## **Supporting Information**

## Unprecedented ( $\mu$ -1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme *N*-Oxygenase CmII

Andrew J. Jasniewski, <sup>†,‡,#</sup> Anna J. Komor, <sup>†,‡,#</sup> John D. Lipscomb, <sup>\*,§,‡</sup> and Lawrence Que, Jr. <sup>\*,†,‡</sup>

<sup>†</sup>Department of Chemistry, <sup>§</sup>Department of Biochemistry Molecular Biology, and Biophysics, and <sup>‡</sup>Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455

## **Joint First Authors**

<sup>#</sup>Contributed equally to the study

## \*Corresponding authors

J.D.L.: Tel: (612) 625-6454; Fax, (612) 624-5121; E-mail, lipsc001@umn.edu

L. Q.: Tel: (612) 625-0389; Fax, (612) 625-7029; E-mail, larryque@umn.edu

| Table of Contents                                                                    | Page Number |
|--------------------------------------------------------------------------------------|-------------|
| Figure S1. Pre-edge region analysis of CmlI <sup>R</sup>                             | 3           |
| Figure S2. Pre-edge region analysis of CmlI <sup>Ox</sup>                            | 4           |
| Figure S3. Pre-edge region analysis of CmlI <sup>P</sup>                             | 5           |
| Figure S4. EXAFS data of Cmll <sup>R</sup>                                           | 6           |
| Table S1. Fit parameters for Cmll <sup>R</sup>                                       | 7           |
| Figure S5. EXAFS data of Cmll <sup>Ox</sup>                                          | 8           |
| Table S2. Fit parameters for Cmll <sup>Ox</sup>                                      | 9           |
| Figure S6. EXAFS data of Cmll <sup>P</sup>                                           | 10          |
| Table S3. Fit parameters for Cmll <sup>P</sup>                                       | 11          |
| Table S4. Component Analysis of Pre-edge of Cmll                                     | 13          |
| Figure S7. Full resonance Raman spectra for CmlI <sup>Ox</sup> and CmlI <sup>P</sup> | 14          |

**General EXAFS considerations**. In the fit tables of EXAFS data, N refers to the number of scatterers used for a particular shell, R is the distance of the scattering shell,  $\sigma^2$  is the mean-squared deviation (or Debye-Waller factor), E<sub>0</sub> is the edge shift parameter, and the goodness of fit (GOF) parameters are calculated as  $F = \sqrt{\sum k^6 (\chi_{exp} - \chi_{calc})^2}$ ,  $E' = \sqrt{\sum k^6 (\chi_{exp} - \chi_{calc})^2}$  For all fits the amplitude reduction factor (So<sup>2</sup>) was set

 $F' = \sqrt{\sum k^6 (\chi_{exp} - \chi_{calc})^2 / \sum k^6 \chi_{exp}^2}$ . For all fits, the amplitude reduction factor (S<sub>0</sub><sup>2</sup>) was set to 0.9.



**Figure S1**. Pre-edge region analysis of **Cmll<sup>R</sup>**. The experimental data (black dotted), baseline (red dashed), pre-edge peak components (red solid), residuals (green solid), and total fit (blue solid) are shown.



**Figure S2**. Pre-edge region analysis of **Cmll<sup>Ox</sup>**. The experimental data (black dotted), baseline (red dashed), pre-edge peak components (red solid), residuals (green solid), and total fit (blue solid) are shown.



**Figure S3**. Pre-edge region analysis of **Cmll**<sup>P</sup>. The experimental data (black dotted), baseline (red dashed), pre-edge peak components (red solid), residuals (green solid) and total fit (blue solid) are shown.



