
The molecular weight of the sensor was estimated using the lower limit of the nanotube
diameters to be 0.8 nm, wherein there are 20 carbons around the nanotube circumference. Thus,

80 carbon atoms are present for every 0.283 nm in nanotube length. Taking the average length of
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the nanotube, as measured via AFM, to be 166 nm, the resulting molecular weight of the
nanotube is 564 kDa. The molecular weight of the GT15mirl9 DNA sequence is 16.5 kDa. From
AFM measurements, we estimated 5-10 copies of DNA per 100 nm, and thus 8.3 to 16.6 copies
per 166 nm, adding 137 kDa to 275 kDa to the total complex. Thus, for an average length
GT15mirl9 sensor with diameter near the lower limit, the molecular weight would be between

701 kDa and 839 kDa.
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Supplementary Figures
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Figure S1. Selectivity assessment of different nanotube binding domains. Wavelength shift of modified
sensors after addition of non-complementary control (R23) or miR-19 DNA. a, Sensor composed of the
(GT)4s nanotube binding sequence (GT15mir19). b, Sensor composed of the (GT)s nanotube binding
sequence (GT6mirl19). c, Sensor composed of the (AT)1s nanotube binding sequence (AT15mir19). d,
Sensor composed of the (TAT)s nanotube binding sequence (TAT6mir19). Error bars represent standard
deviation for n = 3 technical replicates.
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Figure S2. Photoluminescence excitation/emission plots of the GT15mirl19 sensor a, in buffer only, b,
after interrogation with miR-19 DNA, c, after interrogation with miR-19 RNA, d, after interrogation with
R23 DNA, e, after interrogation with R23 RNA.
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Figure S3. Intensity response of the GT15mirl9 sensor. a, Response after addition of miR-19 DNA
analogue or random sequence DNA control. b, Response after addition of miR-19 RNA or random
sequence RNA control. Error bars represent standard deviation for n = 3 technical replicates.
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Figure S4. Plots of excitation and emission wavelength shifts calculated from photoluminescence plots. a,
Responses to miR-19 DNA analogue and random sequence DNA control (R23). b, Responses to miR-19
RNA and random sequence RNA control (R23). Error bars represent standard deviation forn = 3

technical replicates.
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Figure S5. Atomic force microscopy of the GT15mir19 complex under dry conditions. a and b,
Sequences of the hairpin RNAs miR-19HP and R23HP, respectively, and AFM height profiles after
incubation. Green bases are complementary to the GT15mir19 capture sequence, red bases are random
sequence control, and purple bases are thymine spacers. ¢, Images of single nanotubes from miR-19HP
and R23HP images. d, Average height of nanotubes after addition of miR-19HP or R23HP, calculated
from n = 1332 nanotubes. Error bars represent standard error of the mean.
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Figure S6. Atomic force microscopy of the GT15mir19 complex under aqueous conditions. a, After
incubation with miR-19HP, the complementary binding partner. b, After incubation with R23HP, a non-
complementary control. ¢, After incubation with buffer only.
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Figure S7. Cartoon depicting the fluorophore dequenching of GT6mir19-Cy5 upon binding of the target
miR-19 DNA sequence. A Cy5 dye is conjugated to the 3’ end of a sequence composed of (GT)sand the
complementary sequence to miR-19. The Cy5 emission is quenched on the nanotube surface, and

fluorescence is expected to be restored if hybridization results in displacement of Cy5 from the nanotube

