Supporting Information

I. Supplemental Optimization Table S1	S-2
II. General Information	S-2
III. Preparation of Starting Materials	S-3
IV. Preparation of [Cp*Co(MeCN) ₃][SbF ₆] ₂	S-4
V. Preparation of Alkene 5a	S-4
VI. Procedures for Co(III)-Catalyzed Three-Component Synthesis of Alkenyl Halides	S-5
VII. Mechanism Experiments	S-25
VIII. X-Ray Crystallographic Data	S-36
IX. References	S-46
X. NMR Data	S-47

I. Supplemental Optimization Table S1:

Entry	Variation from the standard conditions	Yield 4a (%)	Yield 5a (%)	Yield (%)
1	None	70 (71) ^c	17	< 5
2	No catalyst	0	0	< 5
3	No additive	27	3	< 5
4	AcOH (10 mol %)	38	47	< 5
5	LiOAc (20 mol %)	67	8	< 5
6	Run at 60 °C	53	11	< 5
7	Run at 1.0 M	43	8	< 5
8	In 1,2-DCE	64	27	< 5
9	In THF	57	15	< 5
10	$[Cp^*Co(C_6H_6)][B(C_6F_5)]_2 \ (10 \ mol \ \%)$ as catalyst system	3	0	< 5
11	$[\mbox{Cp*Co(CO)I}_2]$ (10 mol %) and \mbox{AgSbF}_6 (20 mol %) as catalyst system	24	4	< 5
12	$[\mbox{Cp*RhCl}_2]_2$ (5 mol %) and \mbox{AgSbF}_6 (20 mol %) as catalyst system	8	3	< 5
13	No 2a			59 ^d
14	No 3a		30%	
15	No 3a , AcOH (10 mol %)		92% ^e	

^aConditions: **1a**, (1.0 equiv), **2a** (1.2 equiv), **3a** (1.5 equiv) using above parameters. ^bYields determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as an external standard. ^cIsolated yield based for a 0.2 mmol scale reaction. ^dAnother mono-iodinated product was also detected as a minor product, but the structure was not elucidated. ^eIsolated yield based on a 0.4 mmol scale reaction.

II. General Information:

Unless otherwise indicated, all Co(III)-catalyzed reactions were set up in a N₂ filled glovebox, using glassware that was oven-dried (150 °C) and evacuated while hot prior to use. Unless otherwise indicated, all reactions for substrate preparation were carried out on the benchtop under a N₂ atmosphere. Solvents were purified by elution through a column of activated alumina under N₂ before use. Unless otherwise noted, all reagents were purchased from commercial sources and used without further purification. Microwave vials and caps were purchased from Biotage with part numbers 351521 and 352298 respectively. Products and starting materials were visualized on TLC using UV-light or by staining with KMnO₄ or p-anisaldehyde. The diastereoselectivity and regioselectivity of the reactions was evaluated by NMR analysis of unpurified material. Flash-

column chromatography was preformed on SiliaFlash® P60 (230-400 mesh) silica gel, and preparative thin-layer chromatrography with plates from Analtech (1 mm SiO₂, 20 x 20 cm). NMR chemical shifts are reported in ppm relative to CDCl₃ (7.26 ppm for ¹H and 77.16 ppm for ¹³C). For IR spectra, only partial data are provided. Melting points are reported uncorrected. High-resolution mass spectra (HRMS) were obtained using electrospray ionization (ESI) on a time of flight (TOF) mass spectrometer.

III. Preparation of Starting Materials:

Catalysts/Additives:

 $[Cp*RhCl_2]_{2,S1}$ $[Cp*Co(C_6H_6)][B(C_6F_5)_4]_{2,S2}$ $[Cp*Co(C_6H_6)][PF_6]_{2,S3}$ $[Cp*Co(CO)I_2]_{3,S4}$ were each synthesized according to literature procedures. Lithium acetate was dried under high vacuum at 75 °C for 20 h.

Substrates:

Tert-butyldimethyl(pent-4-yn-1-yloxy)silane,^{S5} ethyl hex-5-ynoate,^{S6} *N*,*N*-dimethyl-1*H*-pyrrole-1-carboxamide,^{S7} 1-(*m*-tolyl)-1*H*-pyrazole,^{S8} and 5-vinylidenenonane^{S9} were each synthesized according to literature procedures. All other C–H activation substrates were purchased from commercial sources and used without further purification.

IV. Preparation of [Cp*Co(MeCN)₃][SbF₆]₂:

In an N₂-filled glove box, to a suspension of $[Cp*Co(CO)I_2]^{S4}$ (4.76 g, 10.0 mmol) in dried MeCN (25 mL) in a 250 mL single necked round bottom flask, a solution of AgSbF₆ (6.53 g, 19.0 mmol) in dried MeCN (25 mL) was added in 5 mL portions over ca. 5 min, causing AgI to precipitate immediately. The reaction flask was sealed with a rubber septa, removed from the glove box, and the reaction mixture was stirred with a N₂ inlet at 23 °C in a water bath for 3 h. Then the solid was filtered through celite in air to remove AgI and washed with MeCN (3 × 50 mL, 200 mL total volume). The product complex was then precipitated via the rapid addition of Et₂O (800 mL) and a purple solid precipitated immediately. The purple solid was collected by filtration under vacuum using a medium fritted funnel in air, washed with CH₂Cl₂ (3 × 50 mL) and Et₂O (2 × 50 mL), collected and dried under reduced pressure to furnish the product as a purple solid (5.97 g, 7.57 mmol, 80%). The analytical data for this compound are consistent with previously reported data.^{S10}

V. Preparation of Alkene 5a:

Procedure for Synthesis of (*E*)**-pyrrolidin-1-yl(2-styrylthiophen-3-yl)methanone:**

In a N₂-filled glove box, a 2.0–5.0 mL microwave vial was charged with $[Cp*Co(MeCN)_3][SbF_6]_2$ (31.6 mg, 0.0400 mmol, 0.10 equiv). Following this, a 0.0200 mM solution of acetic acid in 1,4-dioxane was prepared by adding 12.0 mg (0.200 mmol) of acetic acid to 10.0 mL of 1,4-dioxane. Then 2.0 mL of this solution was added to the solid mixture, followed by 2.0 mL of 1,4-dioxane (10 mol % total acetic acid relative to the C–H activation substrate, 4.0 mL of total solvent). Pyrrolidin-1-yl(thiophen-3-yl)methanone **1a** (72.5 mg, 0.400 mmol, 1.0 equiv) and

ethynylbenzene (49.0 mg, 0.480 mmol, 1.2 equiv) were then added successively. The reaction vial was equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glove box. The reaction solution was stirred at 40 °C in an oil bath for 20 h. The reaction vial was then uncapped, and the reaction mixture was concentrated followed by through a silica plug using ~ 20 mL of ethyl acetate as the eluent. After concentration, the residue was purified by silica gel chromatography eluting with a 30:60:10 acetone: hexanes: CH₂Cl₂ to afford the desired product **5a** as a yellow oil (104.5 mg, 92% yield). IR (film): 2971, 2874, 1611, 1518, 1430, 954, 715, 691 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.5 Hz, 2H), 7.39–7.31 (m, 3H), 7.26-7.23 (m, 1H), 7.13 (d, *J* = 5.2 Hz, 1H), 7.02 (d, *J* = 5.2 Hz, 1H), 6.97 (d, *J* = 16.2 Hz, 1H), 3.67 (t, *J* = 6.9 Hz, 2H), 3.32 (t, *J* = 6.6 Hz, 2H), 1.97–1.92 (m, 2H), 1.88–1.82 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 165.67, 141.70, 136.69, 135.45, 130.39, 128.76, 128.06, 127.12, 126.69, 123.71, 120.31, 48.77, 46.00, 26.20, 24.60; HRMS (ESI/[M+H]+) calcd. for C₁₇H₁₈NOS⁺: 284.1104. Found 284.1088.

VI. Procedures for Co(III)-Catalyzed Three-Component Synthesis of Alkenyl Halides:

General Procedure:

In a N₂-filled glove box, a 2.0–5.0 mL microwave vial was charged with $[Cp*Co(MeCN)_3][SbF_6]_2$ (15.8 mg, 0.0200 mmol, 0.10 equiv) and halogenating agent **3** (0.300 mmol, 1.5 equiv). Following this, a 0.0200 mM solution of acetic acid in 1,4-dioxane was prepared by adding 12.0 mg (0.200 mmol) of acetic acid to 10.0 mL of 1,4-dioxane. Then 250 µL of this solution was added to the solid mixture, followed by 1.75 mL of 1,4-dioxane (2.5 mol % total acetic acid relative to C–H activation partner **1**, 2 mL of total solvent). The indicated C–H bond partner **1** (0.200 mmol, 1.0 equiv) and alkyne **2** (0.240 mmol, 1.2 equiv) were then added successively. The reaction vial was then equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glove box. The reaction solution was stirred at 40 °C in an oil bath for 20 h. The reaction vial was then uncapped, and the reaction mixture was concentrated followed by eluting the resulting residue through a silica plug using ~ 20 mL of ethyl acetate as the eluent. After concentration, the residue was purified by the chromatographic method and eluent indicated in the specific procedure to afford the desired product.

