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Appendix: A Deterministic Mathematical Model for

Bidirectional Excluded Flow with

Langmuir Kinetics

Yoram Zarai, Michael Margaliot and Tamir Tuller

A. PROOFS

We begin by discussing some symmetry properties of the MFALK.

A. Symmetry

The MFALK enjoys two symmetries that will be useful later on. First, let zi(t) := 1−xi(t), i = 1, . . . , n.
In other words, zi(t) is the amount of �free space� at site i at time t. Then using (1) yields

ż1 = γ0(1− z1) + λ1z2(1− z1) + α1(1− z1)− γ1z1(1− z2)− λ0z1 − β1z1,

ż2 = γ1z1(1− z2) + λ2z3(1− z2) + α2(1− z2)− γ2z2(1− z3)− λ1z2(1− z1)− β2z2,
...

żn = γn−1zn−1(1− zn) + λn(1− zn) + αn(1− zn)− γnzn − λn−1zn(1− zn−1)− βnzn. (A.1)

This is just the MFALK (1), but with the parameters permuted as follows: λk → γk, γk → λk, βk → αk,

and αk → βk for all k. The symmetry here follows from the fact that we can replace the roles of the

forward and backward �ows in the MFALK.

Next, let yi(t) := 1 − xn+1−i(t), i = 1, . . . , n. In other words, yi(t) is the amount of �free space� at

site n+ 1− i at time t. Then using (1) yields

ẏ1 = λn(1− y1) + γn−1y2(1− y1) + αn(1− y1)− λn−1y1(1− y2)− γny1 − βny1,

ẏ2 = λn−1y1(1− y2) + γn−2y3(1− y2) + αn−1(1− y2)− λn−2y2(1− y3)− γn−1y2(1− y1)− βn−1y2,
...

ẏn = λ1yn−1(1− yn) + γ0(1− yn) + α1(1− yn)− λ0yn − γ1yn(1− yn−1)− β1yn. (A.2)

This is just the MFALK (1), but with the parameters permuted as follows: λk → λn−k, γk → γn−k,

βk → αn+1−k, and αk → βn+1−k for all k. Note that (A.1) is simply (A.2) with the variable renaming

zi → yn+1−i, i = 1, . . . , n.
Both symmetries are reminiscent of the particle-hole symmetry in ASEP [2], [3]: the basic idea is that

the progression of a particle from left to right is also the progression of a �hole� from right to left.
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Proof of Proposition 1. If (4) holds then the MFALK satis�es property (BR) in [4], and [4, Lemma 1]

implies (6). If (5) holds then (A.1) satis�es property (BR) in [4], and this implies (6). �

Proof of Proposition (2). Write the MFALK as ẋ = f(x). A calculation shows that the Jacobian

matrix J(x) := ∂f
∂x
(x) satis�es J(x) = L(x) + P , where L(x) is the matrix

−λ1(1− x2)− γ1x2 λ1x1 + γ1(1− x1) . . . 0
λ1(1− x2) + γ1x2 −λ1x1 − γ1(1− x1)− λ2(1− x3)− γ2x3 . . . 0

0 λ2(1− x3) + γ2x3 . . . 0
...

0 0 . . . 0
0 0 . . . λn−1xn−1 + γn−1(1− xn−1)
0 0 . . . −λn−1xn−1 − γn−1(1− xn−1)


,

(A.3)

and P is the diagonal matrix

P = diag(−λ0 − γ0 − α1 − β1,−α2 − β2, . . . ,−αn−1 − βn−1, λn − γn − αn − βn). (A.4)

Note that L(x) is tridiagonal and Metzler (i.e, every off-diagonal entry is non-negative) for any x ∈ Cn.

Recall that the matrix measure µ1 : Rn×n → R induced by the L1 norm is µ1(A) = max{c1(A), . . . , cn(A)},
where ci(A) is the sum of the elements in column i of A with off-diagonal elements taken with absolute

value [10]. For the Jacobian J of the MFALK, µ1(J(x)) = η for all x ∈ Cn. It is well-known (see,

e.g., [1]) that this implies (7). �

Proof of Proposition (3). For ζ ∈ [0, 1/2], let

Cn
ζ := {x ∈ Cn : ζ ≤ xi ≤ 1− ζ, i = 1, . . . , n}.