surface.
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Figure S8. Near-infrared emission wavelength response of the modified sensor complex, GT6mir19-Cy5,
used for the fluorophore dequenching experiment. The sensor was interrogated with miR-19 (blue), R23
(red), or buffer only (green). The emission wavelength response of three nanotube chiralities, (10,2), (9,4),
and (8,6), are shown. Error bars represent standard error of the mean for n = 3 technical replicates.
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Figure S9. Structural parameters of the GT15mir19 sensor complex computed for the (9,4) nanotube via
molecular dynamics simulations. a, Distribution of radial distance and b, stacking angle relative the
nanotube for nucleobases from the GT15 nanotube binding domain and miR-19 miRNA capture sequence
domain when hybridized to target miR-19. ¢, Distribution of radial distance and d, stacking angle relative
to the nanotube for nucleobases from the hybridized target miR-19 when hybridized with the miRNA
capture sequence. e Distributions of radial distance from the nanotube of the miR-19 miRNA capture
sequence when target miR-19 is not hybridized. f, Stacking angle of miR-19 miRNA capture sequence
when target miR-19 is not hybridized.
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Figure S10. Starting configurations of molecular dynamics simulations involving the duplex miRNA
capture sequence + miR-19 without the GTy5 nanotube binding domain. a, miRNA capture
sequence/miR-19 duplex initially configured parallel to the axial vector of the nanotube b, miRNA
capture sequence/miR-19 duplex initially configured perpendicular to the axial vector of the nanotube.
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Figure S11. Two calculations of hybridization free energy of DNA on the nanotube surface. Graphics are
illustrative examples of the reference states and Gyinging Values are taken the work by Jung et al. (ref 7)
Case A depicts the scenario where single stranded DNA on a nanotube hybridizes with complementary
DNA in solution. Case B depicts the scenario were both strands are first adsorbed to the nanotube surface.
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Figure S12: a, Mean peak wavelength and b, intensity values of the GT15mir19 complex after
incubation with amphipathic molecules. Data is shown for the (7,5) nanotube species. Error bars represent
standard deviation from three technical replicates.
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Figure S13: Change of the GT15mir19 sensor response to miRNA upon interrogation with a panel of
amphiphilic molecules. a,Wavelength shift from buffer control and b, intensity fold enhancement over
buffer control are shown following incubation with the target oligonucleotide or non-complementary
control after 4 hours.
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Figure S14. Photoluminescence excitation/emission plots of the GT15mir19 sensor with 0.2% SDBS. a,
Buffer only control. b, After incubation with miR-19 RNA.
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Figure S15. Excitation and emission wavelength shifts of the GT15mir19 sensor, calculated from
photoluminescence excitation/emission (PL) plots. a, Absolute wavelength shifts of the sensor upon
introduction of miR-19 RNA or random sequence RNA control (R23). b, Change in excitation and
emission energy in response to miR-19 RNA or random sequence RNA control (R23). Red = nanotube
chiralities that satisfy (2n+m) mod 3 = 1 (mod 1). Blue = nanotube chiralities that satisfy (2n + m) mod3
= 2 (mod2). The Pearson correlation coefficient for the x vs. y values of each graph is indicated. Error
bars represent standard error of the mean for n = 3 technical replicates.
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Figure S16. Change in intensity of the GT15mir19 sensor in the presence of 0.2% SDBS. Intensity was

calculated from photoluminescence excitation/emission plots and normalized to buffer only control. Error
bars represent standard error of the mean for n = 3 technical replicates.
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Figure S17. Diameter dependence of emission energy change and intensity change. a, Change in
emission energy of the GT15mirl19 sensor as a function of nanotube diameter, for mod2 nanotubes. b,
Change in GT15mirl9 sensor emission intensity, as a function of nanotube diameter, for mod 2 nanotubes.
Error bars represent standard error of the mean for n = 3 technical replicates.
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Figure S18. Emission response of the GT15mirl9 sensor to different SDBS concentrations, in the
absence of analyte. a, Emission wavelengths of 11 nanotube chiralities after an overnight incubation with
SDBS. b, Intensity change in response to SDBS. Dotted lines indicate critical micelle concentration
(CMC, 1.6 mM), and the concentration of SDBS used in most experiments of this work (5.7 mM, 0.2%
wiv).
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Figure S19. Wavelength response of the GT15mirl19 sensor in the presence of random permutations of