(Z)-(2-(2-Iodo-2-phenylvinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4a): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and N-iodosuccinimide (NIS) (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product 4a (58.5 mg, 71% yield) as a yellow oil. IR (film): 2969, 2873, 1610, 1504, 1486, 1425, 718, 692 cm⁻ ¹; ¹H NMR (500 MHz, CDCl₃) δ 7.67 (s, 1H), 7.55 (d, J = 8.2 Hz, 2H), 7.35–7.31 (m, 3H), 7.28 (d, J = 7.0 Hz, 1H), 7.13 (d, J = 5.2 Hz, 1H), 3.62 (t, J = 6.8 Hz, 2H), 3.30 (t, J = 6.4 Hz, 2H),1.96–1.91 (m, 2H), 1.88–1.83 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 165.87, 144.30, 139.90, 138.87, 129.74, 128.96, 128.70, 128.47, 125.94, 125.30, 101.47, 48.88, 46.04, 26.22, 24.61; HRMS (ESI/[M+H]+) calcd. for C₁₇H₁₇INOS⁺: 410.0070. Found 410.0082.

(Z)-(2-(2-Bromo-2-phenylvinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4b): Slightly modified conditions: Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and *N*-bromosuccinimide

(NBS) (53.4 mg, 0.300 mmol, 1.5 equiv). For this reaction 1 mL of acetic acid stock solution was added along with 1 mL of dioxane (10 mol % total acetic acid relative to the C–H activation partner **1a**, 2 mL total solvent). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂ to afford product **4b** (48.1 mg, 66% yield) as a yellow-orange oil. IR (film): 2971, 2876, 1611, 1509, 1426, 1363, 719, 691 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.78 (s, 1H), 7.63 (d, *J* = 7.5 Hz, 2H), 7.38–7.35 (m, 3H), 7.32 (t, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 5.2 Hz, 1H), 3.65 (t, *J* = 6.4 Hz, 2H), 3.31 (t, *J* = 6.2 Hz, 2H), 1.97–1.92 (m, 2H), 1.88–1.84 (m, 2H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 165.92, 140.33, 139.14, 138.08, 128.93, 128.56, 127.90, 126.27, 125.74, 123.62, 122.13, 48.94, 46.09, 26.24, 24.62; HRMS (ESI/[M+H]+) calcd. for C₁₇H₁₇BrNOS⁺: 362.0209. Found 362.0200.

(Z)-(2-(2-Iodo-2-(4-methoxyphenyl)vinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4c): Slightly modified conditions: Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), 1-ethynyl-4-methoxybenzene (31.7 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). For this reaction 0.5 mL of acetic acid stock solution was added along with 1.5 mL of dioxane (5 mol % total acetic acid relative to the C-H activation partner 1a, 2 mL total solvent). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **4c** (52.5 mg, 60% yield) as a yellow oil. IR (film): 2968, 2875, 1601, 1503, 1428, 1248, 1172, 828 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.57 (s, 1H), 7.49 (d, *J* = 8.8 Hz, 2H), 7.31 (d, *J* = 5.2 Hz, 1H), 7.11 (d, *J* = 5.2 Hz, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 3.82 (s, 3H), 3.62 (t, *J* = 6.9 Hz, 2H), 3.30 (t, *J* = 6.6 Hz, 2H), 1.96–1.90 (m, 2H), 1.88–1.83 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 165.99, 160.05, 139.44, 139.13, 136.88, 130.24, 128.33, 125.90, 124.98, 113.75, 101.66, 55.55, 48.87, 46.04, 26.22, 24.62.; HRMS (ESI/[M+H]+) calcd. for C₁₈H₁₉INO₂S⁺: 440.0176. Found 440.0185.

(Z)-(2-(2-Iodo-2-(p-tolyl)vinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4d): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), 1-ethynyl-4methylbenzene (27.9 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~ 0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **4d** (54.1 mg, 64% yield) as a yellow oil. IR (film): 2971, 2874, 1609, 1502, 1426, 1362, 816, 720 cm⁻ ¹; ¹H NMR (600 MHz, CDCl₃) δ 7.62 (s, 1H), 7.44 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 5.2 Hz, 1H), 7.14–7.12 (m, 3H), 3.62 (t, J = 7.3 Hz, 2H), 3.29 (t, J = 6.9 Hz, 2H), 2.36 (s, 3H), 1.94–1.92 (m, 2H), 1.86–1.84 (m, 2H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 165.95, 141.52, 139.70, 138.92, 138.82, 129.12, 128.96, 128.84, 125.89, 125.16, 101.82, 48.86, 46.03, 26.20, 24.62, 21.22; HRMS (ESI/[M+H]+) calcd. for C₁₈H₁₉INOS⁺: 424.0227. Found 424.0233.

(Z)-(2-(4-Chlorophenyl)-2-iodovinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (**4e**): Derived from pyrrolidin-1-vl(thiophen-3-vl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), 1chloro-4-ethynylbenzene (32.8 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **4e** (60.3 mg, 68% yield) as a yellow waxy solid. IR (film): 2966, 2876, 1603, 1483, 1429, 1089, 826, 721 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.67 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 5.1 Hz, 1H), 7.29 (d, J = 8.5 Hz, 2H), 7.13 (d, J = 5.2 Hz, 1H), 3.62 (t, J = 6.9 Hz, 2H), 3.30 $(t, J = 6.6 \text{ Hz}, 2\text{H}), 1.95-1.91 \text{ (m, 2H)}, 1.88-1.83 \text{ (m, 2H)}; {}^{13}\text{C}{}^{1}\text{H} \text{NMR} (151 \text{ MHz}, \text{CDCl}_3): \delta$ 165.73, 142.78, 139.94, 138.80, 134.56, 130.15, 128.54, 126.00, 125.52, 99.47, 48.94, 46.09, 26.23, 24.58; HRMS (ESI/[M+H]+) calcd. for C₁₇H₁₆ClINOS⁺: 443.9680. Found 443.9675.

Methyl (Z)-3-(1-iodo-2-(3-(pyrrolidine-1-carbonyl)thiophen-2-yl)vinyl)benzoate (4f): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), methyl 3-ethynylbenzoate (38.4 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5

equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product 4f (54.7 mg, 58% yield) as a yellow waxy solid. IR (film): 2969, 2873, 1718, 1603, 1436, 1278, 1209, 722 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 8.17 (s, 1H), 7.94 (d, J = 7.8, 1H), 7.72 (d, J = 7.8 Hz, 1H), 7.66 (s, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.37 (d, J = 5.2 Hz, 1H), 7.15 (d, J = 5.2 Hz, 1H), 3.93 (s, 3H), 3.62 (t, J = 7.0 Hz, 2H), 3.32 (t, J = 6.6 Hz, 2H), 1.97–1.93 (m, 2H), 1.90–1.86 (m, 2H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 166.60, 165.76, 144.76, 140.20, 138.47, 133.10, 130.60, 130.45, 130.00, 129.67, 128.67, 126.06, 125.67, 99.50, 52.42, 48.94, 46.12, 26.22, 24.60; HRMS (ESI/[M+H]+) calcd. for C₁₉H₁₉INO₃S⁺: 468.0125. Found 468.0121.

(Z)-(2-(2-Iodo-2-(thiophen-3-yl)vinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4g): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), 3ethynylthiophene (26.0 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **4g** (46.3 mg, 56% yield) as a yellow oil. IR (film): 3100, 2969, 2873, 1607, 1426, 1360, 1232, 717 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.84 (s, 1H), 7.47 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.37 (dd, *J* = 5.0, 3.1 Hz, 1H), 7.33–7.32 (m, 2H), 7.13 (d, *J* = 5.2 Hz, 1H), 3.66–3.63 (m, 2H), 3.31–3.29 (m, 2H), 1.96–1.94 (m, 2H), 1.87–1.85 (m, 2H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 165.91, 145.09, 139.49, 138.87, 127.96, 126.47, 126.39, 126.24, 126.03, 125.51, 94.10, 48.94, 46.12, 26.24, 24.65; HRMS (ESI/[M+H]+) calcd. for C₁₅H₁₅INOS₂⁺: 415.9634. Found 415.9637.

(*Z*)-(2-(2-Iodohex-1-en-1-yl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4h): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), hex-1-yne (19.7 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂ to afford product 4h (66.5 mg, 85% yield) as a yellow oil. IR (film): 2954, 2928, 2871, 1614, 1425, 1361, 1232, 717 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.23 (d, *J* = 5.2 Hz, 1H), 7.20 (s, 1H), 7.05 (d, *J* = 5.2 Hz, 1H), 3.62 (t, *J* = 7.0 Hz, 2H), 3.26 (t, *J* = 6.7 Hz, 2H), 2.68 (d, *J* = 7.2 Hz, 2H), 1.96–1.91 (m, 2H), 1.87–1.83 (m, 2H), 1.59–1.54 (m, 2H), 1.36–1.29 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 165.99, 138.47, 138.19, 126.82, 125.66, 124.49, 108.06, 48.75, 47.37, 45.97, 32.07, 26.19, 24.64, 21.47, 14.00; HRMS (ESI/[M+H]+) calcd. for C₁₅H₂₁INOS⁺: 390.0383. Found 390.0380.