Note that Cn
0 = Cn, and that Cn

ζ is a strict subcube of Cn for all ζ ∈ (0, 1/2]. By Proposition 1, for

any τ > 0 there exists ζ = ζ(τ) ∈ (0, 1/2), with ζ(τ) → 0 as τ → 0, such that

x(t+ τ, a) ∈ Cn
ζ , for all t ≥ 0 and all a ∈ Cn. (A.5)

For any x ∈ Cn
ζ every entry Lij on the sub- and super-diagonal of L in (A.3) satis�es Lij ≥ ζs, where s :=

min1≤i≤n−1{λi+γi} > 0. Combining this with [4, Theorem 4] implies that for any ζ ∈ (0, 1/2] there exists
ε = ε(ζ) > 0, and a diagonal matrix D = diag(1, q1, q1q2, . . . , q1q2 . . . qn−1), with qi = qi(ε) > 0, such that

the MFALK is contractive on Cn
ζ with respect to (w.r.t.) the scaled L1 norm de�ned by |z|1,D := |Dz|1.

Furthermore, we can choose ε such that ε(ζ) → 0 as ζ → 0, and D(ε) → I as ε → 0. Now Thm. 1 in [5]

implies that the MFALK is contractive after a small overshoot and short transient (SOST). Prop. 4 in [5]

implies that for the MFALK SOST is equivalent to SO, and this completes the proof. �

Proof of Proposition (4). We begin by recursively de�ning two sequences. For all integers i ≥ 1, let

ui+1 = 1 + ℓ1 + ℓ2 + · · ·+ ℓi,

ℓi+1 = ui + ℓ1 + ℓ2 + · · ·+ ℓi−1. (A.6)

with initial conditions u0 = u1 = 1, ℓ0 = 0, and ℓ1 = 1. We claim that for k = 0, 1, . . . , n − 1, the
steady-state density in site n− k is generically the ratio of two polynomials in R:

en−k =
pk(R)

qk(R)
, with deg(pk(R)) = uk, deg(qk(R)) = ℓk. (A.7)

We prove this by induction on k. By (16), en = aR+b, with a := (λn+γn+βn+αn)
−1 and b := (γn+βn)a,
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and this proves (A.7) for k = 0. Using (16) again yields

en−1 =
R + γn−1en

λn−1(1− en) + γn−1en

=
R + γn−1(aR + b)

λn−1 + (γn−1 − λn−1)(aR + b)
,

and this proves (A.7) for k = 1. Now assume that there exists s ≥ 2 such that (A.7) holds for k =
0, 1, . . . , s− 1. By (16),

en−s =
R + γn−sen−s+1 − gn−s+1(en−s+1)− gn−s+2(en−s+2)− · · · − gn−1(en−1)

λn−s(1− en−s+1) + γn−sen−s+1

,

and applying (12) and the induction hypothesis yields

en−s =
R + γn−s

ps−1

qs−1
+ (βn−s+1 + αn−s+1)

ps−1

qs−1
+ (βn−s+2 + αn−s+2)

ps−2

qs−2
+ · · ·+ (βn−1 + αn−1)

p1
q1

+ c

λn−s + (γn−s − λn−s)
ps−1

qs−1

,

where c := −βn−s+1−· · ·−βn−1. Multiplying the numerator and the denominator by q1 . . . qs−1 yields en−s =
ps/qs, where

deg(ps) = max{1 + deg(q1 . . . qs−1), deg(ps−1q1 . . . qs−2), . . . , deg(p1q2 . . . qs−1)},
deg(qs) = max{deg(q1 . . . qs−1), deg(ps−1q1 . . . qs−2)}.

By the induction hypothesis,

deg(ps) = max{1 + ℓ1 + · · ·+ ℓs−1, us−1 + ℓ1 + · · ·+ ℓs−2, . . . , u1 + ℓ2 + · · ·+ ℓs−1},
deg(qs) = max{ℓ1 + · · ·+ ℓs−1, us−1 + ℓ1 + · · ·+ ℓs−2}. (A.8)

It is straightforward to prove that (A.6) implies that

ℓi ≤ ui ≤ ℓi + 1, i = 0, 1, 2, . . . . (A.9)

Combining this with (A.8) yields deg(ps) = 1 + ℓ1 + · · · + ℓs−1, and deg(qs) = us−1 + ℓ1 + · · · + ℓs−2.

Thus, deg(ps) = us and deg(qs) = ℓs, and this completes the inductive proof of (A.7). In particular, (A.7)

yields

e1 =
pn−1(R)

qn−1(R)
, (A.10)

with deg(pn−1(R)) = un−1, deg(qn−1(R)) = ℓn−1. Substituting this in the last equation of (16) yields

v
pn−1

qn−1

= z −R +
n−1∑
j=2

gj(ej),

where v := λ0 + γ0 + β1 + α1, and z := λ0 + β1. Arguing as above shows that this is a polynomial

equation of the form w(R) = 0, with deg(w) = 1 + ℓ1 + · · · + ℓn−1 = un. It is straightforward to prove

by induction that (A.6) implies that

uk = 1 +

⌊
2k

3

⌋
, ℓk =

2k − (−1)k

3
,

(we note in passing that the latter sequence is known as the Jacobsthal sequence [8]), and this completes

the proof of Proposition 4. �

Proof of Proposition 5. We begin by proving that R > 0 implies that
∏n

i=0 λi >
∏n

i=0 γi. If R > 0
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then (18) yields