**Figure S4**. Fit (red solid line) of the unfiltered (black dotted) EXAFS data (inset) and corresponding Fourier transform of **CmII<sup>R</sup>** (Table S1, Fit 17). Data was fit between  $k = 2-14 \text{ Å}^{-1}$ .

|     |   | Fe-  | N                   |   | Fe-  | 0                     |   | Fe•• | •Fe                   |   | Fe•• | •C                  |       | G   | OF  |
|-----|---|------|---------------------|---|------|-----------------------|---|------|-----------------------|---|------|---------------------|-------|-----|-----|
| Fit | Ν | R(Å) | $\sigma^2(10^{-3})$ | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^2(10^{-3})$ | Eo    | F   | F'  |
| 1   | 6 | 2.10 | 7.61                |   |      |                       |   |      |                       |   |      |                     | -10.3 | 300 | 568 |
| 2   | 5 | 2.10 | 6.23                |   |      |                       |   |      |                       |   |      |                     | -9.53 | 304 | 572 |
| 3   | 4 | 2.11 | 4.81                |   |      |                       |   |      |                       |   |      |                     | -8.82 | 323 | 590 |
| 4   | 3 | 2.11 | 3.31                |   |      |                       |   |      |                       |   |      |                     | -8.22 | 365 | 627 |
| 5   | 3 | 2.12 | 2.60                | 1 | 2.01 | 2.03                  |   |      |                       |   |      |                     | -9.71 | 304 | 572 |
| 6   | 4 | 2.11 | 4.06                | 1 | 1.98 | 4.40                  |   |      |                       |   |      |                     | -11.2 | 288 | 557 |
| 7   | 5 | 2.10 | 4.99                | 1 | 1.94 | 5.01                  |   |      |                       |   |      |                     | -12.8 | 281 | 550 |
| 8   | 4 | 2.11 | 4.03                | 2 | 1.97 | 7.33                  |   |      |                       |   |      |                     | -13.6 | 274 | 544 |
| 9   | 4 | 2.13 | 4.87                | 1 | 2.02 | 4.61                  |   |      |                       | 3 | 3.11 | 4.20                | -8.72 | 257 | 527 |
| 10  | 4 | 2.12 | 4.83                | 1 | 2.01 | 6.35                  |   |      |                       | 3 | 3.14 | 0.93                | -9.05 | 240 | 509 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 2.99 | 3.97                |       |     |     |
| 11  | 4 | 2.12 | 4.76                | 1 | 2.00 | 5.61                  |   |      |                       | 3 | 3.15 | 0.87                | -9.66 | 226 | 493 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 2.99 | 3.68                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 1 | 2.59 | 1.38                |       |     |     |
| 12  | 4 | 2.12 | 4.76                | 1 | 2.01 | 4.90                  | 1 | 3.34 | 9.20                  | 3 | 2.99 | 2.77                | -8.88 | 221 | 487 |
|     |   |      |                     |   |      |                       |   |      |                       | 5 | 3.15 | 2.08                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 1 | 2.60 | 0.85                |       |     |     |
| 13  | 4 | 2.12 | 5.01                | 1 | 2.01 | 5.90                  | 1 | 3.35 | 9.54                  | 5 | 3.15 | 2.62                | -9.10 | 210 | 475 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 2.99 | 3.50                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 1 | 2.60 | 1.41                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 4 | 4.01 | 1.06                |       |     |     |
| 14  | 4 | 2.12 | 4.80                | 1 | 2.00 | 5.54                  |   |      |                       | 5 | 3.13 | 3.88                | -9.61 | 217 | 484 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 2.96 | 4.31                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 1 | 2.60 | 2.07                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 4 | 4.02 | 1.30                |       |     |     |
| 15  | 4 | 2.12 | 4.91                | 1 | 2.01 | 6.72                  | 1 | 3.34 | 9.73                  | 5 | 3.15 | 2.23                | -9.04 | 223 | 490 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 2.99 | 3.16                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 4 | 4.00 | 1.49                |       |     |     |
| 16  | 4 | 2.13 | 5.11                | 1 | 2.02 | 3.96                  | 1 | 3.38 | 10.36                 | 5 | 3.13 | 7.48                | -8.09 | 227 | 495 |
|     |   |      |                     |   |      |                       |   |      |                       | 4 | 4.02 | 1.32                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 1 | 2.61 | 1.36                |       |     |     |
| 17  | 5 | 2.10 | 5.02                | 1 | 1.94 | 5.35                  | 1 | 3.35 | 9.90                  | 1 | 2.58 | 1.35                | -12.0 | 206 | 470 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 2.98 | 2.76                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 5 | 3.14 | 2.48                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 4 | 3.99 | 1.15                |       |     |     |
| 18  | 4 | 2.11 | 4.71                |   |      |                       | 1 | 3.35 | 8.37                  | 1 | 2.60 | 1.08                | -7.27 | 233 | 501 |
|     |   |      |                     |   |      |                       |   |      |                       | 3 | 3.00 | 2.37                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 5 | 3.16 | 1.74                |       |     |     |
|     |   |      |                     |   |      |                       |   |      |                       | 4 | 4.02 | 0.75                |       |     |     |

**Table S1**. Fit parameters for the unfiltered EXAFS data of **CmII**<sup>**R**</sup>, between  $k = 2 - 14 \text{ Å}^{-1}$ . Fit 17 gives the most reasonable fit of the experimental data.