(Z)-(2-(2-Iodo-4-methylpent-1-en-1-yl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4i): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), 4methylpent-1-yne (19.7 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 40:50:10 mixture of acetone: hexanes: CH₂Cl₂ to afford product 4i (65.7 mg, 84% yield) as a yellow oil. IR (film): 2953, 2870, 1615, 1427, 1362, 1239, 844, 718 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.23 (d, J =5.2 Hz, 1H), 7.15 (s, 1H), 7.05 (d, J = 5.2 Hz, 1H), 3.62 (t, J = 7.0 Hz, 2H), 3.25 (t, J = 6.7 Hz, 2H), 2.52 (dd, J = 7.1, 0.8 Hz, 2H), 2.08–2.00 (m, 1H), 1.95–1.90 (m, 2H), 1.87–1.82 (m, 2H), 0.91 (d, J = 6.6 Hz, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 166.00, 138.35, 138.28, 127.66, 125.65, 124.59, 107.31, 56.37, 48.72, 45.96, 28.38, 26.16, 24.65, 21.61; HRMS (ESI/[M+H]+) calcd. for C₁₅H₂₁INOS⁺: 390.0383 Found 390.0385.

(Z)-(2-(2-Iodo-4-phenylbut-1-en-1-yl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4j): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), but-3-yn-1-ylbenzene (31.2 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone: hexanes: CH₂Cl₂ to afford product 4j (64.6 mg, 74% yield) as a yellow oil. IR (film): 2971, 2874, 1614, 1427, 1361, 1336, 718, 698 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.24 (m, 3H), 7.21–7.16 (m, 3H), 7.12 (s, 1H), 7.04 (d, *J* = 4.9 Hz, 1H), 3.58 (t, *J* = 6.5 Hz, 2H), 3.09 (t, *J* = 6.1 Hz, 2H), 3.00–2.98 (m, 2H), 2.93–2.90 (m, 2H), 1.91–1.87 (m, 2H), 1.82–1.78 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 165.89, 140.32, 138.58, 138.04, 128.80, 128.46, 127.63, 126.24, 125.71, 124.70, 105.98, 49.67, 48.59, 45.91, 36.26, 26.14, 24.56; HRMS (ESI/[M+H]+) calcd. for C₁₉H₂₁INOS⁺: 438.0383. Found 438.0382.

(Z)-(2-(2-Cyclohexyl-2-iodovinyl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4k): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), ethynylcyclohexane (26.0 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone: hexanes: CH₂Cl₂ to afford product 4k (64.6 mg, 74% yield) as a yellow oil. IR (film): 2925, 2851, 1613, 1426, 1358, 1238, 844, 717 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.34 (s, 1H), 7.23 (d, *J* = 5.2 Hz, 1H), 7.07 (d, *J* = 5.2 Hz, 1H), 3.64 (t, *J* = 6.7 Hz, 2H), 3.28 (t, *J* = 6.3 Hz, 2H), 2.16–2.11 (m, 1H), 1.98–1.93 (m, 2H), 1.89–1.79 (m, 6H), 1.69–1.66 (m, 1H), 1.44–1.31 (m, 4H), 1.22–1.14 (m, 1H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 166.11, 139.07, 138.30, 125.75, 124.89, 124.44, 117.14, 53.28, 48.80, 46.05, 34.07, 26.27, 26.00, 25.99, 24.69; HRMS (ESI/[M+H]+) calcd. for C₁₇H₂₃INOS⁺: 416.0540. Found 416.0565.

Tert-butyl (*Z*)-(3-iodo-4-(3-(pyrrolidine-1-carbonyl)thiophen-2-yl)but-3-en-1-yl)carbamate (4l): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), *tert*-butyl but-3-yn-1-ylcarbamate (40.6 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂to afford product 4l (76.0 mg, 80% yield) as a yellow oil. IR (film): 3324 (br), 2974, 2879, 1696, 1609, 1433, 1363, 1164 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.26 (m, 2H), 7.07 (d, *J* = 5.2 Hz, 1H), 4.76 (s, 1H), 3.61 (t, *J* = 6.8 Hz, 2H), 3.36–3.35 (m, 2H), 3.28 (t, *J* = 6.5 Hz, 2H), 2.85 (t, *J* = 6.2 Hz, 2H), 1.96–1.91 (m, 2H), 1.89–1.83 (m, 2H), 1.41 (s, 9H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 165.66, 155.93, 138.59, 138.52, 129.14, 125.86, 124.85, 103.53, 48.84, 47.52, 46.06, 40.42, 29.38, 28.50, 26.24, 24.57; HRMS (ESI/[M+H]+) calcd. for C₁₈H₂₆IN₂O₃S⁺: 477.0703. Found 477.0722.

(*Z*)-(2-(2-Iodo-3-methoxyprop-1-en-1-yl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4m): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), 3methoxyprop-1-yne (16.8 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 70:20:10 mixture of ethyl ether:pentane:CH₂Cl₂ to afford product 4m (63.0 mg, 83% yield) as a yellow oil. IR (film): 2973, 2875, 2822, 1611, 1428, 1359, 1104, 718 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (s, 1H), 7.30 (d, *J* = 5.2 Hz, 1H), 7.09 (d, *J* = 5.2 Hz, 1H), 4.25 (s, 2H), 3.63 (t, *J* = 6.9 Hz, 2H), 3.35 (s, 3H), 3.26 (t, *J* = 6.6 Hz, 2H), 1.97–1.91 (m, 2H), 1.88–1.83 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 165.66, 139.37, 137.62, 128.24, 125.90, 125.41, 101.83, 82.00, 57.77, 48.82, 46.03, 26.21, 24.60; HRMS (ESI/[M+H]+) calcd. for C_{13H17}INO₂S⁺: 378.0019. Found 378.0010.

(*Z*)-(2-(5-((*Tert*-butyldimethylsilyl)oxy)-2-iodopent-1-en-1-yl)thiophen-3-yl)(pyrrolidin-1yl)methanone (4n): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), *tert*-butyldimethyl(pent-4-yn-1-yloxy)silane^{S5} (47.6 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂ to afford product 4n (85.9 mg, 85% yield) as a yellow oil. IR (film): 3408 (br), 2951, 2855, 1611, 1429, 1250, 1095, 833 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.24–7.23 (m, 2H), 7.06 (d, *J* = 5.2 Hz, 1H), 3.64–3.61 (m, 4H), 3.26 (t, *J* = 6.7 Hz, 2H), 2.78–2.75 (m, 2H), 1.96–1.91 (m, 2H), 1.88–1.78 (m, 4H), 0.88 (s, 9H), 0.04 (s, 6H); ¹³C {¹H} NMR (126 MHz, CDCl₃): δ 165.90, 138.49, 138.29, 127.14, 125.78, 124.52, 107.37, 61.60, 48.76, 45.97, 44.33, 33.30, 26.22, 26.08, 24.63, 18.41, -5.14; HRMS (ESI/[M+H]+) calcd. for C₂₀H₃₃INO₂SSi⁺: 506.1040. Found 506.1027.

Ethyl (*Z*)-5-iodo-6-(3-(pyrrolidine-1-carbonyl)thiophen-2-yl)hex-5-enoate (4o): Derived from pyrrolidin-1-yl(thiophen-3-yl)methanone 1a (36.3 mg, 0.200 mmol, 1.0 equiv), ethyl hex-5-ynoate^{S6} (33.6 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂ to afford product 4o (81.4 mg, 91% yield) as a yellow-orange waxy solid. IR (film): 2974, 2876, 1726, 1615, 1429, 1232, 1180, 718 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.24 (m, 2H), 7.05 (d, *J* = 5.3 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.61 (t, *J* = 7.0 Hz, 2H), 3.26 (t, *J* = 6.7 Hz, 2H), 2.72 (t, *J* = 7.3 Hz, 2H), 2.30 (t, *J* = 7.5 Hz, 2H), 1.96–1.89 (m, 4H), 1.88–1.83 (m, 2H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 173.12, 165.82, 138.48, 138.24, 127.82, 125.72, 124.69, 106.00, 60.48, 48.78, 46.73, 45.98, 32.70, 26.18, 25.15, 24.59, 14.34; HRMS (ESI/[M+H]+) calcd. for C₁₇H₂3INO₃S⁺: 448.0438. Found 448.0429.

(Z)-(2-(2-Iodohex-1-en-1-yl)-5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone (4p): Derived from (5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone 1b (39.0 mg, 0.200 mmol, 1.0 equiv), hex-1-yne (19.7 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂to afford product 4p (68.9 mg, 85% yield) as a yellow oil. IR (film): 2954, 2927, 2871, 1615, 1452, 1407, 1352, 769 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.11 (s, 1H), 6.71 (s, 1H), 3.60 (t, *J* = 7.0 Hz, 2H), 3.27 (t, *J* = 6.7 Hz, 2H), 2.65 (t, *J* = 7.4 Hz, 2H), 2.43 (s, 3H), 1.95–1.90 (m, 2H), 1.87–1.82 (m, 2H), 1.57–1.52 (m, 2H), 1.35–1.28 (m, 2H), 0.90 (t, *J* = 7.4 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃): δ 166.08, 139.31, 138.37, 135.87, 126.96, 123.85, 106.20, 48.70, 47.29, 45.88, 32.09, 26.16, 24.66, 21.47, 15.41, 14.00; HRMS (ESI/[M+H]+) calcd. for C₁₆H₂₃INOS⁺: 404.0540. Found 404.0533.