DNA 23 nucleotides in length (random segs.) alone, random segs. with miR-19 DNA, and random seqgs.
with miR-19 RNA. The responses of three different nanotube chiralities are shown. Error bars represent
standard error of the mean for n = 3 technical replicates.
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Figure S20: Emission wavelength response of GT15mirX sensors to their complementary miR biomarker
sequence or R23 non-complementary control (DNA). The responses of four nanotube chiralities are
shown. Error bars represent standard error of the mean for n = 3 technical replicates.
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Figure S21: Intensity response of the GT15mirX sensors after the introduction of target miR sequences
or R23 non-complementary control. The response of the (7,5) nanotube is shown, normalized to the buffer
only control. Error bars represent standard error of the mean for n = 3 technical replicates.
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Figure S22. Kinetic response of the GT15mirX sensor to three closely-related sequences. The response of
the (9,4) chirality is shown. a and b, wavelength shift and intensity change of the sensor specific for miR-
141 (GT15mir141). c and d, wavelength shift and intensity change over time for sensor specific for miR-
200b (GT15mir200b). e and f, wavelength shift and intensity fold change over time for sensor specific for
miR-429 (GT15mir429). Error bars represent standard error of the mean for n = 3 technical replicates.
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Figure S23. Kinetic response of the GT15mirX sensor to three closely-related sequences. The response of
the (8,6) chirality is shown. a and b, wavelength shift and intensity fold change over time for sensor
specific for miR-141 (GT15mir141). c and d, wavelength shift and intensity fold change over time for
sensor specific for miR-200b (GT15mir200b). e and f, wavelength shift and intensity fold change over
time for sensor specific for miR-429 (GT15mir429). Error bars represent standard error of the mean for n
= 3 technical replicates.
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Figure S24. Dose-response curves of the GT15mir19 sensor response, using three different sensor
concentrations. Table indicates observed limit of detection (LOD), calculated number of binding sites,
and measured saturating range of the sensor. Error bars represent standard error of the mean for n =3
technical replicates.

29



* £
E £ g 2 - miR-19 DNA
] £ iR-
2 £ Q4 = miR-19 RNA
B o .
c c 5 6
] 7} s
© o 2 -8
> > g
© 0 © s -10
2 104 . : . . ; 2 6+ r r r ' " = : . . . .
0 60 120 180 240 300 0 60 12q. 180 240 300 0 60 120 180 240 300
Time [m] Time [m] Time [m]
- — £
£ E o E,
£ £ - £
= = 2 £ -2
w wn -4 [}
& £ £~
c - £ -6
° a -8 o8
[] > ]
5 % 10 g
g -8+ T T T T - g 124 . . . . : 3-10 b r r r 1 T
0 60 120 180 240 300 ] 60 120 180 240 300 0 60 120 180 240 300
Time [m] Time [m] Time [m]
T 1 £ T 2 (9,5)
£ 1 g 2 £ 2
5 2 5 4 5
e 3 6 6
54 % s J‘gsa -8
g -5 5 10 g -10 .
g -6 g 12 q>; -12 .
© -7 ® 14 w -14
= 84 : : : . . =" : ' ; " : = -164 - - , . :
0 60 120 180 240 300 0 60 120 180 240 300 0 60 12‘? 180 240 300
Time [m] Time [m] Time [m]
T —_
= E 2
7} =
% s *
g % .
2 &
g *
= .a : : ' ; ' 3 -10
0 60 120 180 240 300 = -

) 0 60 120 180 240 300
Time [m] Time [m]

Figure S25. Kinetic data for all measured chiralities of the GT15mir19 sensor after addition of miR-19
DNA or miR-19 RNA. Data was acquired in 10-minute intervals. All data is fitted to an exponential

decay, y = y, e ¥t
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Figure S26.Comparison of the response rate of the GT15mir19 sensor to DNA or RNA versions of the

target, for eleven different nanotube chiralities a, Rate constant K of the GT15mir19 wavelength response
after addition of miR-19 DNA or RNA, arranged according to nanotube diameter. b, Comparison of rate
constants of each nanotube chirality, in response to miR-19 DNA and miR-19 RNA.
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Figure S27. Kinetics of the wavelength response of GT15mirX sensors after addition of target miR
biomarker sequences. a, Response of the (9,4) nanotube chirality. b, Response of the (8,6) nanotube