λ0(1− e1) > γ0e1,

λiei(1− ei+1) > γiei+1(1− ei), i = 1, . . . , n− 1,

λnen > γn(1− en). (A.11)

Multiplying all these inequalities, and using the fact that e ∈ Int(Cn) yields

n∏
i=0

λi >
n∏

i=0

γi. (A.12)

To prove the converse implication, assume that (A.12) holds. Multiplying both sides of this inequality

by the strictly positive term
∏n

j=1 ej(1− ej) yields

n∏
i=0

ai >

n∏
i=0

bi,

where a0 := λ0(1− e1), ai := λiei(1− ei+1), i = 1, . . . , n−1, an = λnen, b0 := γ0e1, bi := γiei+1(1− ei),
i = 1, . . . , n − 1, and bn = γn(1 − en). This means that aℓ > bℓ for some index ℓ ∈ {0, . . . , n}. Since
R = aℓ − bℓ (see (18)), it follows that R > 0. Summarizing, we showed that R > 0 if and only

if
∏n

i=0 λi >
∏n

i=0 γi. The proof that R < 0 if and only if
∏n

i=0 λi <
∏n

i=0 γi is similar. This implies

that R = 0 if and only if
∏n

i=0 λi =
∏n

i=0 γi. This completes the proof of (19).

To prove (20), note that (18) yields

en =
R + γn
λn + γn

,

ei =
R + γiei+1

λi(1− ei+1) + γiei+1

, i = n− 1, . . . , 1,

e1 =
λ0 −R

λ0 + γ0
. (A.13)

Substituting R = 0 completes the proof of Prop. 5. �
Proof of Theorem 1. The Jacobian of the PMFALK is J(t, x(t)) = L(t, x(t)) + P (t), with L given

in (A.3), and P in (A.4) (but now with time-varying rates). Pick an initial time t0 ≥ 0, and τ0 > 0. The
stated conditions guarantee the existence of ζ ∈ (0, 1/2) such that x(t, t0, a) ∈ Cn

ζ for all t ≥ t0 + τ and

all a ∈ Cn. Also, [4, Thm. 4] implies that there exists a diagonally-scaled L1 norm such that the PMFALK

is contractive on Cn
ζ w.r.t. this norm. Now entrainment follows from known results on contractive systems

with a periodic excitation (see, e.g. [7]). �
Proof of Proposition 6. Since the Jacobian J(x) of the MFALK is Metzler (i.e. every off-diagonal entry

is non-negative) for any x ∈ Cn, the MFALK is a cooperative system [9], and this yields (24).

When λi + γi > 0, i = 1, . . . , n− 1, the matrix L(x) and, therefore, J(x), is irreducible for every x ∈
Int(Cn), and combining this with Prop. 1 implies (25) (see, e.g., [9, Ch. 4]). �

Proof of Proposition 7. First, using Remark 1 and the argument used in the proof of [6, Prop. 4] shows

that all the derivatives in the statement of of Prop. 7 exist.

Given a MFALK, pick j ∈ {1, . . . , n} and consider the new MFALK obtained by changing αj to α̃j ,

with α̃j > αj , and all other rates unchanged. Let ẽ, R̃ denote the steady-state density and production rate

in the modi�ed MFALK, respectively. Seeking a contradiction, assume that

ẽn ≥ en. (A.14)

Then (14) implies that

R̃ ≥ R, (A.15)
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and if j = n then R̃ > R. By (15) with i = n − 1, R = λn−1en−1(1 − en) − γn−1en(1 − en−1)
and R̃ = λn−1ẽn−1(1− ẽn)− γn−1ẽn(1− ẽn−1), and combining this with (A.14) and (A.15) yields

ẽn−1 ≥ en−1. (A.16)

Now using (15) with i = n− 2 yields ẽn−2 ≥ en−2, and ẽn−2 > en−2 if j = n− 1. Proceeding in this way

shows that

ẽk ≥ ek, k = n, n− 1, . . . , j, (A.17)

ẽk > ek, k = j − 1, j − 2, . . . , 1. (A.18)

Combining this with (15) with i = 0 yields R̃ < R. This contradicts (A.15), so

ẽn > en. (A.19)

Proceeding as above yields ẽi > ei for all i, so
∂ei
∂αj

< 0 for all i, j. The proofs of all the other equations

in Prop. 7 are very similar and therefore omitted. �
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