(Z)-(5-Chloro-2-(2-iodohex-1-en-1-yl)thiophen-3-yl)(pyrrolidin-1-yl)methanone (4q): Derived from (5-chlorothiophen-3-yl)(pyrrolidin-1-yl)methanone 1c (43.1 mg, 0.200 mmol, 1.0 equiv), hex-1-yne (19.7 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂ to afford product 4q (63.4 mg, 75% yield) as a yellow oil. IR (film): 2955, 2929, 2871, 1618, 1432, 1409, 1222, 837 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.15 (s, 1H), 6.90 (s, 1H), 3.60 (t, *J* = 7.0 Hz, 2H), 3.28 (t, *J* = 6.7 Hz, 2H), 2.65 (t, *J* = 7.4 Hz, 2H), 1.96–1.91 (m, 2H), 1.89–1.85 (m, 2H), 1.57–1.52 (m, 2H), 1.35–1.28 (m, 2H), 0.91 (t, *J* = 7.4 Hz, 3H); ¹³C {¹H} NMR (151 MHz, CDCl₃): δ 164.64, 137.31, 136.91, 129.16, 126.52, 124.58, 108.20, 48.76, 47.30, 46.05, 32.06, 26.19, 24.61, 21.48, 13.98; HRMS (ESI/[M+H]+) calcd. for C₁₅H₂₀ClINOS⁺: 423.9993. Found 424.0002.

(Z)-(2-(2-Iodo-2-phenylvinyl)furan-3-yl)(pyrrolidin-1-yl)methanone (4r): Slightly modified conditions: Derived from furan-3-yl(pyrrolidin-1-yl)methanone 1d (33.0 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). For this reaction 0.5 mL of acetic acid stock solution was added along with 1.5 mL of dioxane (5 mol % total acetic acid relative to the C–H activation partner 1d, 2 mL total solvent). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed

with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated. The residual material was then purified through silica gel chromatography eluting with a 50:50 mixture of ethyl acetate/hexanes to afford product **4r** (35.2 mg, 45% yield) as a yellow oil. IR (film): 2972, 2875, 1605, 1478, 1442, 1419, 722, 692 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.68 (s, 1H), 7.56 (d, *J* = 7.8 Hz, 2H), 7.50 (s, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 6.60 (s, 1H), 3.57 (t, *J* = 6.4 Hz, 2H), 3.49 (t, *J* = 6.1 Hz, 2H), 1.92–1.88 (m, 4H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 163.66, 150.82, 144.46, 141.37, 128.91, 128.81, 128.34, 124.94, 122.21, 111.01, 99.62, 48.93, 46.39, 26.53, 24.42; HRMS (ESI/[M+H]+) calcd. for C₁₇H₁₇INO₂⁺: 394.0298. Found 394.0294.

(Z)-2-(2-Iodo-2-phenylvinyl)-*N*-methylthiophene-3-carboxamide (4s): Derived from Nmethylthiophene-3-carboxamide 1e (28.2 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product 4s (37.6 mg, 51% yield) as an off-white solid (mp: 117-118 °C). IR (film): 3272 (br), 3043, 2924, 1623, 1542, 1295, 752, 678 cm^{-1} ; ¹H NMR (500 MHz, CDCl₃) δ 8.22 (s, 1H), 7.60 (d, J = 7.2 Hz, 2H), 7.35–7.31 (m, 3H), 7.30–7.27 (m, 1H), 7.23 (d, J = 5.3 Hz, 1H), 6.00 (s, 1H), 2.95 (d, J = 4.9 Hz, 3H); ¹³C{¹H} NMR

(126 MHz, CDCl₃): δ 165.35, 144.15, 142.47, 136.45, 130.45, 129.09, 128.84, 128.49, 126.42, 125.14, 104.04, 26.85; HRMS (ESI/[M+H]+) calcd. for C₁₄H₁₃INOS⁺: 369.9757. Found 369.9763.

(*Z*)-2-(2-Iodohex-1-en-1-yl)-*N*-isopropylthiophene-3-carboxamide (4t): Slightly modified conditions: Derived from *N*-isopropylthiophene-3-carboxamide 1f (33.8 mg, 0.200 mmol, 1.0 equiv), hex-1-yne (19.7 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). For this reaction 1 mL of acetic acid stock solution was added along with 1 mL of dioxane (10 mol % total acetic acid relative to the C–H activation substrate 1f, 2 mL total solvent). The product was then purified by silica gel chromatography eluting with a 30:60:10 mixture of acetone:hexanes:CH₂Cl₂ to afford product 4t (47.3 mg, 63% yield) as an off-white solid (mp: 102–103 °C). IR (film): 3285 (br), 2953, 2868, 1625, 1535, 1455, 1281, 696 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.23–7.20 (m, 2H), 5.73 (d, *J* = 6.1 Hz, 1H), 4.28–4.18 (m, 1H), 2.73 (t, *J* = 7.4 Hz, 2H), 1.64–1.58 (m, 2H), 1.40–1.32 (m, 2H), 1.23 (d, *J* = 6.6 Hz, 6H), 0.94 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 163.72, 141.75, 135.59, 127.47, 126.71, 124.39, 111.33, 47.40, 41.86, 32.08, 23.00, 21.65, 14.05; HRMS (ESI/[M+H]+) calcd. for C₁₄H₂₁INOS⁺: 378.0383. Found 378.0380.

(Z)-2-(2-Iodo-2-phenylvinyl)-N,N-dimethyl-1*H*-pyrrole-1-carboxamide (4u): Slightly modified conditions: Derived from *N*,*N*-dimethyl-1*H*-pyrrole-1-carboxamide^{S7} 1g (41.4 mg, 0.300 mmol, 1.5 equiv), ethynylbenzene (20.4 mg, 0.200 mmol, 1.0 equiv), and NIS (49.5 mg, 0.220 mmol, 1.1 equiv). Lithium acetate (2.7 mg, 0.041 mmol, 0.2 equiv) was used in place of acetic acid, and the reaction was heated at 60 °C. The product was then purified by silica gel chromatography eluting with a 95:5 mixture of CH₂Cl₂:ethyl acetate to afford product 4u (44.7 mg, 61% yield) as a yellow-orange oil. IR (film): 2929, 1681, 1487, 1441, 1385, 1272, 1060, 724

cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 7.5 Hz, 2H), 7.36 (d, *J* = 2.8 Hz, 1H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.26 (t, *J* = 7.0 Hz, 1H), 7.10 (s, 1H), 6.92 (s, 1H), 6.34 (t, *J* = 2.9 Hz, 1H), 2.98 (s, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 154.37, 144.50, 131.12, 128.81, 128.42, 128.40, 126.59, 121.57, 112.21, 110.01, 99.12, 38.19; HRMS (ESI/[M+H]+) calcd. for C₁₅H₁₆IN₂O⁺: 367.0302. Found 367.0306.

(Z)-1-(2-(2-Iodo-2-phenylvinyl)phenyl)-1H-pyrazole (4v): Derived from 1-phenyl-1Hpyrazole **1h** (28.8 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified first by silica gel chromatography using a 10:90 mixture of ethyl acetate/hexanes to give a yellow oil that was then purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~ 0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **4v** (38.1 mg, 51% yield) as a light yellow oil. IR (film): 2921, 2849, 1516, 1491, 1442, 1392, 748, 692 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.73 (d, J = 1.6 Hz, 1H), 7.71 (d, J = 2.3 Hz, 1H), 7.68 (dd, J = 7.2, 1.2 Hz, 1H), 7.57 (dd, J = 7.8, 1.4 Hz, 1H), 7.51–7.44 (m, 4H), 7.34–7.28 (m, 3H), 6.90 (s, 1H), 6.43 (t, J = 2.1Hz. 1H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 143.14, 141.00, 139.00, 134.93, 134.31, 131.28, 130.81, 129.18, 128.93, 128.80, 128.46, 127.66, 125.23, 107.40, 106.93; HRMS (ESI/[M+H]+) calcd. for C₁₇H₁₄IN₂⁺: 373.0196. Found 373.0189.

(Z)-1-(2-(2-Iodo-2-phenylvinyl)-5-methylphenyl)-1H-pyrazole (4w): Derived from 1-(mtolyl)-1*H*-pyrazole^{S8} **1i** (31.6 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~ 0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product 4w (57.2 mg, 74% yield) as a yellow oil. IR (film): 2919, 1516, 1442, 1400, 1036, 750, 692, 618 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.72 (s, 1H), 7.70 (s, 1H), 7.59 (d, J = 7.9 Hz, 1H), 7.50 (d, J = 7.4 Hz, 2H), 7.41 (s, 1H), 7.33–7.26 (m, 4H), 6.85 (s, 1H), 6.42 (s, 1H), 2.45 (s, 3H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 143.21, 140.87, 139.54, 138.84, 134.86, 131.26, 131.12, 130.51, 128.81, 128.78, 128.41, 128.36, 125.71, 106.95, 106.81, 21.35; HRMS (ESI/[M+H]+) calcd. for C₁₈H₁₆IN₂⁺: 387.0353. Found 387.0354.