chirality. Smooth curves are fitted exponential decays, y = y, e ~*¢.
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Figure S28. GT15mirX sensor response rates vs. guanine content of the miRNA capture sequences. a,
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Figure S29. GT15mirX sensor response rates vs. thymine, adenosine, and cytosine content of the miRNA
capture sequence, or free energy of hybridization of the miRNA capture sequence. Response of the (9,4)
chirality was measured. No statistically significant correlations were found.
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Figure S30. GT15mirX sensor response rates vs. thymine, adenosine, and cytosine content of the miRNA
capture sequence, or free energy of hybridization of the miRNA capture sequence. Response of the (8,6)
chirality was measured. No statistically significant correlations were found.
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Figure S31. Single-GT15mir19 spectra measured via near-infrared hyperspectral microscopy, before
addition of miR-19 RNA or R23 RNA, 15 minutes after addition, and 50 minutes after addition.

35



1.0+
0.9- — GT15mir19 f\
0.8- — GT15mir509

Nomalized absorbance
o
(4]
1

0-0 1 1 | 1 ] I | I
500 600 700 800 900 1000 1100 1200 1300

Wavelength (nm)

Figure S32. Normalized absorbance spectra of GT15mir19 oligonucleotide-suspended APT-200 from
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Figure S33. Sensor response in urine from healthy donors. a, Wavelength shift as a function of miR-19
RNA or non-complementary control R23 concentration for each individual donor. b, Intensity fold
enhancement as a function of added miR-19 RNA or non-complementary control R23 concentration.
Error bars represent standard deviation of three technical replicates.
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Figure S34. Study of the sensor response in serum. a, Wavelength shift of the GT15mir19 sensor in
whole serum with 0.2% SDBS and upon addition of proteinase K. The response of the (8,6) nanotube is
shown. b, Intensity change in the same conditions. Error bars represent standard deviation of three
technical replicates.
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Figure S37: Response of the implanted sensor device to 1 nanomole of miR-19 RNA within live mice.
The (8,6) nanotube chirality was measured; 3-4 spectra per animal were taken; 3 animals were measured
per group (p<0.0001, Dunnet’s multiple comparison test, ordinary one-way ANOVA).
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Figure S38. Dose-response curve of the GT15mir19 sensor capillary device measured in vitro.
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Figure S39: Emission from the implantable devices removed from one animal in each group after
injection of buffer, 500 pmol miR-19 RNA, or 500 pmol R23 RNA. Error bars represent standard error of
the mean for 3-4 measurements.
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Supplementary Tables

Name Abbreviation| Class of amphipathic molecule
Sodium deoxycholate SDC ionic surfactant
Sodium dodecyl sulfate SDS ionic surfactant
Sodium dodecylbenenesulfonate SDBS 1onic surfactant
Pluronic IF-68 Pluronic non-ionic triblock copolymers
(Triton X-100 m/a non-1onic surfactant
IGEPAL CO-530 IGEPAIL non-ionic surfactant
Span 80 n/a non-ionic surfactant
Brij 52 m/a mon-ionic surfactant
D-a-Tocopherol polyethylene glycol 1000 succinate TPGS non-ionic surfactant (vitamin E)
1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- .. ..
[melhoxy(pzlyethiline glycl())] )- ]?){J{)] (ammonium salt)) Lipid-FEG PEGylated lipid
Bovine serum albumin IBSA protein

Table S1: List of amphipathic molecules used to study the enhancement of the sensor response.

Name Sequence (5' to 3')

GT15mirl 9 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCAGTTTTGCATAGATTTGCACA
GT15mirl 26 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCATTATTACTCACGGTACGA
GT15mirl 82 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTGTGAGTTCTACCATTGCCAAA
GT15mirl 52 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTCCAAGTTCTGTCATGCACTGA
GT15mir509 GTGTGTGTCTGTGTGTGTGTGTGTGTCTGTTGATTGCCACTGTCTCGCAGTA
GT15mir96 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTAGCAAAAATGTGCTAGTGCCAAA
GT15mirl 83 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTAGTGAATTCTACCAGTGCCATA
GT15mird94 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGAGGTTTCCCGTGTATGTTTCA
GT15mir39 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTCAAGCTGATTTACACCCGGTGA
GT15mir21 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCAACATCAGTCTGATAAGCTA
GT15mirl41 GTGTGTGTCTGTGTGTGTGTGTGTGTCTGTCCATCTTTACCAGACAGTGTTA
GT15mir429 GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTACGGTTTTACCAGACAGTATTA
GT15mir200b GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCATCATTACCAGGCAGTATTA
GT15mirl 9-minus6 |GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCAGTTTTGCATAGATT
GTémirl19-Cy3 GTGTGTGTGTGTTCAGTTTTGCATAGATTTGCACA-Cy5