**Table S1 (continued)**. Fit parameters for the unfiltered EXAFS data of **Cmll<sup>R</sup>**, between  $k = 2 - 14 \text{ Å}^{-1}$ . Fit 17 gives the most reasonable fit of the experimental data.

|     | Fe-N |      |                       |   | Fe-O |                       |   | Fe•••Fe |                       |     | Fe•••C |                       |       | GOI |     |  |
|-----|------|------|-----------------------|---|------|-----------------------|---|---------|-----------------------|-----|--------|-----------------------|-------|-----|-----|--|
| Fit | Ν    | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å)    | $\sigma^{2}(10^{-3})$ | Ν   | R(Å)   | $\sigma^{2}(10^{-3})$ | Eo    | F   | F'  |  |
| 19  | 5    | 2.11 | 4.75                  | 1 | 1.94 | 4.36                  | 1 | 3.34    | 8.55                  | 0.5 | 2.58   | -2.50                 | -11.7 | 198 | 462 |  |
|     |      |      |                       |   |      |                       |   |         |                       | 3   | 2.99   | 1.03                  |       |     |     |  |
|     |      |      |                       |   |      |                       |   |         |                       | 5   | 3.14   | 1.15                  |       |     |     |  |
|     |      |      |                       |   |      |                       |   |         |                       | 4   | 3.99   | 3.31                  |       |     |     |  |



**Figure S5**. Fit (red solid line) of the unfiltered (black dotted) EXAFS data (inset) and corresponding Fourier transform of **CmlI**<sup>Ox</sup> (Table S2, Fit 15). Data was fit between k = 2 - 15 Å<sup>-1</sup>.

**Table S2**. Fit parameters for the unfiltered EXAFS data of **CmII**<sup>Ox</sup>, between  $k = 2 - 15 \text{ Å}^{-1}$ . Fit 15 gives the most reasonable fit of the experimental data. The Fe•••C shells at 3.57 and 4.28 Å are consistent with bound His ligands.