(Z)-1-(2-(2-Bromo-2-phenylvinyl)-5-methylphenyl)-1H-pyrazole (4x): Slightly modified conditions: Derived from 1-(*m*-tolyl)-1*H*-pyrazole^{S8} 1i (31.6 mg, 0.200 mmol, 1.0 equiv), ethynylbenzene (24.5 mg, 0.240 mmol, 1.2 equiv), and N-bromosuccinimide (NBS) (53.4 mg, 0.300 mmol, 1.5 equiv). For this reaction 1 mL of acetic acid stock solution was added along with 1 mL of dioxane (10 mol % total acetic acid relative to the C-H activation partner 1i, 2 mL total solvent). The product was then purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product 4x (51.8 mg, 76% yield) as a light yellow oil. IR (film): 2920, 1614, 1516, 1443, 1036, 949, 751, 692 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 1.4 Hz, 1H), 7.68 (d, J = 2.2 Hz, 1H), 7.58–7.56 (m, 2H), 7.40 (s, 1H), 7.37–7.32 (m, 3H), 7.27–7.26 (m, 1H), 7.02 (s, 1H), 6.42 (t, J = 2.0 Hz, 1H), 2.44 (s, 3H); ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 140.93, 140.12, 139.44, 139.20, 131.31, 130.48, 129.02, 128.47, 128.45, 128.37, 127.86, 126.85, 126.73, 125.87, 106.82, 21.32; HRMS (ESI/[M+H]+) calcd. for C₁₈H₁₆BrN₂⁺: 339.0491. Found 339.0494.

(2-(3-Butyl-2-iodohept-2-en-1-yl)-5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone (9a): Slightly modified conditions: Derived from (5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone **1b** (39.0 mg, 0.200 mmol, 1.0 equiv), 5-vinylidenenonane^{S9} (36.5 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). Reaction was run at 60 °C. The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **9a** (61.7 mg, 65% yield) as a yellow oil. IR (film): 2954, 2927, 2870, 1621, 1417, 1226, 1168, 769 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) 6.60 (s, 1H), 4.14 (s, 2H), 3.57 (t, J = 7.0 Hz, 2H), 3.44 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H), 2.29–2.26 (m, 2H), 2.24–2.22 (m, 2H), 1.94–1.90 (m, 2H), 1.87–1.83 (m, 2H), 1.43–1.37 (m, 4H), 1.36–1.28 (m, 4H), 0.94–0.88 (m, 6H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 166.04, 146.91, 140.89, 137.94, 135.22, 123.89, 100.54, 49.12, 45.80, 42.22, 40.62, 31.78, 31.33, 29.88, 26.36, 24.67, 22.88, 22.87, 15.44, 14.14, 14.08; HRMS (ESI/[M+H]+) calcd. for C₂₁H₃₃INOS⁺: 474.1322. Found 474.1329.

(2-(2-Iodo-3-methylbut-2-en-1-yl)-5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone (9b): Slightly modified conditions: Derived from (5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone **1b** (39.0 mg, 0.200 mmol, 1.0 equiv), 3-methylbuta-1,2-diene (16.4 mg, 0.241 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). Reaction was run at 60 °C. The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product **9b** (39.1 mg, 50% yield) as a yellow oil. IR (film): 2918, 2874, 1615, 1490, 1418, 1125, 768, 728 cm⁻¹; ¹H NMR (500 MHz, $CDCl_3$) 6.59 (s, 1H), 4.16 (s, 2H), 3.56 (t, J = 6.9 Hz, 2H), 3.41 (t, J = 6.6 Hz, 2H), 2.39 (s, 3H), 1.95-1.89 (m, 8H), 1.87-1.82 (m, 2H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 166.08, 140.13, 138.46, 137.86, 135.10, 123.88, 98.90, 49.11, 45.80, 40.77, 31.72, 26.34, 24.68, 19.85, 15.39; HRMS (ESI/[M+H]+) calcd. for C₁₅H₂₁INOS⁺: 390.0383. Found 390.0384.

(2-(2-Cyclohexylidene-2-iodoethyl)-5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone (9c): Slightly modified conditions: Derived from (5-methylthiophen-3-yl)(pyrrolidin-1-yl)methanone **1b** (39.0 mg, 0.200 mmol, 1.0 equiv), vinylidenecyclohexane (26.0 mg, 0.240 mmol, 1.2 equiv), and NIS (67.5 mg, 0.300 mmol, 1.5 equiv). Reaction was run at 60 °C. The product was purified by C18 reverse phase column chromatography with loading of the isolated material onto a C18 precolumn, transferring with ~ 0.3 mL of DMSO. The vial with the residual material was then washed 2x with ~0.2 mL of DMSO and loaded onto the precolumn to ensure full transfer of material. The precolumn was then hooked up to a 250 mL vacuum jacketed erlenmeyer flask and reduced pressure was used to pull the all material into the precolumn. The precolumn was then connected to the reverse phase instrument and purification was performed with 15.5 g of reverse phase media and a 100 column volume gradient from 10 to 90% CH₃CN:H₂O containing 0.1% TFA. Fractions containing product were combined and diluted with sat. aq. NaHCO₃ (100 mL) and extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were then washed with brine (100 mL), dried over Na₂SO₄, and concentrated to afford product 9c (55.2 mg, 64% yield) as a yellow oil. IR (film): 2925, 2853, 1615, 1490, 1418, 1223, 912, 728 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 6.60 (s, 1H), 4.22 (s, 2H), 3.58 (t, J = 6.9 Hz, 2H), 3.43 (t, J = 6.6 Hz, 2H), 2.44–2.43 (m, 2H), 2.39–2.38 (m, 5H), 1.95–1.90 (m, 2H), 1.87–1.82 (m, 2H), 1.56 (m, 6H); ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 166.05, 145.76, 140.53, 137.83, 135.20, 123.97, 96.79, 49.09, 45.82, 42.24, 40.40, 31.00, 27.92, 27.58, 26.52, 26.39, 24.69, 15.37; HRMS (ESI/[M+H]+) calcd. for C₁₈H₂₅INOS⁺: 430.0696. Found 430.0691.

VII. Mechanism Experiments:

Procedure for the synthesis of (2-bromothiophen-3-yl)(pyrrolidin-1-yl)methanone:

In a 50 mL RB flask, 2-bromothiophene-3-carboxylic acid (828 mg, 4.00 mmol, 1.0 equiv) was added along with a stir bar. The flask was flushed with nitrogen, followed by the addition of excess thionyl chloride (4 mL). The mixture was then refluxed at 85 °C for 30 min, and was then allowed to cool back to rt. The mixture was then concentrated in the same flask, leaving the acid chloride as a tan-colored solid. The flash was then flushed with nitrogen again, followed by the addition of dichloromethane (10 mL). The solution was cooled to 0 °C in an ice-bath, followed by the dropwise addition of pyrrolidine (0.40 mL, 4.9 mmol, 1.2 equiv). After 1 min, triethylamine (0.70 mL, 5.0 mmol, 1.2 equiv) was added dropwise, and stirring was continued for 5 min. After 5 min, the ice-bath was removed to allow the mixture to warm to rt, with stirring for an additional 2 h. The mixture was then transferred to a separatory funnel and the organic layer was washed with water (1x), sat. NaHCO₃ solution (1x), and brine (1x) successively. The organic layer was then dried over Na₂SO₄ and was concentrated. The residual oil was then dissolved in a minimal amounts of ethyl acetate (~5 mL) and purified by silica gel chromatography using ethyl acetate as the eluent. After concentration of the combined fractions, the desired amide was obtained (930 mg, 89%) as a white solid (mp: 48–49 °C). IR (film): 3066, 2966, 2881, 1610, 1527, 1435, 1392, 735 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) 7.25 (d, J = 5.7 Hz, 1H), 6.94 (d, J = 5.7 Hz, 1H), 3.62 (t, J = 6.9 Hz, 2H), 3.33 (t, J = 6.7 Hz, 2H), 1.97–1.93 (m, 2H), 1.91–1.87 (m, 2H); ¹³C{¹H} NMR (151 MHz, CDCl₃): δ 164.16, 138.84, 127.29, 126.79, 110.58, 48.10, 45.87, 26.08, 24.60; HRMS (ESI/[M+H]+) calcd. for C₉H₁₁BrNOS⁺: 259.9739. Found 259.9737.