Table S2. GT15mirX sequences used in this work.
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Name Sequence (5' to 3')
miR-19 DNA |TGTGCAAATCTATGCAAAACTGA
miR-19 RNA |[UGUGCAAAUCUAUGCAAAACUGA
miR-21 DNA |[TAGCTTATCAGACTGATGTTG
miR-21 RNA |UAGCUUAUCAGACUGAUGUUG
R23 DNA TCGGTCAGTGGGTCATTGCTAGT
R23 RNA UCGGUCAGUGGGUCAUUGCUAGU
miR-126 TCGTACCGTGAGTAATAATGC
miR-182 TTTGGCAATGGTAGAACTCACA
miR-152 TCAGTGCATGACAGAACTTGG
miR-509 TACTGCAGACAGTGGCAATCA
miR-96 TTTGGCACTAGCACATTTTTGCT
miR-183 TATGGCACTGGTAGAATTCACT
miR-494 TGAAACATACACGGGAAACCTC
miR-39 TCACCGGGTGTAAATCAGCTTG
miR-141 TAACACTGTCTGGTAAAGATGG
miR-200b TAATACTGCCTGGTAATGATGA
miR-429 TAATACTGTCTGGTAAAACCGT
Removing Seq. | TCAGTTTTGCATAGATTTGCACA

Table S3. Analyte/target sequences used in this work.

Name Sequence

GT15mirl9 |5'-GTGTGTGTGTGTGTGTGTGTGTGTGTGTGTTCAGTTTTGCATAGATTTGCACA-3'"
mirl9-10 3'-AGTCAAAACG-5"'

mirl9-11 3'-AGTCAAAACGT-5"

mirl9-12 3'-AGTCAAAACGTA-5"'

mirl 9-13 3'-AGTCAAAACGTAT-5'"

mirl9-14 3'-AGTCAAAACGTATC-5"

mirl9-15 3'-AGTCAAAACGTATCT-5'

Table S4. Truncated miR analyte sequences designed to hybridize to the middle of miRNA capture

sequence.
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Name Sequence

GT15mirl19 |5'-GTGTGTGTGTGTCGTCTCTGTCGTCTGTGTCGTTCACGTTTTGCATAGATTTGCACA-3"
mirl9-10 3'-CTAAACGTGT-5"
mirl9-11 3'-TCTAAACGTGT-5"'
mirl9-12 3'-ATCTAAACGTGT-5"
mirl9-13 3'-TATCTAAACGTGT-5"'
mirl9-14 3'-GTATCTAAACGTGT-5"
mirl9-15 3'-CGTATCTAAACGTGT-5"
mirl9-17 3'"-AACGTATCTAAACGTGT-5"
Table S5. Truncated miR analyte sequences designed to hybridize to the 5’ end of miRNA capture
sequence.

Name Sequence (5' to 3")

R23mirl9R23 |[TCGGTCAGTGGGTCATTGCTAGIGTGCAAATCTATGCAAAACTGATCGGTCAGTGGGTCATTGCTAGT

mirl 9R23 TCGGTCAGTGGGTCATTGCTAGTIGTGCAAATCTATGCAAAACTGA

R23mirl9 TGTGCAAATCTATGCAAAACTGATCGGTCAGTGGGTCATTGCTAGT

R23R23R23 TCGGTCAGTGGGTCATTGCTAGTCGGTCAGTGGGTCATTGCTAGTTCGGTCAGTCGGGTCATTGCTAGT

Table S6. Elongated analyte sequences used in this work.
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