|     |   | Fe-  | N                     |   | Fe-  | 0                   |   | Fe•• | •Fe                   |   | Fe•• | •C                  |       | GOF  |     |  |
|-----|---|------|-----------------------|---|------|---------------------|---|------|-----------------------|---|------|---------------------|-------|------|-----|--|
| Fit | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^2(10^{-3})$ | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^2(10^{-3})$ | Eo    | F    | F'  |  |
| 1   | 6 | 2.11 | 10.64                 |   |      |                     |   |      |                       |   |      |                     | 0.50  | 408  | 704 |  |
| 2   | 5 | 2.11 | 8.68                  |   |      |                     |   |      |                       |   |      |                     | 1.22  | 388  | 687 |  |
| 3   | 4 | 2.12 | 6.92                  |   |      |                     |   |      |                       |   |      |                     | 1.88  | 383  | 682 |  |
| 4   | 3 | 2.12 | 5.26                  |   |      |                     |   |      |                       |   |      |                     | 2.46  | 404  | 701 |  |
| 5   | 4 | 2.11 | 6.58                  | 1 | 1.95 | 18.06               |   |      |                       |   |      |                     | -0.27 | 378  | 678 |  |
| 6   | 3 | 2.17 | 2.44                  | 1 | 2.03 | -0.50               |   |      |                       |   |      |                     | 2.26  | 3.57 | 659 |  |
| 7   | 3 | 2.18 | 4.56                  | 2 | 2.04 | 3.92                |   |      |                       |   |      |                     | 1.33  | 388  | 687 |  |
| 8   | 3 | 2.16 | 1.74                  | 2 | 2.02 | 0.74                |   |      |                       |   |      |                     | -2.42 | 331  | 635 |  |
|     |   |      |                       | 1 | 1.84 | 3.15                |   |      |                       |   |      |                     |       |      |     |  |
| 9   | 3 | 2.16 | 1.96                  | 2 | 2.02 | 0.94                | 1 | 3.31 | 2.52                  |   |      |                     | -1.78 | 248  | 550 |  |
|     |   |      |                       | 1 | 1.85 | 3.63                |   |      |                       |   |      |                     |       |      |     |  |
| 10  | 3 | 217  | 2.19                  | 2 | 2.03 | 1.16                | 1 | 3.31 | 2.35                  | 2 | 3.12 | 3.67                | -0.76 | 239  | 538 |  |
|     |   |      |                       | 1 | 1.85 | 4.45                |   |      |                       |   |      |                     |       |      |     |  |
| 11  | 3 | 2.15 | 1.82                  | 2 | 2.01 | 0.98                | 1 | 3.31 | 3.20                  | 2 | 3.07 | 10.44               | -2.85 | 209  | 504 |  |
|     |   |      |                       | 1 | 1.84 | 3.08                |   |      |                       | 3 | 3.57 | 1.14                |       |      |     |  |
| 12  | 3 | 2.16 | 1.77                  | 2 | 2.01 | 0.99                | 1 | 3.32 | 3.53                  | 2 | 3.06 | 9.28                | -2.39 | 190  | 481 |  |
|     |   |      |                       | 1 | 1.84 | 3.22                |   |      |                       | 3 | 3.58 | 0.55                |       |      |     |  |
|     |   |      |                       |   |      |                     |   |      |                       | 3 | 4.29 | 1.07                |       |      |     |  |
| 13  | 3 | 2.15 | 1.79                  | 2 | 2.01 | 0.99                | 1 | 3.32 | 3.22                  | 2 | 3.07 | 10.95               | -2.65 | 191  | 481 |  |
|     |   |      |                       | 1 | 1.84 | 3.16                |   |      |                       | 4 | 3.57 | 1.70                |       |      |     |  |
|     |   |      |                       |   |      |                     |   |      |                       | 3 | 4.29 | 1.18                |       |      |     |  |
| 14  | 3 | 2.17 | 2.10                  | 2 | 2.03 | 1.11                | 1 | 3.31 | 2.40                  | 2 | 3.12 | 3.36                | -0.74 | 230  | 528 |  |
|     |   |      |                       | 1 | 1.85 | 4.28                |   |      |                       | 3 | 4.31 | 3.17                |       |      |     |  |
| 15  | 3 | 2.15 | 1.73                  | 2 | 2.00 | 0.97                | 1 | 3.32 | 3.38                  | 4 | 3.57 | 1.39                | -3.79 | 196  | 488 |  |
|     |   |      |                       | 1 | 1.83 | 2.71                |   |      |                       | 3 | 4.28 | 1.04                |       |      |     |  |



**Figure S6**. Fit (red solid line) of the unfiltered (black dotted) EXAFS data (inset) and corresponding Fourier transform of **CmII**<sup>P</sup> (Table S3, Fit 23). Data was fit between  $k = 2 - 15 \text{ Å}^{-1}$ 