Procedure for the synthesis of pyrrolidin-1-yl(thiophen-3-yl-2-d)methanone:

In a 50 mL RB flask, (2-bromothiophen-3-yl)(pyrrolidin-1-yl)methanone (520 mg, 2.00 mmol, 1.0 equiv) was added along with a stir bar. The flask was flushed with nitrogen, followed by the addition of diethyl ether (10 mL). The mixture was then cooled to -78 °C, followed by dropwise addition of *n*-BuLi (2.5 M solution in hexanes, 1.2 mL, 3.0 mmol, 1.5 equiv). The mixture was stirred for 15 min, followed by the addition of CD₃OD (0.41 mL, 10 mmol, 5 equiv). The mixture was then allowed to warm to rt and was stirred for 1 h. The reaction was then quenched with sat. NH₄Cl solution, and resulting mixture was extracted with ethyl acetate (3x). The combined organic layers were washed with brine (1x), dried over Na₂SO₄, and concentrated. The residual oil was dissolved in minimal amounts of ethyl acetate (~5 mL) and purified by silica gel chromatography using ethyl acetate as the eluent. After concentration of the combined fractions, the desired amide **1a-D** was obtained (299 mg, 82%) as a white solid (mp: 70–71 °C). IR (film): 3081, 2872, 1581, 1504, 1434, 1348, 1333, 729 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) 7.35 (d, *J* = 5.0 Hz, 1H), 7.27 (d, *J* = 5.0 Hz, 1H), 3.62 (t, *J* = 6.5 Hz, 2H), 3.57 (t, *J* = 6.2 Hz, 2H), 1.94–1.89 (m, 4H); ¹³C {¹H} NMR (126 MHz, CDCl₃): δ 164.44, 137.99, 127.77, 127.09 (t, *J* = 28.5 Hz), 125.23, 49.27, 46.57, 26.61, 24.38; HRMS (ESI/[M+H]+) calcd. for C₉H₁₁DNOS⁺: 183.0697. Found 183.0690.

Subjecting two-component product 5a to NIS under optimal reaction conditions

In a N₂-filled glove box, a 2.0–5.0 mL microwave vial was charged with [Cp*Co(MeCN)₃][SbF₆]₂ (7.9 mg, 0.010 mmol, 0.10 equiv) and *N*-iodosuccinimide (NIS) (33.8 mg, 0.150 mmol, 1.5 equiv).

Following this, a 0.0200 mM solution of acetic acid in 1,4-dioxane was prepared by adding 12.0 mg (0.200 mmol) of acetic acid to 10.0 mL of 1,4-dioxane. Then 125 μ L of this solution was added to the solid mixture, followed by 0.875 mL of 1,4-dioxane (2.5 mol % total acetic acid relative to two-component product **5a**, 1 mL of total solvent). The two-component product **5a** (28.3 mg, 0.0999 mmol, 1.0 equiv) was then added, and the reaction vial was equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glove box. The reaction solution was stirred at 40 °C in an oil bath for 20 h. The reaction vial was then uncapped and transferred with dichloromethane (20 mL) to a 125 mL separatory funnel containing 75 mL of a sat. NaHCO3 solution, and immediately extracted. The aqueous layer was further extracted 3x with fresh dichloromethane (20 mL), and the combined organic layers were then dried over Na₂SO₄, and concentrated. The concentrated mixture was then charged with a 11.3 mg of 1,3,5-trimethoxybenzene as external standard and the mixture was then analyzed by ¹H NMR using CDCl₃ to analyze the amounts of two-component product **5a** and three-component product **4a** present. (The crude NMR is shown below in red, with red arrows indicating peaks for **5a** with the superimposed spectra in blue for product **4a**.)

Subjecting 1b, 1-hexyne, and NIS under optimal reaction conditions in the presence of twocomponent product 5a

In a N₂-filled glove box, a 2.0–5.0 mL microwave vial was charged with [Cp*Co(MeCN)₃][SbF₆]₂ (7.9 mg, 0.010 mmol, 0.10 equiv) and **3a**, N-iodosuccinimide (NIS) (33.8 mg, 0.150 mmol, 1.5 equiv). Following this, a 0.0200 mM solution of acetic acid in 1,4-dioxane was prepared by adding 12.0 mg (0.200 mmol) of acetic acid to 10.0 mL of 1,4-dioxane. Then 125 µL of this solution was added to the solid mixture, followed by 0.875 mL of 1,4-dioxane (2.5 mol % total acetic acid relative to C–H bond partner **1b**, 1 mL of total solvent). The two-component product **5a** (27.3 mg, 0.0963 mmol, 0.96 equiv) was then added, followed by the addition of 1b (19.5 mg, 0.0999 mmol, 1.0 equiv) and 1-hexyne (9.9 mg, 0.12 mmol, 1.2 equiv). The reaction vial was equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glove box. The reaction solution was stirred at 40 °C in an oil bath for 20 h. The reaction vial was then uncapped and transferred with dichloromethane (20 mL) to a 125 mL separatory funnel containing 75 mL of a sat. NaHCO₃ solution, and immediately extracted. The aqueous layer was further extracted 3x with fresh dichloromethane (20 mL), and the combined organic layers were then dried over Na₂SO₄, and concentrated. The concentrated mixture was then charged with a 11.5 mg of 1,3,5trimethoxybenzene as external standard and the mixture was then analyzed by ¹H NMR using CDCl₃ to analyze the amounts of two-component product 5a and three-component product 4p present. (The crude NMR is shown below in red, with green arrows indicating peaks for product 4p, and red arrows indicating peaks for 5a.)

Subjecting 1a-D under optimal reaction conditions for a shortened reaction time

In a N₂-filled glove box, a 2.0–5.0 mL microwave vial was charged with $[Cp*Co(MeCN)_3][SbF_6]_2$ (15.8 mg, 0.0200 mmol, 0.10 equiv) and *N*-iodosuccinimide (NIS) (67.5 mg, 0.300 mmol, 1.5 equiv). Following this, a 0.0200 mM solution of acetic acid in 1,4-dioxane was prepared by adding 12.0 mg (0.200 mmol) of acetic acid to 10.0 mL of 1,4-dioxane. Then 250 µL of this solution was added to the solid mixture, followed by 1.75 mL of 1,4-dioxane (2.5 mol% total acetic acid relative)

to C–H bond partner **1a-D**, 2 mL of total solvent). This was then followed by the addition of **1a-D** (36.5 mg, 0.200 mmol, 1.0 equiv) and 1-hexyne (19.7 mg, 0.240 mmol, 1.2 equiv). The reaction vial was equipped with a magnetic stir bar, sealed with a microwave cap, and taken outside the glove box. The reaction solution was stirred at 40 °C in an oil bath for 1 h. The reaction vial was then uncapped and transferred with dichloromethane (20 mL) to a 125 mL separatory funnel containing 75 mL of a sat. NaHCO₃ solution, and immediately extracted. The aqueous layer was further extracted 3x with fresh dichloromethane (20 mL), and the combined organic layers were then dried over Na₂SO₄, and concentrated. The concentrated mixture was then charged with a 13.1 mg of 1,3,5-trimethoxybenzene as external standard and each mixture was then analyzed by ¹H NMR using CDCl₃ to analyze the amounts of **1a-D**, **1a**, and three-component product **4h** present. (The crude NMR is shown below in red, with green arrows indicating peaks for **1a-D**. The blue superimposed spectra is shown for **1a** with blue arrows indicating specific peaks.)

Initial rate measurements and KIE determination

In a N₂-filled glovebox a 0.200 mM solution of acetic acid in 1,4-dioxane was prepared by adding 12.0 mg of acetic acid to 10.0 mL of 1,4-dioxane. Following this, an oven-dried scintillation vial was charged [Cp*Co(MeCN)₃][SbF₆]₂ (39.5 mg, 0.0501 mmol, 0.10 equiv) and N-iodosuccinimide (NIS) (168.8 mg, 0.7503 mmol, 1.5 equiv). To the solid mixture was added 625 µL of the 0.200 mM acetic acid in dioxane solution followed by 4.375 mL of 1.4-dioxane (2.5 mol % total acetic acid relative to the C-H activation coupling partner, 5 mL of total solvent system added). This mixture was shaken for 1 minute to fully dissolve the catalyst and NIS. At this point the indicated C–H bond partner **1a** or **1a-D** (0.500 mmol, 1.0 equiv [exact amounts shown in table below]) and 1-hexyne (49.3 mg, 0.600 mmol, 1.2 equiv), were added successively. The vial was then capped and shaken for about 15 seconds to ensure homogeneity. Following this, the 5 mL mixture was pipetted into five separate oven-dried 2.0–5.0 mL microwave vials containing stir bars (exactly 1 mL of the reaction solution to each vial, 0.100 mmol scale with respect to **1a** or **1a-D**). The vials were capped with a microwave cap and taken out of the glove box, and the reaction mixtures were stirred in a preset oil bath at 26 °C. At a given time point, one vial was removed at 15 min, 30 min, 45 min, 60 min, or 75 min, was uncapped and the reaction solution was transferred with dichloromethane (20 mL) to a 125 mL separatory funnel containing 75 mL of a sat. NaHCO₃ solution, and immediately extracted. The aqueous layer was further extracted 3x with fresh dichloromethane (20 mL), and the combined organic layers were then dried over Na₂SO₄, and concentrated. The concentrated mixtures were then charged with a known amount of 1,3,5-trimethoxybenzene as external standard and each

mixture was then analyzed by ¹H NMR using CDCl₃ as the solvent to obtain NMR yields of the three-component product **4h**.