|     |   | Fe-  | N                     |   | Fe-  | 0                     |   | Fe•• | •Fe                   |   | Fe•• | •C                    |       | G   | OF  |
|-----|---|------|-----------------------|---|------|-----------------------|---|------|-----------------------|---|------|-----------------------|-------|-----|-----|
| Fit | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Eo    | F   | F'  |
| 1   | 5 | 2.08 | 12.13                 |   |      |                       |   |      |                       |   |      |                       | 1.63  | 202 | 615 |
| 2   | 4 | 2.09 | 9.45                  |   |      |                       |   |      |                       |   |      |                       | 2.62  | 199 | 610 |
| 3   | 3 | 2.10 | 6.99                  |   |      |                       |   |      |                       |   |      |                       | 3.64  | 211 | 629 |
| 4   | 5 | 2.08 | 9.28                  | 1 | 1.86 | 9.72                  |   |      |                       |   |      |                       | -0.65 | 188 | 594 |
| 5   | 5 | 2.08 | 8.96                  | 2 | 1.86 | 14.71                 |   |      |                       |   |      |                       | -2.53 | 190 | 599 |
| 6   | 4 | 2.10 | 7.67                  | 1 | 1.91 | 9.84                  |   |      |                       |   |      |                       | 0.24  | 187 | 593 |
| 7   | 4 | 2.10 | 7.77                  | 2 | 1.91 | 15.33                 |   |      |                       |   |      |                       | -1.50 | 187 | 592 |
| 8   | 3 | 2.12 | 5.25                  | 1 | 1.97 | 4.90                  |   |      |                       |   |      |                       | 1.71  | 191 | 599 |
| 9   | 3 | 2011 | 6.41                  | 2 | 1.96 | 13.93                 |   |      |                       |   |      |                       | -0.59 | 187 | 593 |
| 10  | 3 | 2.13 | 2.58                  | 2 | 1.98 | 2.05                  |   |      |                       |   |      |                       | -3.21 | 175 | 573 |
|     |   |      |                       | 1 | 1.82 | 3.58                  |   |      |                       |   |      |                       |       |     |     |
| 11  | 3 | 2.12 | 2.10                  | 1 | 1.99 | -0.20                 |   |      |                       |   |      |                       | -3.64 | 176 | 574 |
|     |   |      |                       | 2 | 1.88 | 9.04                  |   |      |                       |   |      |                       |       |     |     |
| 12  | 3 | 2.12 | 2.54                  | 2 | 1.97 | 1.97                  | 1 | 2.83 | 17.88                 |   |      |                       | -3.29 | 172 | 568 |
|     |   |      |                       | 1 | 1.82 | 3.39                  |   |      |                       |   |      |                       |       |     |     |
| 13  | 3 | 2.13 | 2.54                  | 2 | 1.98 | 1.98                  | 1 | 3.37 | 35.99                 |   |      |                       | -3.14 | 175 | 572 |
|     |   |      |                       | 1 | 1.82 | 3.54                  |   |      |                       |   |      |                       |       |     |     |
| 14  | 3 | 2.13 | 3.32                  | 2 | 1.99 | 2.76                  | 1 | 3.11 | 21.89                 |   |      |                       | -2.23 | 154 | 536 |
|     |   |      |                       | 1 | 1.83 | 4.53                  |   |      |                       |   |      |                       |       |     |     |
|     |   |      |                       | 1 | 2.83 | 0.21                  |   |      |                       |   |      |                       |       |     |     |
| 15  | 3 | 2.13 | 2.72                  | 2 | 1.98 | 2.53                  | 1 | 3.29 | 10.99                 | 1 | 3.11 | -2.30                 | -2.29 | 124 | 483 |
|     |   |      |                       | 1 | 1.82 | 4.54                  |   |      |                       |   |      |                       |       |     |     |
|     |   |      |                       | 1 | 2.82 | 3.75                  |   |      |                       |   |      |                       |       |     |     |
| 16  | 3 | 2.14 | 3.22                  | 2 | 1.99 | 3.02                  | 1 | 3.30 | 6.34                  | 3 | 3.12 | 1.69                  | -0.99 | 133 | 499 |
|     |   |      |                       | 1 | 1.83 | 5.44                  |   |      |                       |   |      |                       |       |     |     |
|     |   |      |                       | 1 | 2.84 | 1.50                  |   |      |                       |   |      |                       |       |     |     |
| 17  | 3 | 2.13 | 2.84                  | 2 | 1.98 | 2.50                  | 1 | 3.11 | 7.61                  | 3 | 3.34 | 0.91                  | -2.36 | 122 | 478 |
|     |   |      |                       | 1 | 1.83 | 4.47                  |   |      |                       |   |      |                       |       |     |     |
|     |   |      |                       | 1 | 2.83 | 1.23                  |   |      |                       |   |      |                       |       |     |     |
| 18  | 3 | 2.13 | 2.41                  | 2 | 1.98 | 1.98                  | 1 | 3.34 | 4.23                  | 3 | 3.14 | 4.38                  | -2.40 | 118 | 469 |
|     |   |      |                       | 1 | 1.82 | 3.80                  |   |      |                       | 3 | 3.55 | 1.85                  |       |     |     |
|     |   |      |                       | 1 | 2.82 | 1.81                  |   |      |                       |   |      |                       |       |     |     |
| 19  | 3 | 2.12 | 6.25                  | 2 | 1.96 | 12.77                 | 1 | 3.30 | 5.03                  | 3 | 3.12 | 1.55                  | 0.43  | 130 | 494 |
|     |   |      |                       | 1 | 2.85 | 1.14                  |   |      |                       | 3 | 3.49 | 9.49                  |       |     |     |
| 20  | 3 | 2.13 | 1.98                  | 2 | 1.97 | 1.52                  | 1 | 3.33 | 2.88                  | 3 | 3.15 | 2.58                  |       |     |     |
|     |   |      |                       | 1 | 1.8  | 3.09                  |   |      |                       |   |      |                       |       |     |     |
| 21  | 3 | 2.13 | 2.81                  | 2 | 1.98 | 2.45                  | 1 | 3.1  | 7.66                  | 3 | 3.34 | 0.90                  | -2.42 | 118 | 470 |
|     |   |      |                       | 1 | 1.82 | 4.36                  |   |      |                       | 3 | 3.78 | 23.62                 |       |     |     |
|     |   |      |                       | 1 | 2.83 | 1.22                  |   |      |                       |   |      |                       |       |     |     |