Raw Data for three-component addition of 1a					
First Run (Amount of la added = 90.5 mg)					
Time (min)	Amount of Std (mg)	Yield of Product (%)			
0	0	0			
15	10.7	3.60			
30	12.2	8.04			
45	10.8	11.5			
60	10.4	14.9			
75	14.0	17.9			
Second Run (Amount of la added = 90.8 mg)					
Time (min)	Amount of Std (mg)	Yield of Product (%)			
0	0	0			
15	11.3	3.21			
30	11.5	8.83			
45	12.8	11.7			
60	11.3	15.1			
75	12.3	19.0			
Average of both runs					
Time (min)	Yield of Product (%)	Standard Deviation (%)			
0	0	0			
15	3.41	0.276			
30	8.44	0.559			
45	11.6	0.141			
60	15.0	0.141			
75	18.5	0.778			

Raw Data for three-component addition of la-D					
First Run (Amount of 1a-D added = 91.0 mg)					
Time (min)	Amount of Std (mg)	Yield of Product (%)			
0	0	0			
15	10.5	2.65			
30	11.0	4.07			
45	13.0	5.69			
60	12.2	7.33			
75	12.4	8.82			
Second Run	(Amount of la-D add	ded = 91.4 mg)			
Time (min)	Amount of Std (mg)	Yield of Product (%)			
0	0	0			
15	19.4	2.35			
30	10.6	3.66			
45	14.5	5.19			
60	14.0	6.23			
75	14.2	8.29			
Average of both runs					
Time (min)	Yield of Product (%)	Standard Deviation (%)			
0	0	0			
15	2.50	0.212			
30	3.87	0.290			
45	5.44	0.354			
60	6.78	0.778			
75	8.56	0.375			

Initial rates for 1a	
Slope First Run	0.2464
Slope Second Run	0.2562
Average Slope	0.2513
Standard Deviation	0.006930
Initial rates for 1a-D	
Slope First Run	0.1228
Slope Second Run	0.1110
Average Slope	0.1169
Standard Deviation	0.008344
KIE	2.15
Standard Deviation	0.164

VIII. X-Ray Crystallographic Data:

Single crystals of **4s** were obtained by layering of diethyl ether (~1 mL) to a concentrated solution of product **4s** in dichloromethane (roughly 10 mg in 0.05 mL). The mixture was allowed to slowly evaporate to yield the desired crystals.

Experimental

Low-temperature diffraction data (ω -scans) were collected on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu K α (λ = 1.54178 Å) for the structure of **4s**. The diffraction images were processed and scaled using Rigaku Oxford Diffraction software (CrysAlisPro; Rigaku OD: The Woodlands, TX, 2015). The structure was solved with SHELXT and was refined against F² on all data by full-matrix least squares with SHELXL (Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122). All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). The only exception is H1, which was found in the difference map and semi-freely refined with and N-H distance restraint of 0.88(2) Å. The full numbering scheme of compound **4s** can be found in the full details of the X-ray structure determination (CIF), which is included as Supporting Information. CCDC number 1548918 (**4s**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Figure 1. The complete numbering scheme of **4s** with 50% thermal ellipsoid probability levels. The hydrogen atoms are shown as circles for clarity.

Figure 2. The Fourier difference map of total electron density in **4s** ($0.8e/Å^3$ isolines) highlights the plane of the amide {N1 H1 O1}, excluding contributions from H3 so as to show its effective position.

Figure 3. The hydrogen bonding in **4s** with all atoms shown as circles for clarity. The hydrogen bond interaction is highlighted with a dashed line.

Identification code	007b-17010		
Empirical formula	C14 H12 I N O S		
Formula weight	369.21		
Temperature	93(2) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 4.9263(4) Å	α= 82.007(6)°.	
	b = 11.5372(8) Å	β= 82.519(7)°.	
	c = 12.1743(9) Å	$\gamma = 79.760(7)^{\circ}$.	
Volume	670.34(9) Å ³		
Z	2		
Density (calculated)	1.829 Mg/m ³		
Absorption coefficient	20.113 mm ⁻¹		
F(000)	360		
Crystal size	0.200 x 0.010 x 0.010 mm ³		
Theta range for data collection	3.688 to 68.326°.		
Index ranges	-5<=h<=5, -13<=k<=13, -14<=l<=14		
Reflections collected	18612		
Independent reflections	2359 [R(int) = 0.1119]		
Completeness to theta = 67.684°	97.3 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	1.00000 and 0.62092		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	2359 / 1 / 169		
Goodness-of-fit on F ²	1.166		
Final R indices [I>2sigma(I)]	R1 = 0.0858, wR2 = 0.2324		
R indices (all data)	R1 = 0.0934, wR2 = 0.2476		
Extinction coefficient	0.0067(15)		
Largest diff. peak and hole	1.951 and -2.890 e.Å ⁻³		

Table 1. Crystal data and structure refinement for 4s.

	Х	У	Z	U(eq)
I(1)	4655(2)	-18(1)	7451(1)	52(1)
S (1)	7581(6)	1200(2)	9234(2)	44(1)
O(1)	3568(14)	5113(6)	8180(7)	42(2)
N(1)	7846(18)	5452(8)	8381(8)	39(2)
C(1)	1190(30)	1472(12)	5411(11)	58(3)
C(2)	-570(30)	1875(14)	4584(13)	65(4)
C(3)	-2070(30)	2998(13)	4509(11)	57(3)
C(4)	-1710(30)	3768(13)	5265(11)	55(3)
C(5)	50(20)	3376(11)	6094(10)	49(3)
C(6)	1580(20)	2197(10)	6167(10)	45(3)
C(7)	3430(20)	1838(9)	7072(10)	41(2)
C(8)	4290(20)	2612(9)	7629(9)	37(2)
C(9)	6110(20)	2507(9)	8503(9)	39(2)
C(10)	6910(20)	3462(9)	8855(9)	36(2)
C(11)	8780(20)	3123(10)	9699(10)	42(2)
C(12)	9290(20)	1945(11)	9993(10)	44(3)
C(13)	5953(19)	4728(9)	8439(9)	36(2)
C(14)	7180(20)	6715(10)	8014(10)	44(3)

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for **4s**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

I(1)-C(7)	2.122(10)
S(1)-C(12)	1.728(12)
S(1)-C(9)	1.731(10)
O(1)-C(13)	1.245(12)
N(1)-C(13)	1.348(12)
N(1)-C(14)	1.455(13)
N(1)-H(1)	0.88(2)
C(1)-C(6)	1.379(18)
C(1)-C(2)	1.390(19)
C(1)-H(1A)	0.9500
C(2)-C(3)	1.37(2)
C(2)-H(2)	0.9500
C(3)-C(4)	1.41(2)
C(3)-H(3)	0.9500
C(4)-C(5)	1.391(16)
C(4)-H(4)	0.9500
C(5)-C(6)	1.430(17)
C(5)-H(5)	0.9500
C(6)-C(7)	1.488(14)
C(7)-C(8)	1.346(15)
C(8)-C(9)	1.459(13)
C(8)-H(8)	0.9500
C(9)-C(10)	1.372(15)
C(10)-C(11)	1.437(14)
C(10)-C(13)	1.491(14)
C(11)-C(12)	1.344(17)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(12)-S(1)-C(9)	92 3(5)
C(12) - S(1) - C(2) C(13) - N(1) - C(14)	$\frac{92.3(3)}{1214(8)}$
$C(13)^{-1}(1)^{-}C(14)$	121.4(0)

Table 3. Bond lengths [Å] and angles $[\circ]$ for **4s**.

C(13)-N(1)-H(1)	122(9)
C(14)-N(1)-H(1)	117(9)
C(6)-C(1)-C(2)	121.6(13)
C(6)-C(1)-H(1A)	119.2
C(2)-C(1)-H(1A)	119.2
C(3)-C(2)-C(1)	121.4(13)
C(3)-C(2)-H(2)	119.3
C(1)-C(2)-H(2)	119.3
C(2)-C(3)-C(4)	118.6(12)
C(2)-C(3)-H(3)	120.7
C(4)-C(3)-H(3)	120.7
C(5)-C(4)-C(3)	120.5(13)
C(5)-C(4)-H(4)	119.8
C(3)-C(4)-H(4)	119.8
C(4)-C(5)-C(6)	120.2(12)
C(4)-C(5)-H(5)	119.9
C(6)-C(5)-H(5)	119.9
C(1)-C(6)-C(5)	117.7(10)
C(1)-C(6)-C(7)	125.0(11)
C(5)-C(6)-C(7)	117.3(11)
C(8)-C(7)-C(6)	123.8(9)
C(8)-C(7)-I(1)	121.1(7)
C(6)-C(7)-I(1)	115.1(8)
C(7)-C(8)-C(9)	134.9(9)
C(7)-C(8)-H(8)	112.6
C(9)-C(8)-H(8)	112.6
C(10)-C(9)-C(8)	123.5(9)
C(10)-C(9)-S(1)	110.4(8)
C(8)-C(9)-S(1)	126.1(8)
C(9)-C(10)-C(11)	112.8(9)
C(9)-C(10)-C(13)	125.0(9)
C(11)-C(10)-C(13)	122.2(9)
C(12)-C(11)-C(10)	113.0(10)
С(12)-С(11)-Н(11)	123.5
C(10)-C(11)-H(11)	123.5
C(11)-C(12)-S(1)	111.5(8)