**Table S3**. Fit parameters for the unfiltered EXAFS data of **Cmll<sup>P</sup>**, between  $k = 2 - 15 \text{ Å}^{-1}$ . Fit 23 gives the most reasonable fit of the experimental data.

|     |   | Fe-  | N                   |     | Fe-  | C                     |   | Fe•• | •Fe                   |   | Fe•• | •C                  |       | G   | OF  |
|-----|---|------|---------------------|-----|------|-----------------------|---|------|-----------------------|---|------|---------------------|-------|-----|-----|
| Fit | Ν | R(Å) | $\sigma^2(10^{-3})$ | Ν   | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^{2}(10^{-3})$ | Ν | R(Å) | $\sigma^2(10^{-3})$ | Eo    | F   | F'  |
| 22  | 3 | 2.13 | 2.47                | 2   | 1.98 | 2.03                  | 1 | 3.34 | 4.44                  | 3 | 3.14 | 4.84                | -2.11 | 109 | 451 |
|     |   |      |                     | 1   | 1.83 | 3.93                  |   |      |                       | 3 | 3.56 | 1.65                |       |     |     |
|     |   |      |                     | 1   | 2.82 | 1.54                  |   |      |                       | 3 | 4.39 | 4.64                |       |     |     |
| 23  | 3 | 2.13 | 2.50                | 2   | 1.98 | 2.09                  | 1 | 3.35 | 4.47                  | 3 | 3.14 | <b>4.87</b>         | -1.86 | 111 | 456 |
|     |   |      |                     | 1   | 1.83 | 4.05                  |   |      |                       | 3 | 3.56 | 1.46                |       |     |     |
|     |   |      |                     | 1   | 2.82 | 1.50                  |   |      |                       | 3 | 4.28 | 5.12                |       |     |     |
| 24  | 3 | 2.13 | 2.43                | 2   | 1.97 | 1.95                  | 1 | 3.12 | 8.77                  | 3 | 3.34 | 0.43                | -3.59 | 116 | 465 |
|     |   |      |                     | 1   | 1.82 | 3.50                  |   |      |                       | 3 | 3.54 | 8.78                |       |     |     |
|     |   |      |                     | 1   | 2.82 | 1.47                  |   |      |                       | 3 | 4.08 | 14.75               |       |     |     |
| 25  | 3 | 2.14 | 2.89                | 2   | 1.99 | 2.52                  | 1 | 3.57 | 7.75                  | 3 | 3.12 | 4.61                | -177  | 113 | 459 |
|     |   |      |                     | 1   | 1.83 | 4.66                  |   |      |                       | 3 | 3.34 | 1.43                |       |     |     |
|     |   |      |                     | 1   | 2.82 | 0.98                  |   |      |                       | 3 | 3.97 | 5.76                |       |     |     |
| 26  | 3 | 2.13 | 2.05                | 2   | 1.98 | 1.66                  | 1 | 3.33 | 3.03                  | 3 | 3.15 | 2.90                | -2.79 | 130 | 493 |
|     |   |      |                     | 1   | 1.82 | 3.51                  |   |      |                       | 3 | 3.54 | 1.85                |       |     |     |
|     |   |      |                     |     |      |                       |   |      |                       | 3 | 4.25 | 4.99                |       |     |     |
| 27  | 3 | 2.14 | 3.25                | 2   | 1.99 | 3.03                  | 1 | 3.30 | 6.45                  | 3 | 3.12 | 1.71                | -0.87 | 131 | 496 |
|     |   |      |                     | 1   | 1.84 | 5.59                  |   |      |                       | 3 | 4.29 | 8.00                |       |     |     |
|     |   |      |                     | 1   | 2.84 | 1.43                  |   |      |                       |   |      |                     |       |     |     |
| 28  | 3 | 2.14 | 3.38                | 2   | 1.99 | 2.97                  |   |      |                       | 3 | 3.09 | 3.59                | -1.24 | 142 | 516 |
|     |   |      |                     | 1   | 1.84 | 5.24                  |   |      |                       | 3 | 3.60 | 2.10                |       |     |     |
|     |   |      |                     | 1   | 2.83 | 0.17                  |   |      |                       | 3 | 4.30 | 5.64                |       |     |     |
| 29  | 3 | 2.14 | 2.81                | 2   | 1.99 | 2.37                  | 1 | 3.36 | 4.55                  | 3 | 3.15 | 7.15                | -1.70 | 111 | 456 |
|     |   |      |                     | 1   | 1.83 | 4.56                  |   |      |                       | 3 | 3.57 | 0.86                |       |     |     |
|     |   |      |                     | 0.5 | 2.82 | -1.50                 |   |      |                       | 3 | 4.28 | 4.91                |       |     |     |