С(11)-С(12)-Н(12)	124.2
S(1)-C(12)-H(12)	124.2
O(1)-C(13)-N(1)	121.3(9)
O(1)-C(13)-C(10)	123.4(9)
N(1)-C(13)-C(10)	115.3(8)
N(1)-C(14)-H(14A)	109.5
N(1)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
N(1)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for **4s**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
59(1)	40(1)	60(1)	-1(1)	-28(1)	-10(1)
47(2)	37(1)	51(2)	4(1)	-26(1)	-10(1)
28(3)	42(4)	61(5)	1(3)	-22(3)	-9(3)
34(4)	35(4)	53(5)	3(4)	-20(4)	-12(4)
70(8)	53(7)	60(7)	-6(6)	-34(7)	-14(6)
79(9)	71(9)	62(8)	-1(7)	-35(7)	-38(8)
53(7)	69(9)	52(7)	15(6)	-28(6)	-15(6)
45(6)	70(8)	55(7)	0(6)	-26(5)	-11(6)
41(6)	61(7)	51(6)	-2(5)	-21(5)	-14(5)
31(5)	55(6)	51(6)	16(5)	-21(5)	-13(5)
28(5)	34(5)	57(6)	2(4)	-17(4)	8(4)
33(5)	35(5)	49(6)	5(4)	-25(4)	-12(4)
35(5)	39(5)	46(6)	5(4)	-22(4)	-7(4)
31(5)	37(5)	42(5)	3(4)	-17(4)	-10(4)
36(5)	42(6)	50(6)	-2(5)	-19(5)	-7(4)
45(6)	46(6)	45(6)	8(5)	-24(5)	-10(5)
29(5)	36(5)	47(5)	4(4)	-18(4)	-15(4)
	U ¹¹ 59(1) 47(2) 28(3) 34(4) 70(8) 79(9) 53(7) 45(6) 41(6) 31(5) 28(5) 33(5) 35(5) 31(5) 35(5) 31(5) 36(5) 45(6) 29(5)	U^{11} U^{22} 59(1)40(1)47(2)37(1)28(3)42(4)34(4)35(4)70(8)53(7)79(9)71(9)53(7)69(9)45(6)70(8)41(6)61(7)31(5)55(6)28(5)34(5)33(5)35(5)35(5)39(5)31(5)37(5)36(5)42(6)45(6)46(6)29(5)36(5)	U^{11} U^{22} U^{33} 59(1)40(1)60(1)47(2)37(1)51(2)28(3)42(4)61(5)34(4)35(4)53(5)70(8)53(7)60(7)79(9)71(9)62(8)53(7)69(9)52(7)45(6)70(8)55(7)41(6)61(7)51(6)31(5)55(6)51(6)28(5)34(5)57(6)33(5)35(5)49(6)31(5)37(5)42(5)36(5)42(6)50(6)45(6)46(6)45(6)29(5)36(5)47(5)	U^{11} U^{22} U^{33} U^{23} 59(1)40(1)60(1)-1(1)47(2)37(1)51(2)4(1)28(3)42(4)61(5)1(3)34(4)35(4)53(5)3(4)70(8)53(7)60(7)-6(6)79(9)71(9)62(8)-1(7)53(7)69(9)52(7)15(6)45(6)70(8)55(7)0(6)41(6)61(7)51(6)-2(5)31(5)55(6)51(6)16(5)28(5)34(5)57(6)2(4)33(5)35(5)49(6)5(4)31(5)37(5)42(5)3(4)36(5)42(6)50(6)-2(5)45(6)46(6)45(6)8(5)29(5)36(5)47(5)4(4)	U^{11} U^{22} U^{33} U^{23} U^{13} 59(1)40(1)60(1)-1(1)-28(1)47(2)37(1)51(2)4(1)-26(1)28(3)42(4)61(5)1(3)-22(3)34(4)35(4)53(5)3(4)-20(4)70(8)53(7)60(7)-6(6)-34(7)79(9)71(9)62(8)-1(7)-35(7)53(7)69(9)52(7)15(6)-28(6)45(6)70(8)55(7)0(6)-26(5)41(6)61(7)51(6)-2(5)-21(5)31(5)55(6)51(6)16(5)-21(5)33(5)34(5)57(6)2(4)-17(4)33(5)35(5)49(6)5(4)-25(4)31(5)37(5)42(5)3(4)-17(4)36(5)42(6)50(6)-2(5)-19(5)45(6)46(6)45(6)8(5)-24(5)29(5)36(5)47(5)4(4)-18(4)

C(14)	34(5)	44(6)	57(6)	7(5)	-21(5)	-7(4)
-------	-------	-------	-------	------	--------	-------

	х	у	Z	U(eq)
	07(0/110)	5100(110)	0520(110)	(0(10)
H(1)	9560(110)	5180(110)	8530(110)	60(40)
H(1A)	2139	678	5457	70
H(2)	-738	1360	4061	78
H(3)	-3317	3254	3959	69
H(4)	-2676	4560	5208	66
H(5)	237	3893	6613	59
H(8)	3530	3412	7399	44
H(11)	9573	3675	10016	50
H(12)	10454	1568	10548	53
H(14A)	6538	6830	7273	67
H(14B)	8846	7082	7980	67
H(14C)	5724	7084	8543	67

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for **4s**.

Table 6. Torsion angles [°] for **4s**.

C(6)-C(1)-C(2)-C(3)	-2(2)
C(1)-C(2)-C(3)-C(4)	3(2)
C(2)-C(3)-C(4)-C(5)	-2(2)
C(3)-C(4)-C(5)-C(6)	1.9(19)
C(2)-C(1)-C(6)-C(5)	2(2)
C(2)-C(1)-C(6)-C(7)	-179.7(12)
C(4)-C(5)-C(6)-C(1)	-1.6(17)
C(4)-C(5)-C(6)-C(7)	179.9(11)
C(1)-C(6)-C(7)-C(8)	163.9(12)

C(5)-C(6)-C(7)-C(8)	-17.6(16)
C(1)-C(6)-C(7)-I(1)	-16.3(15)
C(5)-C(6)-C(7)-I(1)	162.2(8)
C(6)-C(7)-C(8)-C(9)	-177.9(11)
I(1)-C(7)-C(8)-C(9)	2.3(18)
C(7)-C(8)-C(9)-C(10)	172.5(12)
C(7)-C(8)-C(9)-S(1)	-7.1(19)
C(12)-S(1)-C(9)-C(10)	-0.7(9)
C(12)-S(1)-C(9)-C(8)	178.9(10)
C(8)-C(9)-C(10)-C(11)	-178.1(10)
S(1)-C(9)-C(10)-C(11)	1.6(12)
C(8)-C(9)-C(10)-C(13)	2.8(17)
S(1)-C(9)-C(10)-C(13)	-177.6(8)
C(9)-C(10)-C(11)-C(12)	-1.9(14)
C(13)-C(10)-C(11)-C(12)	177.3(10)
C(10)-C(11)-C(12)-S(1)	1.3(13)
C(9)-S(1)-C(12)-C(11)	-0.3(10)
C(14)-N(1)-C(13)-O(1)	0.0(17)
C(14)-N(1)-C(13)-C(10)	-178.6(10)
C(9)-C(10)-C(13)-O(1)	35.6(17)
C(11)-C(10)-C(13)-O(1)	-143.5(11)
C(9)-C(10)-C(13)-N(1)	-145.9(11)
C(11)-C(10)-C(13)-N(1)	35.0(15)

Symmetry transformations used to generate equivalent atoms:

Table 7	Hydrogen	bonds	for	4 s	٢Å	and	°]

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)O(1)#1	0.88(2)	1.95(7)	2.759(11)	152(13)

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z

IX. References:

- S1. K.-I. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto, R. Yamaguchi, *Org. Lett.* **2004**, *6*, 2785.
- S2. J. R. Hummel, J. A. Ellman, J. Am. Chem. Soc. 2015, 137, 490.
- S3. T. Yoshino, H. Ikemoto, S. Matsunaga, M. Kanai, Angew. Chem., Int. Ed. 2013, 52, 2207.
- S4. B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, Adv. Synth. Catal. 2014, 356, 1491.
- S5. J. T. R. Liddon, M. J. James, A. K. Clarke, P. O'Brien, R. J. K. Taylor, W. P. Unsworth, *Chem. –Eur. J.* 2016, 22, 8777.
- S6. D. J. Faizi, A. J. Davis, F. B. Meany, S. A. Blum, Angew. Chem. Int. Ed. 2016, 55, 14286.
- S7. B. Li, J. Ma, W. Xie, H. Song, S. Xu, B. Wang, Chem. -Eur. J. 2013, 19, 11863.

S8. P. M. Liu, C. G. Frost, Org. Lett. 2013, 15, 5862.

S9. T. Kippo, T. Fukuyama, I. Ryu, Org. Lett. 2011, 13, 3864.

S10. D.-G. Yu, T. Gensch, F. de Azambuja, S. Vásquez-Céspedes, F. Glorius, J. Am. Chem. Soc. 2014, 136, 17722.

X: NMR Data

S-49

S-63

S-64