**Table S3 (continued)**. Fit parameters for the unfiltered EXAFS data of **CmII**<sup>P</sup>, between  $k = 2 - 15 \text{ Å}^{-1}$ . Fit 23 gives the most reasonable fit of the experimental data. The Fe•••C shells at 3.14, 3.56 and 4.28 Å are consistent with bound His ligands.

| Species            | K-edge (eV) | Peak Position (eV) | Peak Area (units) | Ratio |
|--------------------|-------------|--------------------|-------------------|-------|
| CmlI <sup>R</sup>  | 7122.1      | 7113.0             | 0.14              | 0.1   |
|                    |             | 7113.1             | 6.7               | 4.4   |
|                    |             | 7114.8             | 1.5               | 1.0   |
|                    |             |                    | Total = 8.3       |       |
| CmlI <sup>Ox</sup> | 7124.1      | 7113.4             | 4.9               | 1.0   |
|                    |             | 7115.0             | 9.6               | 2.0   |
|                    |             |                    | Total = 14.5      |       |
| CmlI <sup>P</sup>  | 7124.9      | 7113.7             | 5.1               | 1.0   |
|                    |             | 7114.9             | 14.1              | 2.8   |
|                    |             |                    | Total = 19.2      |       |

| Table S4. Co | mponent Analy | vsis of Pre-e | dge Features | of CmlI | Intermediates. |
|--------------|---------------|---------------|--------------|---------|----------------|
|              |               |               |              |         |                |



**Figure S7**. Full resonance Raman spectra for **CmlI**<sup>Ox</sup> (top) and **CmlI**<sup>P</sup> (bottom) in H<sub>2</sub><sup>16</sup>O (black), H<sub>2</sub><sup>18</sup>O (red) and D<sub>2</sub><sup>16</sup>O (blue).  $\lambda_{ex} = 561$  nm, Power = ~100 mW. All spectra were collected in solution at ~4 °C. Protein concentration ~1 mM for each sample, 50 mM Bicine pH/pD = 9. H<sub>2</sub><sup>18</sup>O enrichment of the samples was ~60%. All spectra were normalized to the sharp protein feature at 1002 cm<sup>-1</sup> marked with #. Removal of the fluorescence background affected the normalization such that the intensities of the resonance Raman peaks are not necessarily comparable. The peak marked with \* is an artifact of the fluorescence background subtraction.